In this project, you'll build a simple Unix shell. The shell is the heart of the command-line interface, and thus is central to the Unix/C programming environment. Mastering use of the shell is necessary to become proficient in this world; knowing how the shell itself is built is the focus of this project.
There are three specific objectives to this assignment:
- To further familiarize yourself with the Linux programming environment.
- To learn how processes are created, destroyed, and managed.
- To gain exposure to the necessary functionality in shells.
In this assignment, you will implement a command line interpreter (CLI) or, as it is more commonly known, a shell. The shell should operate in this basic way: when you type in a command (in response to its prompt), the shell creates a child process that executes the command you entered and then prompts for more user input when it has finished.
The shells you implement will be similar to, but simpler than, the one you run
every day in Unix. If you don't know what shell you are running, it's probably
bash
. One thing you should do on your own time is learn more about your
shell, by reading the man pages or other online materials.
msh - contains the file msh.c which you will modify for this assignment. No other file may be modified
tester - test harness. No file in this directory may be modified
You can build the code by typing:
make
You can run the provided tests by typing:
./test-msh.sh
Your code will be submitted by pushing your code to main. Any other branches you have will not be graded.
You code will be tested on a GitHub codespace. Code that does not compile or run on the provided codespace will result in a grade of 0.
Your basic shell, called msh
is basically an interactive loop: it repeatedly
prints a prompt msh>
(note the space after the greater-than sign), parses the
input, executes the command specified on that line of input, and waits for
the command to finish. This is repeated until the user types exit
. The
name of your final executable should be msh
.
The shell can be invoked with either no arguments or a single argument; anything else is an error. Here is the no-argument way:
prompt> ./msh
msh>
At this point, msh
is running, and ready to accept commands. Type away!
The mode above is called interactive mode, and allows the user to type
commands directly. The shell also supports a batch mode, which instead reads
input from a file and executes commands from therein. Here is how you
run the shell with a batch file named batch.txt
:
prompt> ./msh batch.txt
One difference between batch and interactive modes: in interactive mode, a
prompt is printed (msh>
). In batch mode, no prompt should be printed.
You should structure your shell such that it creates a process for each new
command (the exception are built-in commands, discussed below). Your basic
shell should be able to parse a command and run the program corresponding to
the command. For example, if the user types ls -la /tmp
, your shell should
run the program /bin/ls
with the given arguments -la
and /tmp
The shell is very simple (conceptually): it runs in a while loop, repeatedly
asking for input to tell it what command to execute. It then executes that
command. The loop continues indefinitely, until the user types the built-in
command exit
, at which point it exits. That's it!
For reading lines of input, you should use getline()
. This allows you to
obtain arbitrarily long input lines with ease. Generally, the shell will be
run in interactive mode, where the user types a command (one at a time) and
the shell acts on it. However, your shell will also support batch mode, in
which the shell is given an input file of commands; in this case, the shell
should not read user input (from stdin
) but rather from this file to get the
commands to execute.
In either mode, if you hit the end-of-file marker (EOF), you should call
exit(0)
and exit gracefully.
To parse the input line into constituent pieces, you might want to use
strsep()
. Read the man page (carefully) for more details.
To execute commands, look into fork()
, exec()
, and wait()/waitpid()
.
See the man pages for these functions, and also read the relevant book
chapter for a brief overview.
You will note that there are a variety of commands in the exec
family; for
this project, you must use execv
. You should not use the system()
library function call to run a command. Any use of system will result in
a grade of 0. Remember that if execv()
is successful, it will not return;
if it does return, there was an error (e.g.,the command does not exist).
The most challenging part is getting the arguments correctly specified.
Important: Note that the shell itself does not implement ls
or other
commands (except built-ins). All it does is find those executables in one of
the directories specified by path
and create a new process to run them.
To check if a particular file exists in a directory and is executable,
consider the access()
system call. For example, when the user types ls
,
and path is set to include both /bin
and /usr/bin
, try access("/bin/ls", X_OK)
. If that fails, try "/usr/bin/ls". If that fails too, it is an error.
Your shell path should search four directories: /bin
'/usr/bin' '/usr/local/bin'
and './'
Whenever your shell accepts a command, it should check whether the command is
a built-in command or not. If it is, it should not be executed like other
programs. Instead, your shell will invoke your implementation of the built-in
command. For example, to implement the exit
built-in command, you simply
call exit(0);
in your msh source code, which then will exit the shell.
In this project, you should implement exit
, cd
, and path
as built-in
commands.
-
exit
: When the user typesexit
, your shell should simply call theexit
system call with 0 as a parameter. It is an error to pass any arguments toexit
. -
cd
:cd
always take one argument (0 or >1 args should be signaled as an error). To change directories, use thechdir()
system call with the argument supplied by the user; ifchdir
fails, that is also an error.
Many times, a shell user prefers to send the output of a program to a file
rather than to the screen. Usually, a shell provides this nice feature with
the >
character. Formally this is named as redirection of standard
output. To make your shell users happy, your shell should also include this
feature, but with a slight twist (explained below).
For example, if a user types ls -la /tmp > output
, nothing should be printed
on the screen. Instead, the standard output of the ls
program should be
rerouted to the file output
. In addition, the standard error output of
the program should be rerouted to the file output
(the twist is that this
is a little different than standard redirection).
If the output
file exists before you run your program, you should simple
overwrite it (after truncating it).
The exact format of redirection is a command (and possibly some arguments) followed by the redirection symbol followed by a filename. Multiple redirection operators or multiple files to the right of the redirection sign are errors.
Note: don't worry about redirection for built-in commands (e.g., we will
not test what happens when you type path /bin > file
).
Hint: popen.c in the Code-Samples repo demonstrates how to do a redirection
The one and only error message. You should print this one and only error message whenever you encounter an error of any type:
char error_message[30] = "An error has occurred\n";
write(STDERR_FILENO, error_message, strlen(error_message));
The error message should be printed to stderr (standard error), as shown above.
After most errors, your shell simply continue processing after
printing the one and only error message. However, if the shell is
invoked with more than one file, or if the shell is passed a bad batch
file, it should exit by calling exit(1)
.
There is a difference between errors that your shell catches and those that
the program catches. Your shell should catch all the syntax errors specified
in this project page. If the syntax of the command looks perfect, you simply
run the specified program. If there are any program-related errors (e.g.,
invalid arguments to ls
when you run it, for example), the shell does not
have to worry about that (rather, the program will print its own error
messages and exit).
Remember to get the basic functionality of your shell working before
worrying about all of the error conditions and end cases. For example, first
get a single command running (probably first a command with no arguments, such
as ls
).
Next, add built-in commands. Then, try working on redirection.
At some point, you should make sure your code is robust to white space of
various kinds, including spaces (
) and tabs (\t
). In general, the user
should be able to put variable amounts of white space before and after
commands, arguments, and various operators; however, the
redirection operator does not require whitespace.
Check the return codes of all system calls from the very beginning of your work. This will often catch errors in how you are invoking these new system calls. It's also just good programming sense.
Beat up your own code! You are the best (and in this case, the only) tester of this code. Throw lots of different inputs at it and make sure the shell behaves well. Good code comes through testing; you must run many different tests to make sure things work as desired. Don't be gentle -- other users certainly won't be.