In this step-by-step tutorial, learn how to build, visualize, and deploy a Scikit-learn machine learning model using Streamlit for the UI, Docker for containerization, and Kubernetes (Minikube) for scalable deployment!
YouTube Link: https://youtu.be/Ska5_d63mLM?si=Xug9kxJoxheblrsu
- Python
- Streamlit
- Docker
- DockerHub Account
- Kubernetes Cluster (Minikube)
sudo apt update && sudo apt upgrade -y
sudo apt install python3-pip -y
python -m venv venv
source venv/bin/activate
pip3 install streamlit scikit-learn pandas matplotlib seaborn reportlab
streamlit run app.py
http://localhost:8501
or
http://PublicIP:8501
docker build -t streamlit-ml-app:latest .
docker run -p 8501:8501 streamlit-ml-app:latest
http://localhost:8501
Go to your DockerHub account and create a Personal Access Token (PAT) - This will be your password -
docker login -u iquantc
docker tag streamlit-ml-app:latest iquantc/streamlit-ml-app:latest
docker push iquantc/streamlit-ml-app:latest
Review manifest files
minikube start --driver=docker
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
kubectl get pods
kubectl get svc
minikube ip
http://<minikube-ip>:30001
minikube stop
minikube delete --all