-
Notifications
You must be signed in to change notification settings - Fork 103
Add FAQ section to improve user guidance #608
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
978017b
d9a46e3
41ab37b
2b97c35
6ec9c7e
571c44a
6c6e32f
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,137 @@ | ||||||||||||||||||||||||||
--- | ||||||||||||||||||||||||||
title: "Frequently Asked Questions" | ||||||||||||||||||||||||||
description: "Common questions and answers about using Turing.jl" | ||||||||||||||||||||||||||
--- | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Why is this variable being treated as random instead of observed? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
This is a common source of confusion. In Turing.jl, you can only condition or fix expressions that explicitly appear on the left-hand side (LHS) of a `~` statement. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
For example, if your model contains: | ||||||||||||||||||||||||||
```julia | ||||||||||||||||||||||||||
x ~ filldist(Normal(), 2) | ||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
You cannot directly condition on `x[2]` using `condition(model, @varname(x[2]) => 1.0)` because `x[2]` never appears on the LHS of a `~` statement. Only `x` as a whole appears there. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
However, there is an important exception: when you use the broadcasting operator `.~` with a univariate distribution, each element is treated as being separately drawn from that distribution, allowing you to condition on individual elements: | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
```julia | ||||||||||||||||||||||||||
@model function f1() | ||||||||||||||||||||||||||
x = Vector{Float64}(undef, 3) | ||||||||||||||||||||||||||
x .~ Normal() # Each element is a separate draw | ||||||||||||||||||||||||||
end | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
m1 = f1() | (@varname(x[1]) => 1.0) | ||||||||||||||||||||||||||
sample(m1, NUTS(), 100) # This works! | ||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
In contrast, you cannot condition on parts of a multivariate distribution because it represents a single distribution over the entire vector: | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
```julia | ||||||||||||||||||||||||||
@model function f2() | ||||||||||||||||||||||||||
x = Vector{Float64}(undef, 3) | ||||||||||||||||||||||||||
x ~ MvNormal(zeros(3), I) # Single multivariate distribution | ||||||||||||||||||||||||||
end | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
m2 = f2() | (@varname(x[1]) => 1.0) | ||||||||||||||||||||||||||
sample(m2, NUTS(), 100) # This doesn't work! | ||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
The key insight is that `filldist` creates a single distribution (not N independent distributions), which is why you cannot condition on individual elements. The distinction is not just about what appears on the LHS of `~`, but whether you're dealing with separate distributions (`.~` with univariate) or a single distribution over multiple values (`~` with multivariate or `filldist`). | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
To understand more about how Turing determines whether a variable is treated as random or observed, see: | ||||||||||||||||||||||||||
- [Core Functionality](../core-functionality/) - basic explanation of the `~` notation and conditioning | ||||||||||||||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Can I use parallelism / threads in my model? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Yes, but with important caveats! There are two types of parallelism to consider: | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
### 1. Parallel Sampling (Multiple Chains) | ||||||||||||||||||||||||||
Turing.jl fully supports sampling multiple chains in parallel: | ||||||||||||||||||||||||||
- **Multithreaded sampling**: Use `MCMCThreads()` to run one chain per thread | ||||||||||||||||||||||||||
- **Distributed sampling**: Use `MCMCDistributed()` for distributed computing | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
See the [Core Functionality guide](../core-functionality/#sampling-multiple-chains) for examples. | ||||||||||||||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
### 2. Threading Within Models | ||||||||||||||||||||||||||
Using threads inside your model (e.g., `Threads.@threads`) requires more care: | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
```julia | ||||||||||||||||||||||||||
@model function f(x) | ||||||||||||||||||||||||||
Threads.@threads for i in eachindex(x) | ||||||||||||||||||||||||||
x[i] ~ Normal() # UNSAFE: Assume statements in threads can crash! | ||||||||||||||||||||||||||
end | ||||||||||||||||||||||||||
end | ||||||||||||||||||||||||||
Comment on lines
+62
to
+66
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. In this model,
Suggested change
|
||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
**Important limitations:** | ||||||||||||||||||||||||||
- **Observe statements**: Generally safe to use in threaded loops | ||||||||||||||||||||||||||
- **Assume statements** (sampling statements): Often crash unpredictably or produce incorrect results | ||||||||||||||||||||||||||
- **AD backend compatibility**: Many AD backends don't support threading. Check the [multithreaded column in ADTests](https://turinglang.org/ADTests/) for compatibility | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
For safe parallelism within models, consider vectorized operations instead of explicit threading. | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## How do I check the type stability of my Turing model? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Type stability is crucial for performance. Check out: | ||||||||||||||||||||||||||
- [Performance Tips]({{< meta usage-performance-tips >}}) - includes specific advice on type stability | ||||||||||||||||||||||||||
- Use `DynamicPPL.DebugUtils.model_warntype` to check type stability of your model | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## How do I debug my Turing model? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
For debugging both statistical and syntactical issues: | ||||||||||||||||||||||||||
- [Troubleshooting Guide]({{< meta usage-troubleshooting >}}) - common errors and their solutions | ||||||||||||||||||||||||||
- For more advanced debugging, DynamicPPL provides `DynamicPPL.DebugUtils` for inspecting model internals | ||||||||||||||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Friendly link |
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## What are the main differences between Turing and Stan syntax? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Key syntactic differences include: | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
- **Parameter blocks**: Stan requires explicit `data`, `parameters`, `transformed parameters`, and `model` blocks. In Turing, everything is defined within the `@model` macro | ||||||||||||||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||||||||||||||
- **Variable declarations**: Stan requires upfront type declarations in parameter blocks. Turing infers types from the sampling statements | ||||||||||||||||||||||||||
- **Transformed data**: Stan has a `transformed data` block for preprocessing. In Turing, data transformations should be done before defining the model | ||||||||||||||||||||||||||
- **Generated quantities**: Stan has a `generated quantities` block. In Turing, use the approach described in [Tracking Extra Quantities]({{< meta usage-tracking-extra-quantities >}}) | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Example comparison: | ||||||||||||||||||||||||||
```stan | ||||||||||||||||||||||||||
// Stan | ||||||||||||||||||||||||||
data { | ||||||||||||||||||||||||||
int<lower=0> N; | ||||||||||||||||||||||||||
vector[N] y; | ||||||||||||||||||||||||||
} | ||||||||||||||||||||||||||
parameters { | ||||||||||||||||||||||||||
real mu; | ||||||||||||||||||||||||||
real<lower=0> sigma; | ||||||||||||||||||||||||||
} | ||||||||||||||||||||||||||
model { | ||||||||||||||||||||||||||
y ~ normal(mu, sigma); | ||||||||||||||||||||||||||
} | ||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
Comment on lines
+104
to
+111
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. So I'm not a super duper expert on Stan, but I think that these parameters don't have priors assigned and thus have completely flat priors (i.e. the prior probability is always 1 for any value of mu and any value of sigma > 0). That would make this not equivalent to the Turing model which has non-flat priors. I think you would need to specify |
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
```julia | ||||||||||||||||||||||||||
# Turing | ||||||||||||||||||||||||||
@model function my_model(y) | ||||||||||||||||||||||||||
mu ~ Normal(0, 1) | ||||||||||||||||||||||||||
sigma ~ truncated(Normal(0, 1), 0, Inf) | ||||||||||||||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||||||||||||||
y ~ Normal(mu, sigma) | ||||||||||||||||||||||||||
end | ||||||||||||||||||||||||||
``` | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## Which automatic differentiation backend should I use? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
The choice of AD backend can significantly impact performance. See: | ||||||||||||||||||||||||||
- [Automatic Differentiation Guide]({{< meta usage-automatic-differentiation >}}) - comprehensive comparison of ForwardDiff, Mooncake, ReverseDiff, and other backends | ||||||||||||||||||||||||||
- [Performance Tips]({{< meta usage-performance-tips >}}#choose-your-ad-backend) - quick guide on choosing backends | ||||||||||||||||||||||||||
- [AD Backend Benchmarks](https://turinglang.org/ADTests/) - performance comparisons across various models | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
## I changed one line of my model and now it's so much slower; why? | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Small changes can have big performance impacts. Common culprits include: | ||||||||||||||||||||||||||
- Type instability introduced by the change | ||||||||||||||||||||||||||
- Switching from vectorized to scalar operations (or vice versa) | ||||||||||||||||||||||||||
- Inadvertently causing AD backend incompatibilities | ||||||||||||||||||||||||||
- Breaking assumptions that allowed compiler optimizations | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
See our [Performance Tips]({{< meta usage-performance-tips >}}) and [Troubleshooting Guide]({{< meta usage-troubleshooting >}}) for debugging performance regressions. |
Uh oh!
There was an error while loading. Please reload this page.