To Develop a machine learning-based text classifier that categorizes text data (e.g., news, emails, tweets, reviews)
into appropriate categories using NLP preprocessing and classification models.
With the exponential growth of unstructured text data, manually categorizing text is inefficient. This project aims to
automate text classification using Natural Language Processing (NLP) and supervised machine learning models.
Languages: Python
Libraries: NLTK / spaCy, Scikit-learn, pandas, NumPy
ML Models: Logistic Regression, Naive Bayes, SVM, or even deep learning (LSTM, BERT for advanced)
Frontend (optional): HTML, CSS, JavaScript
Deployment (optional): Streamlit / Flask
-Text input box or file upload
-Preprocessing (tokenization, stopword removal, stemming/lemmatization)
-Vectorization (TF-IDF or CountVectorizer)
-Model training & prediction
-Accuracy and confusion matrix
Optional: Downloadable classification report
-Spam vs. Ham email classification
-Sentiment analysis (Positive/Negative/Neutral)
-News categorization (Politics, Sports, Tech, etc.)
-Product review classifier
text_classifier_project/
├── data/
│ └── sample_data.csv
├── model/
│ ├── text_model.pkl
│ └── vectorizer.pkl
├── utils/
│ └── preprocessing.py
├── templates/
│ └── index.html
├── app.py
├── train.py
├── predict.py
├── requirements.txt
└── README.md