AtmosTrace is a data exploration project focused on climate trends across cities, states, and countries using historical temperature datasets. It includes preprocessing, visualization, and insights based on global land temperature data.
AtmosTrace/
├── data/
│ ├── \_GlobalTemperatures.csv
│ ├── \_TemperaturesByCountry.csv
│ ├── \_TemperaturesByMajorCity.csv
│ ├── \_TemperaturesByState.csv
│ └── archive.csv
├── notebook/
│ └── air\_quality.ipynb
├── .gitattributes
├── .gitignore
├── README.md
└── requirements.txt
- 🧹 Clean and structure large CSV datasets (climate data)
- 📈 Visualizations using Python (matplotlib, seaborn)
- 📓 Interactive notebook for air quality & temperature analysis
- 🗂️ Multiple granularity levels: Country, State, City
- 📦 Git LFS used for large file storage
All datasets are sourced from Berkeley Earth and preprocessed into:
GlobalTemperatures.csv
TemperaturesByCountry.csv
TemperaturesByMajorCity.csv
TemperaturesByState.csv
Note: Datasets are tracked using Git LFS due to size.
git clone https://github.com/Akrishna4/AtmosTrace.git
cd AtmosTrace
pip install -r requirements.txt
cd notebook
jupyter notebook air_quality.ipynb
- Python 3.x
- Jupyter Notebook
- pandas
- matplotlib, seaborn
- Git & Git LFS
- 📊 Add interactive dashboard (Streamlit or Plotly)
- 🌱 Time-series modeling for forecasting temperature change
- 🧠 Integrate basic ML models to detect anomalies
- 🌍 Air quality index mapping by region
Feel free to fork, suggest improvements, or open issues. Collaboration is welcome!
Ayush Krishna 📌 GitHub: @Akrishna4