This SDK gives JavaScript developers full access to advanced AI features like agent orchestration, RAG, and fine-tuning — without needing to manage backend code.
The MultiMind SDK provides a comprehensive JavaScript interface for advanced AI capabilities:
- 🤖 AI Agent Orchestration: Create intelligent agents that can reason, plan, and execute complex tasks
- 🔍 RAG (Retrieval-Augmented Generation): Build knowledge systems that combine your data with AI reasoning
- 🎯 Model Fine-tuning: Customize AI models for your specific use cases and domains
- 🔄 Model Routing: Automatically select the best AI model for each task
- 📊 Model Evaluation: Assess and compare AI model performance
- 🔧 Adapter Management: Enhance models with specialized capabilities
- 🛠️ Advanced Workflows: LoRA fine-tuning, document processing, compliance monitoring, and more
npm install multimind-sdk
import { MultiMindSDK } from 'multimind-sdk';
async function main() {
const sdk = new MultiMindSDK();
try {
await sdk.initialize();
// Generate a response with an AI agent
const response = await sdk.generateWithAgent(
"What is artificial intelligence?",
{ model: "mistral", temperature: 0.7 }
);
console.log(response);
} finally {
await sdk.close();
}
}
main();
import { MultiMindSDK } from 'multimind-sdk';
const sdk = new MultiMindSDK();
// Advanced Fine-tuning with LoRA
const fineTuneResult = await sdk.advancedFineTune({
baseModelName: "bert-base-uncased",
outputDir: "./output",
method: "lora",
epochs: 10,
learningRate: 0.001,
batchSize: 32,
loraConfig: {
r: 16,
alpha: 32,
dropout: 0.1,
targetModules: ["query", "value"]
}
});
// Advanced RAG with Document Management
const documents = [
{
text: "MultiMind SDK provides comprehensive AI capabilities.",
metadata: { type: "introduction", source: "docs" }
}
];
await sdk.addDocumentsToRAG(documents);
const ragResponse = await sdk.queryAdvancedRAG({
query: "What is MultiMind SDK?",
topK: 5,
includeMetadata: true
});
// Model Conversion
const conversionResult = await sdk.pytorchToONNX(
"./models/model.pt",
"./models/model.onnx",
{
quantization: { method: "int8", targetDevice: "cpu" },
graphOptimization: { fuseOperations: true, optimizeMemory: true }
}
);
// Compliance Monitoring
const complianceResult = await sdk.checkCompliance({
modelId: "model_123",
dataCategories: ["text", "user_data"],
useCase: "customer_support",
region: "EU"
});
// Advanced Agent with Tools
const agentResponse = await sdk.runAdvancedAgent(
"Calculate 15 * 23 and search for quantum computing information",
{ context: "mathematical and scientific inquiry" }
);
// Model Client System
const lstmClient = await sdk.createLSTMModelClient({
modelPath: "./models/lstm.pt",
modelName: "custom_lstm"
});
const moeClient = await sdk.createMoEModelClient({
experts: {
"expert1": { modelName: "gpt-3.5-turbo" },
"expert2": { modelName: "claude-3" }
},
router: (input: string) => input.length > 100 ? "expert2" : "expert1"
});
// Gateway API
const gateway = await sdk.startGateway({
host: "0.0.0.0",
port: 8000,
enableMiddleware: true,
corsEnabled: true,
rateLimit: 100
});
- OpenAI Models: GPT-3.5, GPT-4, GPT-4 Turbo
- Anthropic Models: Claude-2, Claude-3, Claude-3.5 Sonnet
- Open Source Models: Mistral, Llama, BERT, and many more
- Custom Models: Load and use your own fine-tuned models
- Basic Agents: Simple question-answering and text generation
- Advanced Agents: Multi-step reasoning, tool usage, and memory
- Specialized Agents: Code generation, data analysis, creative writing
- Custom Agents: Build agents tailored to your specific domain
- Document Processing: PDF, DOCX, TXT, and more
- Vector Storage: Efficient similarity search
- Knowledge Graphs: Structured information retrieval
- Hybrid Search: Combine semantic and keyword search
The MultiMind SDK includes a powerful CLI for automation and batch operations:
npm install -g multimind-sdk
# Transfer context between different AI models
multimind-cli --source chatgpt --target claude --input conversation.json --output prompt.txt
# List supported models
multimind-cli --list-models
# Run batch transfer operations
multimind-cli --batch
# Generate Chrome extension configuration
multimind-cli --chrome-config
# Basic Transfer
--source, -s <model> Source model name (e.g., chatgpt, claude)
--target, -t <model> Target model name (e.g., deepseek, gemini)
--input, -i <file> Input conversation file (JSON, TXT, MD)
--output, -o <file> Output formatted prompt file
# Transfer Options
--last-n <number> Number of recent messages to extract (default: 5)
--summary-type <type> Summary type: concise, detailed, structured
--output-format <format> Output format: txt, json, markdown
--no-smart-extraction Disable smart context extraction
--no-metadata Exclude metadata from output
# Model-Specific Options
--include-code Include code context (for coding models)
--include-reasoning Include reasoning capabilities
--include-safety Include safety considerations
--include-creativity Include creative capabilities
--include-examples Include example generation
--include-step-by-step Include step-by-step explanations
--include-multimodal Include multimodal capabilities
--include-web-search Include web search capabilities
# Advanced Features
--batch Run batch transfer operations
--validate Validate conversation format
--list-models List all supported models
--chrome-config Generate Chrome extension configuration
--help, -h Show help message
# Basic transfer from ChatGPT to Claude
multimind-cli --source chatgpt --target claude --input conversation.json --output prompt.txt
# Advanced transfer with custom options
multimind-cli --source gpt-4 --target deepseek --input chat.txt --output formatted.md \
--summary-type detailed --include-code --include-reasoning
# Batch transfer with validation
multimind-cli --batch --validate
# Generate Chrome extension config
multimind-cli --chrome-config
// Automated content generation
const sdk = new MultiMindSDK();
await sdk.initialize();
// Generate blog posts from outlines
const outline = "AI trends in 2024";
const blogPost = await sdk.generateWithAgent(
`Write a comprehensive blog post about: ${outline}`,
{ model: "gpt-4", temperature: 0.7 }
);
// Automated customer support
const customerQuery = "How do I reset my password?";
const response = await sdk.queryAdvancedRAG({
query: customerQuery,
topK: 3,
includeMetadata: true
});
# GitHub Actions example
- name: Generate Documentation
run: |
npm install multimind-sdk
node scripts/generate-docs.js
// Process multiple documents
const documents = await loadDocuments('./data/');
const results = [];
for (const doc of documents) {
const summary = await sdk.generateWithAgent(
`Summarize this document: ${doc.content}`,
{ model: "claude-3" }
);
results.push({ id: doc.id, summary });
}
# Basic agent example
npm run example:agent
# Advanced usage example
npm run example:advanced
# Comprehensive demo
npm run demo
# CLI directly
npm run cli -- --help
example/run-agent.ts
: Basic agent generation exampleexample/advanced-usage.ts
: Advanced features exampleexample/comprehensive-demo.ts
: Complete feature demonstrationexample/context-transfer-cli.ts
: CLI implementation
The main SDK class that provides a unified interface to all MultiMind functionality.
generateWithAgent(prompt: string, config?: AgentConfig)
: Generate responses using AI agentscreateAgent(config?: AgentConfig)
: Create a new agent instance
fineTuneModel(config: FineTuneConfig)
: Fine-tune a modelcreateFineTuner(config: FineTuneConfig)
: Create a fine-tuner instance
queryRAG(prompt: string, config: RAGConfig)
: Query a RAG systemcreateRAGEngine(config: RAGConfig)
: Create a RAG engine instance
loadAdapter(config: AdapterConfig)
: Load a model adapterlistAdapters(model: string)
: List available adapters for a modelremoveAdapter(model: string, adapterPath: string)
: Remove an adapter
evaluateModel(config: EvaluationConfig)
: Evaluate a modelcompareModels(models: string[], task: string, dataset?: string)
: Compare multiple models
loadModel(config: ModelConfig)
: Load a modelrouteModel(input: string, availableModels?: string[])
: Route to the best modellistAvailableModels()
: List all available models
advancedFineTune(config: AdvancedFineTuneConfig)
: Advanced fine-tuning with LoRA, Adapters, etc.createAdvancedTuner(config: AdvancedFineTuneConfig)
: Create advanced tuner
createAdvancedRAG(config?: AdvancedRAGConfig)
: Create advanced RAG clientaddDocumentsToRAG(documents: Document[])
: Add documents to RAGqueryAdvancedRAG(config: QueryConfig)
: Query advanced RAG system
createModelConverter()
: Create model converterconvertModel(config: ConversionConfig)
: Convert model between formatspytorchToONNX(inputPath: string, outputPath: string, config?)
: Convert PyTorch to ONNXtensorflowToTFLite(inputPath: string, outputPath: string, config?)
: Convert TensorFlow to TFLitepytorchToGGUF(inputPath: string, outputPath: string, config?)
: Convert PyTorch to GGUF
createComplianceMonitor(config: ComplianceConfig)
: Create compliance monitorcheckCompliance(check: ComplianceCheck)
: Check compliance
createAdvancedAgent(config: AdvancedAgentConfig)
: Create advanced agentrunAdvancedAgent(input: string, context?)
: Run advanced agent with tools
createLSTMModelClient(config: ModelClientConfig)
: Create LSTM model clientcreateMoEModelClient(config: MoEConfig)
: Create MoE model clientcreateMultiModalClient(config: MultiModalConfig)
: Create MultiModal clientcreateFederatedRouter(config: FederatedConfig)
: Create federated router
createGateway(config?: GatewayConfig)
: Create gatewaystartGateway(config?: GatewayConfig)
: Start gateway APIstopGateway()
: Stop gateway
transferContext(sourceModel: string, targetModel: string, conversationData: ConversationMessage[], options?: TransferOptions)
: Transfer context between modelsquickTransfer(sourceModel: string, targetModel: string, conversationData: ConversationMessage[], options?: Record<string, any>)
: Quick context transfergetSupportedModels()
: Get supported models for context transfervalidateConversationFormat(data: ConversationMessage[])
: Validate conversation formatbatchTransfer(transfers: Array<{sourceModel: string, targetModel: string, conversationData: ConversationMessage[], options?: TransferOptions}>)
: Batch context transfercreateChromeExtensionConfig()
: Create Chrome extension configuration
getSDKInfo()
: Get SDK informationhealthCheck()
: Check SDK healthinitialize()
: Initialize SDKclose()
: Close SDK
# Clone the repository
git clone <repository-url>
cd multimind-sdk
# Install dependencies
npm install
# Build the project
npm run build:examples
# Run tests
npm test
# Run linting
npm run lint
npm run build # Build TypeScript to JavaScript
npm run build:examples # Build with example fixes
npm run test # Run test suite
npm run test:watch # Run tests in watch mode
npm run test:coverage # Run tests with coverage
npm run lint # Run ESLint
npm run lint:fix # Fix linting issues
npm run sync-features # Sync with backend features
npm run cli # Run CLI
npm run demo # Run comprehensive demo
multimind-sdk/
├── src/
│ ├── bridge/
│ │ └── multimind-bridge.ts # Backend bridge setup
│ ├── agent.ts # Basic agent functionality
│ ├── fineTune.ts # Basic fine-tuning functionality
│ ├── rag.ts # Basic RAG functionality
│ ├── adapters.ts # Adapter management
│ ├── evaluation.ts # Model evaluation
│ ├── models.ts # Model loading and routing
│ ├── advancedFineTuning.ts # Advanced fine-tuning (LoRA, Adapters, etc.)
│ ├── advancedRAG.ts # Advanced RAG with document management
│ ├── modelConversion.ts # Model conversion and optimization
│ ├── compliance.ts # Compliance monitoring and validation
│ ├── advancedAgent.ts # Advanced agents with tools and memory
│ ├── modelClientSystem.ts # LSTM, MoE, MultiModal, Federated routing
│ ├── gateway.ts # Gateway API and middleware
│ ├── contextTransfer.ts # Context transfer functionality
│ └── index.ts # Main SDK class and exports
├── example/
│ ├── run-agent.ts # Basic example
│ ├── advanced-usage.ts # Advanced example
│ ├── comprehensive-demo.ts # Complete feature demo
│ └── context-transfer-cli.ts # CLI implementation
├── test/
│ ├── sdk-smoke.test.ts # Basic SDK tests
│ ├── module-tests.test.ts # Module functionality tests
│ └── cli.test.ts # CLI tests
├── scripts/
│ ├── fix-example-imports.js # Fix example import paths
│ ├── fix-all-imports.js # Fix all import paths
│ └── sync-features.js # Sync with backend features
├── package.json
├── tsconfig.json
└── README.md
The SDK includes comprehensive error handling. All methods throw errors with descriptive messages when operations fail:
try {
const response = await sdk.generateWithAgent("Hello world");
} catch (error) {
console.error('Generation failed:', error.message);
}
- Initialization failed: Ensure all required dependencies are installed
- Model loading issues: Check that model files are accessible and valid
- Memory issues: For large models, ensure sufficient RAM and consider using quantization
- GPU issues: Ensure CUDA is properly installed for GPU acceleration
- Network issues: Check internet connectivity for cloud-based models
Enable debug logging by setting the environment variable:
DEBUG=multimind-sdk npm run dev
# Run all tests
npm test
# Run tests with coverage
npm run test:coverage
# Run specific test file
npm test -- test/sdk-smoke.test.ts
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite
- Submit a pull request
Apache License 2.0 - see LICENSE file for details.
For issues and questions:
- Create an issue on GitHub
- Check the troubleshooting section
- Ensure you have the latest version installed
- Review the comprehensive examples
Built with ❤️ by the MultiMind Team