Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

L_{R} hypertargets and links #556

Merged
merged 2 commits into from
Feb 16, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions Paper.tex
Original file line number Diff line number Diff line change
Expand Up @@ -360,18 +360,18 @@ \subsubsection{Transaction Receipt}\linkdest{Transaction_Receipt}{}
R \equiv (R_{\mathrm{u}}, R_{\mathrm{b}}, R_{\mathbf{l}}, R_{\mathrm{z}})
\end{equation}

The function $L_{R}$ trivially prepares a transaction receipt for being transformed into an RLP-serialised byte array:
\hypertarget{transaction_receipt_preparation_function_for_RLP_serialisation}{}\linkdest{L__R}The function $L_{R}$ trivially prepares a transaction receipt for being transformed into an RLP-serialised byte array:
\begin{equation}
L_{R}(R) \equiv (0 \in \mathbb{B}_{256}, R_{\mathrm{u}}, R_{\mathrm{b}}, R_{\mathbf{l}})
\end{equation}
where $0 \in \mathbb{B}_{256}$ replaces the pre-transaction state root that existed in previous versions of the protocol.

We assert that the status code $R_{\mathrm{z}}$ is an integer.
\linkdest{R__z_assert}We assert that the status code $R_{\mathrm{z}}$ is an integer.
\begin{equation}
R_{\mathrm{z}} \in \mathbb{P}
\end{equation}

We assert $R_{\mathrm{u}}$, the cumulative gas used is a positive integer and that the logs Bloom, $R_{\mathrm{b}}$, is a hash of size 2048 bits (256 bytes):
\linkdest{R__u_assert}We assert $R_{\mathrm{u}}$, the cumulative gas used is a positive integer and that the logs Bloom, $R_{\mathrm{b}}$, is a hash of size 2048 bits (256 bytes):
\begin{equation}
R_{\mathrm{u}} \in \mathbb{P} \quad \wedge \quad R_{\mathrm{b}} \in \mathbb{B}_{256}
\end{equation}
Expand Down Expand Up @@ -409,7 +409,7 @@ \subsubsection{Holistic Validity}
\linkdest{new_state_H__r}{}H_{\mathrm{r}} &\equiv& \mathtt{\small TRIE}(L_S(\Pi(\boldsymbol{\sigma}, B))) & \wedge \\
\linkdest{Ommer_block_hash_H__o}{}H_{\mathrm{o}} &\equiv& \mathtt{\small KEC}(\mathtt{\small RLP}(L_H^*(B_{\mathbf{U}}))) & \wedge \\
\linkdest{tx_block_hash_H__t}{}H_{\mathrm{t}} &\equiv& \mathtt{\small TRIE}(\{\forall i < \lVert B_{\mathbf{T}} \rVert, i \in \mathbb{P}: p(i, L_{T}(B_{\mathbf{T}}[i]))\}) & \wedge \\
\linkdest{Receipts_Root_H__e}{}H_{\mathrm{e}} &\equiv& \mathtt{\small TRIE}(\{\forall i < \lVert B_{\mathbf{R}} \rVert, i \in \mathbb{P}: p(i, L_{R}(B_{\mathbf{R}}[i]))\}) & \wedge \\
\linkdest{Receipts_Root_H__e}{}H_{\mathrm{e}} &\equiv& \mathtt{\small TRIE}(\{\forall i < \lVert B_{\mathbf{R}} \rVert, i \in \mathbb{P}: p(i, \hyperlink{transaction_receipt_preparation_function_for_RLP_serialisation}{L_{R}}(B_{\mathbf{R}}[i]))\}) & \wedge \\
\linkdest{logs_Bloom_filter_H__b}{}H_{\mathrm{b}} &\equiv& \bigvee_{\mathbf{r} \in B_{\mathbf{R}}} \big( \mathbf{r}_{\mathrm{b}} \big)
\end{array}
\end{equation}
Expand All @@ -429,7 +429,7 @@ \subsubsection{Holistic Validity}

\subsubsection{Serialisation}

\hypertarget{block_preparation_function_for_RLP_serialization_L__B}{}\hypertarget{block_preparation_function_for_RLP_serialization_L__H}{}The function $L_{B}$ and $L_{H}$ are the preparation functions for a block and block header respectively. Much like the transaction receipt preparation function $L_{R}$, we assert the types and order of the structure for when the RLP transformation is required:
\hypertarget{block_preparation_function_for_RLP_serialization_L__B}{}\linkdest{L__B}\hypertarget{block_preparation_function_for_RLP_serialization_L__H}{}\linkdest{L__B}The function $L_{B}$ and $L_{H}$ are the preparation functions for a block and block header respectively. Much like the \hyperlink{transaction_receipt_preparation_function_for_RLP_serialisation}{transaction receipt preparation function $L_{R}$}, we assert the types and order of the structure for when the RLP transformation is required:
\begin{eqnarray}
\quad L_{H}(H) & \equiv & (\begin{array}[t]{l}H_{\mathrm{p}}, H_{\mathrm{o}}, H_{\mathrm{c}}, H_{\mathrm{r}}, H_{\mathrm{t}}, H_{\mathrm{e}}, H_{\mathrm{b}}, H_{\mathrm{d}},\\ H_{\mathrm{i}}, H_{\mathrm{l}}, H_{\mathrm{g}}, H_{\mathrm{s}}, H_{\mathrm{x}}, H_{\mathrm{m}}, H_{\mathrm{n}} \; )\end{array} \\
\quad L_{B}(B) & \equiv & \big( L_{H}(B_{H}), L_{T}^*(B_{\mathbf{T}}), L_{H}^*(\hyperlink{ommer_block_headers_B__U}{B_{\mathbf{U}}}) \big)
Expand Down