xpander.ai offers Backend-as-a-Service infrastructure for autonomous agents: memory, tools, multi-user state, various agent triggering options (MCP, A2A, API, Web interfaces), storage, agent-to-agent messaging β designed to support any agent framework and SDK
xpander.ai-demo.mov
Feature | Description |
---|---|
π οΈ Framework Flexibility | Choose from popular frameworks like OpenAI ADK, Agno, CrewAI, LangChain, or work directly with native LLM APIs |
π§° Tool Integration | Access our comprehensive MCP-compatible tools library and pre-built integrations |
π Scalable Hosting | Deploy and scale your agents effortlessly on our managed infrastructure |
πΎ State Management | Opt for framework-specific local state or leverage our distributed state management system |
β‘ Real-time Events | Harness our event streaming capabilities for Slackbots, ChatUIs, Agent2Agent communication, and Webhook integrations |
π‘οΈ API Guardrails | Implement robust guardrails using our Agent-Graph-System to define and manage dependencies between API actions of tool-use |
By abstracting away infrastructure complexity, xpander.ai empowers you to focus on what matters most: building intelligent, effective, production-ready AI agents.
- Login to https://app.xpander.ai and go to the Templates section
- Deploy the Coding agent
- Send tasks to the agent.
Examples:Clone the <my-repo-name> repo and add the following feature to the codebase ..., then create a PR with the new code.
Find all open PRs that have been waiting on review for more than 3 days.
- Continue customizing, adding tools, configure triggering (MCP, A2A, Webhooks), multi-agent collaboration, and more.

# Python
pip install xpander-sdk
# Node.js
npm install @xpander-ai/sdk
# CLI (for agent creation)
npm install -g xpander-cli
xpander login
xpander agent new

python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
xpander dev

Add one line of code to xpander_handler.py and your agent will be accessible via Agent2Agent, Slackbots, MCP servers, or WebUI.
on_execution_request(execution_task: AgentExecution) -> AgentExecutionResult:
your_agent.invoke(execution_task.input.text)
return AgentExecutionResult(
result="your-agent-result",
is_success=True,
)
from xpander_sdk import XpanderClient, Agent
# Init the clients
xpander_client = XpanderClient(api_key="YOUR_XPANDER_API_KEY")
agent_backend : Agent = xpander_client.agents.get(agent_id="YOUR_AGENT_ID")
# Initializing a new task creates a new conversation thread with empty agent state
xpander_agent.add_task("What can you do?")
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=agent_backend.messages, # <-- Automatically loads the current state in the LLM format
tools=agent_backend.get_tools(), ## <-- Automatically loads all the tool schemas from the cloud
tool_choice=agent_backend.tool_choice,
temperature=0.0
)
# Save the LLM Current state
agent.add_messages(response.model_dump())
# Extract the tools requested by the AI Model
tool_calls = XpanderClient.extract_tool_calls(llm_response=response.model_dump())
# Execute tools automatically and securely in the cloud after validating schema and loading user overrides and authentication
agent.run_tools(tool_calls=tool_calls)
xpander deploy # Will deploy the Docker container to the cloud and run it via the xpander_handler.py file
xpander logs # Will stream logs locally from the agent configured locally
Project | Description | License | Tech Stack | Link |
---|---|---|---|---|
βΈοΈ Agno EKS Agent | Kubernetes operations agent with Agno framework, xpander backend, and AWS EKS MCP servers | Apache 2.0 | Python, Agno, AWS EKS, MCP | Repo |
π» Coding Agent | Framework-agnostic agent that reads, writes, and commits code to Git repositories | MIT | Python, OpenAI, Anthropic, Gemini, Llama 3 | Repo |
π₯ NVIDIA Meeting Recorder | AI assistant that records, transcribes, and extracts insights from meetings | Apache 2.0 | Python, NVIDIA SDKs, Speech Recognition | Repo |
The repository provides comprehensive examples to help you build AI agents with xpander.ai:
Choose your preferred language to get started:
Getting-Started/python/hello-world/
- A comprehensive Python implementation demonstrating:
python/hello-world/
βββ app.py # CLI entry point for the agent
βββ my_agent.py # Main agent implementation
βββ my_agent.ipynb # Jupyter notebook version
βββ xpander_handler.py # Event handler for platform events
βββ agent_instructions.json # Agent persona configuration
βββ xpander_config.json # API credentials configuration
βββ Dockerfile # Container definition for deployment
βββ providers/
β βββ ai_frameworks/ # Framework integrations
β βββ llms/ # LLM provider implementations
β βββ openai/ # OpenAI specific implementation
βββ tools/
βββ local_tools.py # Custom tool implementations
βββ async_function_caller.py # Async function caller utility
Getting-Started/node/hello-world/
- A Node.js implementation with camelCase conventions:
node/hello-world/
βββ app.js # Main application entry point
βββ MyAgent.js # Agent implementation class
βββ package.json # Node.js dependencies and scripts
βββ xpander_config.json # Xpander API configuration
βββ agent_instructions.json # Agent role and instructions
βββ env.template # Environment variables template
See individual README files in each directory for detailed setup instructions:
- Open-source runtime: Apache License 2.0
- Hosted platform: Commercial (free tier available)