About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Create a two-sample Z-test double-precision floating-point results object.
npm install @stdlib/stats-base-ztest-two-sample-results-float64
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var Float64Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
Returns a two-sample Z-test double-precision floating-point results object.
var results = new Float64Results();
// returns {...}
The function supports the following parameters:
- arg: an
ArrayBuffer
or a data object (optional). - byteOffset: byte offset (optional).
- byteLength: maximum byte length (optional).
A data object argument is an object having one or more of the following properties:
- rejected: boolean indicating whether the null hypothesis was rejected.
- alternative: the alternative hypothesis (e.g.,
'two-sided'
,'less'
, or'greater'
). - alpha: significance level.
- pValue: p-value.
- statistic: test statistic.
- ci: confidence interval as a
Float64Array
. - nullValue: difference in means under the null hypothesis.
- xmean: sample mean of
x
. - ymean: sample mean of
y
.
Boolean indicating whether the null hypothesis was rejected.
var results = new Float64Results();
// returns {...}
// ...
var v = results.rejected;
// returns <boolean>
The alternative hypothesis.
var results = new Float64Results();
// returns {...}
// ...
var v = results.alternative;
// returns <string>
Significance level.
var results = new Float64Results();
// returns {...}
// ...
var v = results.alpha;
// returns <number>
The test p-value.
var results = new Float64Results();
// returns {...}
// ...
var v = results.pValue;
// returns <number>
The test statistic.
var results = new Float64Results();
// returns {...}
// ...
var v = results.statistic;
// returns <number>
Confidence interval.
var results = new Float64Results();
// returns {...}
// ...
var v = results.ci;
// returns <Float64Array>
Difference in means under the null hypothesis.
var results = new Float64Results();
// returns {...}
// ...
var v = results.nullValue;
// returns <number>
Sample mean of x
.
var results = new Float64Results();
// returns {...}
// ...
var v = results.xmean;
// returns <number>
Sample mean of y
.
var results = new Float64Results();
// returns {...}
// ...
var v = results.ymean;
// returns <number>
Serializes a results object to a formatted string.
var results = new Float64Results();
// returns {...}
// ...
var v = results.toString();
// returns <string>
The method supports the following options:
- digits: number of digits to display after decimal points. Default:
4
. - decision: boolean indicating whether to show the test decision. Default:
true
.
Example output:
Two-sample Z-test
Alternative hypothesis: True difference in means is less than 1.0
pValue: 0.0406
statistic: 9.9901
95% confidence interval: [9.7821, 10.4451]
Test Decision: Reject null in favor of alternative at 5% significance level
Serializes a results object as a JSON object.
var results = new Float64Results();
// returns {...}
// ...
var v = results.toJSON();
// returns {...}
JSON.stringify()
implicitly calls this method when stringifying a results instance.
Returns a DataView
of a results object.
var results = new Float64Results();
// returns {...}
// ...
var v = results.toDataView();
// returns <DataView>
- A results object is a
struct
providing a fixed-width composite data structure for storing two-sample Z-test results and providing an ABI-stable data layout for JavaScript-C interoperation.
var Float64Array = require( '@stdlib/array-float64' );
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var results = new Results({
'rejected': true,
'alpha': 0.05,
'pValue': 0.0132,
'statistic': 2.4773,
'nullValue': 0.0,
'xmean': 3.7561,
'ymean': 3.0129,
'ci': new Float64Array( [ 9.9983, 11.4123 ] ),
'alternative': 'two-sided'
});
var str = results.toString({
'format': 'linear'
});
console.log( str );
#include "stdlib/stats/base/ztest/two-sample/results/float64.h"
Structure for holding double-precision floating-point test results.
#include <stdbool.h>
#include <stdint.h>
struct stdlib_stats_ztest_two_sample_float64_results {
// Boolean indicating whether the null hypothesis was rejected:
bool rejected;
// Alternative hypothesis:
int8_t alternative;
// Significance level:
double alpha;
// p-value:
double pValue;
// Test statistic:
double statistic;
// Confidence interval:
double ci[ 2 ];
// Difference in means under the null hypothesis:
double nullValue;
// Sample mean of `x`:
double xmean;
// Sample mean of `y`:
double ymean;
};
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Copyright © 2016-2025. The Stdlib Authors.