Experimenting with Pinecone as vector data is becoming the standard for AI-native systems. Purpose of the project is learning and experimentation, with the intent of implementing all core Pinecone DB capabilities.
- Pinecone Learning & Experimentation
- Features
- Installation
- Examples
- Jupyter Notebooks
- Project Structure
- Future Enhancements
- License
A comprehensive learning project for exploring Pinecone vector database capabilities through hands-on examples and interactive notebooks.
- Complete Pinecone DB operations coverage
- Vector search and similarity matching
- Metadata filtering and namespaces
- Hybrid search (dense + sparse vectors)
- Interactive Jupyter notebooks
- Utility functions and configuration management
- Clone the repository:
git clone https://github.com/harehimself/pinecone-lab.git
cd pinecone-lab
- Create and activate virtual environment:
python -m venv venv
# Windows
venv\Scripts\activate
# macOS/Linux
source venv/bin/activate
- Install dependencies:
pip install -r requirements.txt
- Configure API key as environment variable:
# Variable Name: PINECONE_API_KEY
# Variable Value: your-api-key-here
The src/examples
directory contains 8 standalone scripts demonstrating core features:
- Basic Operations:
python -m src.examples.01_basic_operations
- Vector Operations:
python -m src.examples.02_vector_operations
- Namespaces:
python -m src.examples.03_namespaces
- Metadata Filtering:
python -m src.examples.04_metadata_filtering
- Sparse Vectors:
python -m src.examples.05_sparse_vectors
- Hybrid Search:
python -m src.examples.06_hybrid_search
- Integrated Embedding:
python -m src.examples.07_integrated_embedding
- Backup & Restore:
python -m src.examples.08_backup_restore
Interactive notebooks for hands-on exploration:
jupyter notebook notebooks/01_quickstart.ipynb
jupyter notebook notebooks/02_advanced_usage.ipynb
src/config.py
: Configuration and environment variablessrc/utils.py
: Utility functions for Pinecone operationssrc/examples/
: Individual example scriptsnotebooks/
: Interactive learning notebooks
- Real embedding models (OpenAI, SentenceTransformers)
- Real-world dataset examples
- Performance benchmarking tools
- Vector space visualization tools
MIT License © 2025 HareLabs