Skip to content

maneeshsit/PCIe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PCIe

Modify run.ai code for using a PCIe-based AI accelerator (such as a GPU, FPGA, or ASIC like NVIDIA, Xilinx, or Intel accelerators) for both inference and training

  1. Set Up the PCIe AI Accelerator Install the required drivers and SDKs for your PCIe accelerator. For example: NVIDIA GPUs: Install CUDA and cuDNN. Intel accelerators: Install OpenVINO Toolkit. Xilinx FPGAs: Install Vitis AI runtime. Ensure the PCIe device is visible via tools like lspci (Linux) or equivalent commands.

  2. Modify Training Code Use the appropriate deep learning framework and ensure device targeting is set to the PCIe accelerator. Examples:

  3. and 4. code files

  4. Use Accelerator-Specific Optimizations For NVIDIA GPUs: Use TensorRT for inference optimization. For Intel FPGAs: Use OpenVINO's optimized inference engine. For Xilinx FPGAs: Use Vitis AI tools for quantization and deployment.

  5. Monitor and Debug Use monitoring tools to ensure efficient usage of the PCIe accelerator: NVIDIA: nvidia-smi Intel: OpenVINO Benchmark Tool Xilinx: Vitis AI Profiler

AI Platform Factory