Skip to content

Commit

Permalink
Added tech report and openoa citations to intro. Moved citation defin…
Browse files Browse the repository at this point in the history
…itions to end of readme.
  • Loading branch information
jordanperr committed Feb 22, 2024
1 parent e876cae commit 0151395
Showing 1 changed file with 38 additions and 38 deletions.
76 changes: 38 additions & 38 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,11 @@
- Read the [documentation](https://openoa.readthedocs.io/en/latest/).
- Learn how to [contribute](contributing.md).

This library provides a framework for assessing wind plant performance using operational assessment
(OA) methodologies that consume timeseries data from wind plants. The software is implemented in Python and uses the Pandas data frame library. The goal of the project is to provide an open source implementation of common data structures, analysis methods, and utility functions relevant to wind plant OA, while providing a platform to collaborate on new functionality.
OpenOA [^1] is a software framework written in Python for assessing wind plant performance using operational assessment
(OA) methodologies that consume timeseries data from wind plants. The goal of the project is to provide an open source implementation of common data structures, analysis methods, and utility functions relevant to wind plant OA, while providing a platform to collaborate on new functionality.

Development of OpenOA was motivated
by the Wind Plant Performance Prediction (WP3) Benchmark project, led by the National Renewable
by the Wind Plant Performance Prediction (WP3) Benchmark project [^2], led by the National Renewable
Energy Laboratory (NREL), which focuses on quantifying and understanding differences between the
expected and actual energy production of wind plants. To support the WP3 Benchmark project, OpenOA
was initially developed to provide a baseline implementation of a long-term operational annual
Expand All @@ -50,38 +50,12 @@ any data analysis.

| Name | Description | Citations |
| --- | --- | --- |
| ``MonteCarloAEP`` | This routine estimates the long-term annual energy production (AEP) of a wind power plant (typically over 10-20 years) based on operational data from a shorter period of record (e.g., 1-3 years), along with the uncertainty. | [^2], [^3] |
| ``TurbineLongTermGrossEnergy``| This routine estimates the long-term turbine ideal energy (TIE) of a wind plant, defined as the long-term AEP that would be generated by the wind plant if all turbines operated normally (i.e., no downtime, derating, or severe underperformance, but still subject to wake losses and moderate performance losses), along with the uncertainty. | [^4] |
| ``ElectricalLosses``| The ElectricalLosses routine estimates the average electrical losses at a wind plant, along with the uncertainty, by comparing the energy produced at the wind turbines to the energy delivered to the grid. | [^4] |
| ``EYAGapAnalysis``| This class is used to perform a gap analysis between the estimated AEP from a pre-construction energy yield estimate (EYA) and the actual AEP. The gap analysis compares different wind plant performance categories to help understand the sources of differences between EYA AEP estimates and actual AEP, specifically availability losses, electrical losses, and TIE. | [^4] |
| ``WakeLosses``| This routine estimates long-term internal wake losses experienced by a wind plant and for each individual turbine, along with the uncertainty. | [^5]. Based in part on approaches in [^6], [^7], [^8] |
| ``StaticYawMisalignment``| The StaticYawMisalignment routine estimates the static yaw misalignment for individual wind turbines as a function of wind speed by comparing the estimated wind vane angle at which power is maximized to the mean wind vane angle at which the turbines operate. The routine includes uncertainty quantification. **Warning: This method has not been validated using data from wind turbines with known static yaw misalignments and the results should be treated with caution.** | Based in part on approaches in [^9], [^10], [^11], [^12], [^13] |

[^1]: Fields, M. J., Optis, M., Perr-Sauer, J., Todd, A., Lee, J. C. Y., Meissner, J., Simley, E., Bodini, N., Williams, L., Sheng, S., and Hammond, R.. Wind plant performance prediction benchmark phase 1 technical report, NREL/TP-5000-78715. Technical Report, National Renewable Energy Laboratory, Golden, CO (2021). https://doi.org/10.2172/1826665.

[^2]: Bodini, N. & Optis, M. Operational-based annual energy production uncertainty: are its components actually uncorrelated? *Wind Energy Science* 5(4):1435–1448 (2020). https://doi.org/10.5194/wes-5-1435-2020.

[^3]: Bodini, N., Optis, M., Perr-Sauer, J., Simley, E., and Fields, M. J. Lowering post-construction yield assessment uncertainty through better wind plant power curves. *Wind Energy*, 25(1):5–22 (2022). https://doi.org/10.1002/we.2645.

[^4]: Todd, A. C., Optis, M., Bodini, N., Fields, M. J., Lee, J. C. Y., Simley, E., and Hammond, R. An independent analysis of bias sources and variability in wind plant pre‐construction energy yield estimation methods. *Wind Energy*, 25(10):1775-1790 (2022). https://doi.org/10.1002/we.2768.

[^5]: Simley, E., Fields, M. J., Perr-Sauer, J., Hammond, R., and Bodini, N. A Comparison of Preconstruction and Operational Wake Loss Estimates for Land-Based Wind Plants. Presented at the NAWEA/WindTech 2022 Conference, Newark, DE, September 20-22 (2022). https://www.nrel.gov/docs/fy23osti/83874.pdf.

[^6]: Barthelmie, R. J. and Jensen, L. E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm, *Wind Energy* 13(6):573–586 (2010). https://doi.org/10.1002/we.408.

[^7]: Nygaard, N. G. Systematic quantification of wake model uncertainty. Proc. EWEA Offshore, Copenhagen, Denmark, March 10-12 (2015).

[^8]: Walker, K., Adams, N., Gribben, B., Gellatly, B., Nygaard, N. G., Henderson, A., Marchante Jimémez, M., Schmidt, S. R., Rodriguez Ruiz, J., Paredes, D., Harrington, G., Connell, N., Peronne, O., Cordoba, M., Housley, P., Cussons, R., Håkansson, M., Knauer, A., and Maguire, E.: An evaluation of the predictive accuracy of wake effects models for offshore wind farms. *Wind Energy* 19(5):979–996 (2016). https://doi.org/10.1002/we.1871.

[^9]: Bao, Y., Yang, Q., Fu, L., Chen, Q., Cheng, C., and Sun, Y. Identification of Yaw Error Inherent Misalignment for Wind Turbine Based on SCADA Data: A Data Mining Approach. Proc. 12th Asian Control Conference (ASCC), Kitakyushu, Japan, June 9-12 (2019). 1095-1100.

[^10]: Xue, J. and Wang, L. Online data-driven approach of yaw error estimation and correction of horizontal axis wind turbine. *IET J. Eng.* 2019(18):4937–4940 (2019). https://doi.org/10.1049/joe.2018.9293.

[^11]: Astolfi, D., Castellani, F., and Terzi, L. An Operation Data-Based Method for the Diagnosis of Zero-Point Shift of Wind Turbines Yaw Angle. *J. Solar Energy Engineering* 142(2):024501 (2020). https://doi.org/10.1115/1.4045081.

[^12]: Jing, B., Qian, Z., Pei, Y., Zhang, L., and Yang, T. Improving wind turbine efficiency through detection and calibration of yaw misalignment. *Renewable Energy* 160:1217-1227 (2020). https://doi.org/10.1016/j.renene.2020.07.063.

[^13]: Gao, L. and Hong, J. Data-driven yaw misalignment correction for utility-scale wind turbines. *J. Renewable Sustainable Energy* 13(6):063302 (2021). https://doi.org/10.1063/5.0056671.
| ``MonteCarloAEP`` | This routine estimates the long-term annual energy production (AEP) of a wind power plant (typically over 10-20 years) based on operational data from a shorter period of record (e.g., 1-3 years), along with the uncertainty. | [^3], [^4] |
| ``TurbineLongTermGrossEnergy``| This routine estimates the long-term turbine ideal energy (TIE) of a wind plant, defined as the long-term AEP that would be generated by the wind plant if all turbines operated normally (i.e., no downtime, derating, or severe underperformance, but still subject to wake losses and moderate performance losses), along with the uncertainty. | [^5] |
| ``ElectricalLosses``| The ElectricalLosses routine estimates the average electrical losses at a wind plant, along with the uncertainty, by comparing the energy produced at the wind turbines to the energy delivered to the grid. | [^5] |
| ``EYAGapAnalysis``| This class is used to perform a gap analysis between the estimated AEP from a pre-construction energy yield estimate (EYA) and the actual AEP. The gap analysis compares different wind plant performance categories to help understand the sources of differences between EYA AEP estimates and actual AEP, specifically availability losses, electrical losses, and TIE. | [^5] |
| ``WakeLosses``| This routine estimates long-term internal wake losses experienced by a wind plant and for each individual turbine, along with the uncertainty. | [^6]. Based in part on approaches in [^7], [^8], [^9] |
| ``StaticYawMisalignment``| The StaticYawMisalignment routine estimates the static yaw misalignment for individual wind turbines as a function of wind speed by comparing the estimated wind vane angle at which power is maximized to the mean wind vane angle at which the turbines operate. The routine includes uncertainty quantification. **Warning: This method has not been validated using data from wind turbines with known static yaw misalignments and the results should be treated with caution.** | Based in part on approaches in [^10], [^11], [^12], [^13], [^14] |

### PlantData Schema

Expand Down Expand Up @@ -110,7 +84,7 @@ For further infromation about the features and citations, please see the [OpenOA

**To cite analysis methods or individual features:** Please cite the original authors of these methods, as noted in the [documentation](#included-analysis-methods) and inline comments.

**To cite the open-source software framework as a whole, or the OpenOA open source development effort more broadly,** please use the following citation [^14]:
**To cite the open-source software framework as a whole, or the OpenOA open source development effort more broadly,** please use citation [^1], which is provided here in BibTeX:

```bibtex
@article{Perr-Sauer2021,
Expand All @@ -127,8 +101,6 @@ For further infromation about the features and citations, please see the [OpenOA
}
```

[^14]: Perr-Sauer, J., and Optis, M., Fields, J.M., Bodini, N., Lee, J.C.Y., Todd, A., Simley, E., Hammond, R., Phillips, C., Lunacek, M., Kemper, T., Williams, L., Craig, A., Agarwal, N., Sheng, S., and Meissner, J. OpenOA: An Open-Source Codebase For Operational Analysis of Wind Farms. *Journal of Open Source Software*, (2022). https://doi.org/10.21105/joss.02171.

## Installation and Usage

### Requirements
Expand Down Expand Up @@ -285,3 +257,31 @@ make html
[![All Contributors](https://img.shields.io/github/all-contributors/NREL/OpenOA?color=ee8449&style=flat-square)](#contributors)

### References

[^1]: Perr-Sauer, J., and Optis, M., Fields, J.M., Bodini, N., Lee, J.C.Y., Todd, A., Simley, E., Hammond, R., Phillips, C., Lunacek, M., Kemper, T., Williams, L., Craig, A., Agarwal, N., Sheng, S., and Meissner, J. OpenOA: An Open-Source Codebase For Operational Analysis of Wind Farms. *Journal of Open Source Software*, 6(58):2171 (2022). https://doi.org/10.21105/joss.02171.

[^2]: Fields, M. J., Optis, M., Perr-Sauer, J., Todd, A., Lee, J. C. Y., Meissner, J., Simley, E., Bodini, N., Williams, L., Sheng, S., and Hammond, R.. Wind plant performance prediction benchmark phase 1 technical report, NREL/TP-5000-78715. Technical Report, National Renewable Energy Laboratory, Golden, CO (2021). https://doi.org/10.2172/1826665.

[^3]: Bodini, N. & Optis, M. Operational-based annual energy production uncertainty: are its components actually uncorrelated? *Wind Energy Science* 5(4):1435–1448 (2020). https://doi.org/10.5194/wes-5-1435-2020.

[^4]: Bodini, N., Optis, M., Perr-Sauer, J., Simley, E., and Fields, M. J. Lowering post-construction yield assessment uncertainty through better wind plant power curves. *Wind Energy*, 25(1):5–22 (2022). https://doi.org/10.1002/we.2645.

[^5]: Todd, A. C., Optis, M., Bodini, N., Fields, M. J., Lee, J. C. Y., Simley, E., and Hammond, R. An independent analysis of bias sources and variability in wind plant pre‐construction energy yield estimation methods. *Wind Energy*, 25(10):1775-1790 (2022). https://doi.org/10.1002/we.2768.

[^6]: Simley, E., Fields, M. J., Perr-Sauer, J., Hammond, R., and Bodini, N. A Comparison of Preconstruction and Operational Wake Loss Estimates for Land-Based Wind Plants. Presented at the NAWEA/WindTech 2022 Conference, Newark, DE, September 20-22 (2022). https://www.nrel.gov/docs/fy23osti/83874.pdf.

[^7]: Barthelmie, R. J. and Jensen, L. E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm, *Wind Energy* 13(6):573–586 (2010). https://doi.org/10.1002/we.408.

[^8]: Nygaard, N. G. Systematic quantification of wake model uncertainty. Proc. EWEA Offshore, Copenhagen, Denmark, March 10-12 (2015).

[^9]: Walker, K., Adams, N., Gribben, B., Gellatly, B., Nygaard, N. G., Henderson, A., Marchante Jimémez, M., Schmidt, S. R., Rodriguez Ruiz, J., Paredes, D., Harrington, G., Connell, N., Peronne, O., Cordoba, M., Housley, P., Cussons, R., Håkansson, M., Knauer, A., and Maguire, E.: An evaluation of the predictive accuracy of wake effects models for offshore wind farms. *Wind Energy* 19(5):979–996 (2016). https://doi.org/10.1002/we.1871.

[^10]: Bao, Y., Yang, Q., Fu, L., Chen, Q., Cheng, C., and Sun, Y. Identification of Yaw Error Inherent Misalignment for Wind Turbine Based on SCADA Data: A Data Mining Approach. Proc. 12th Asian Control Conference (ASCC), Kitakyushu, Japan, June 9-12 (2019). 1095-1100.

[^11]: Xue, J. and Wang, L. Online data-driven approach of yaw error estimation and correction of horizontal axis wind turbine. *IET J. Eng.* 2019(18):4937–4940 (2019). https://doi.org/10.1049/joe.2018.9293.

[^12]: Astolfi, D., Castellani, F., and Terzi, L. An Operation Data-Based Method for the Diagnosis of Zero-Point Shift of Wind Turbines Yaw Angle. *J. Solar Energy Engineering* 142(2):024501 (2020). https://doi.org/10.1115/1.4045081.

[^13]: Jing, B., Qian, Z., Pei, Y., Zhang, L., and Yang, T. Improving wind turbine efficiency through detection and calibration of yaw misalignment. *Renewable Energy* 160:1217-1227 (2020). https://doi.org/10.1016/j.renene.2020.07.063.

[^14]: Gao, L. and Hong, J. Data-driven yaw misalignment correction for utility-scale wind turbines. *J. Renewable Sustainable Energy* 13(6):063302 (2021). https://doi.org/10.1063/5.0056671.

0 comments on commit 0151395

Please sign in to comment.