This repository contains several laboratory projects for exploring various topics in artificial intelligence. Each lab resides in its own folder with complete instructions and code examples to help you learn and experiment with different AI techniques.
-
Lab 1: Data Preprocessing and Exploration
Folder:laboratorio_1
Description: Learn how to clean, transform, and explore data for AI applications. -
Lab 2: Feature Engineering and Selection
Folder:laboratorio_2
Description: Discover methods for creating and selecting the most relevant features for your models.Resumen sobre Perceptrones Multicapa (MLP):
Los MLP extienden el perceptrón simple para abordar problemas no lineales, combinando capas de transformaciones lineales y funciones de activación no lineal. Esta arquitectura permite aproximar funciones complejas y capturar relaciones intrincadas entre variables, siendo esencial en tareas de clasificación y regresión. -
Lab 3: Credit Approve
Folder:laboratorio_3
Description: Diseñar un modelo MLP (MultiLayer Perceptron) que sea capaz de determinar si se debe aprobar o no un préstamo a una persona. Adicionalmente, la entrega final debe incluir un programa interactivo que permita al usuario ingresar datos clave y, en función de ese input, proporcionar una recomendación sobre la aprobación del crédito. -
Lab 4: Classification and Model Evaluation
Folder:laboratorio_4
Description: Apply various classification algorithms and evaluate their performance using different metrics. -
Lab 5: Unsupervised Learning and Clustering
Folder:laboratorio_5
Description: Explore clustering methods to segment data without supervision.
- Python 3.11 (or higher)
Alfredo Fung 📖 |