Predicting risk factors by Determining Social Determinants of Health variables using a probabilistic model.
D:\GC_2024\FINAL\STREAMLIT-FINAL
│ hello.py
│ HUD 2020 Crosswalk.csv
│ imputed_merged.csv
│ out.pkl
│ output_streamlit.csv
│ readme.md
│ requirements.txt
│ Updated columns - Gemini.csv
│ Variable mapped with Risk Factors.xlsx
│
├───.streamlit
│ config.toml
│
├───pages
│ │ 1_questionnare.py
│ │ 3_score_card.py
│ │ fetch_resources.py
│ │
│ └───__pycache__
│ fetch_resources.cpython-310.pyc
│ fetch_resources.cpython-311.pyc
│
└───resources
adult_day_care.csv
assisted_living.csv
florida_hospitals.csv
florida_long_term_care.csv
florida_providers.csv
Food_Services.csv
Geriatic_Care_Managers.csv
Home_Care.csv
Home_Health_rating.csv
Hospitals.csv
independent_living.csv
long_term_care_ratings.csv
memory_care.csv
Suppliers.csv
Transportation.csv
uszips.csv
- open a terminal / command prompt in the working directory
- make sure all required dependencies are installed. we used
python==3.10.13
and required pip modules are listed inrequirements.txt
. Installation can be done using the following command:
pip install -r requirements.txt
- To run the webapp, use the following command:
streamlit run hello.py
- Follow the instructions and fill the questionnare. Upon submitting, the last runs input gets saved locally and a scorecard is shown containing risk levels for the 5 broad topics and each section can be expanded to see the sublevels upon which each Social determinant is based.
- Upon encountering high enough risk, certain information is provided for the user to follow up according to their predicted needs.