"Democratizing healthcare access through AI-powered voice and vision"
Feature | Description |
---|---|
Multilingual Voice Interface | Speech-to-text in 5 Indian languages with symptom analysis |
Visual Diagnosis | Skin/wound assessment via vision models |
Auto-Appointment Booking | Integrated with 500+ hospitals via Google Calendar API |
- Instant first-aid instructions for injuries
- Critical symptom detection alerts
- Nearest hospital GPS mapping
Layer | Technologies |
---|---|
Frontend | React.js, TailwindCSS, ShadCN/ui |
Backend | FastAPI (Python), Node.js, Convex DB |
AI/ML | PyTorch, Whisper STT, Google TTS |
APIs | Twilio SMS, Google Calendar, Deepgram |
DevOps | Docker, GitHub Actions, Prometheus |
graph TD
A[User] --> B(React Frontend)
B --> C{FastAPI Server}
C --> E[AI Inference Engine]
E --> F[Vision Models]
E --> G[Voice Pipeline]
C --> I[Third-Party APIs]
B --> J[Node.js Service Layer]
J --> H[Convex Database]
J --> D[Auth Service]
B --> L[Voice Agent Stream]
-
Frontend (ArogyaBot UI)
- Built with React + Tailwind CSS
- Supports image uploads and webcam capture
- Accepts voice and text input
- Displays multilingual responses in real time
-
Authentication System
- Secure login/signup via stack-auth
-
Flask Server
- Handles API requests and orchestrates the workflow
- Communicates with AI modules and databases
-
Speech Engine
- OpenAI STT with Whisper-Medium for transcription and noise suppression
- Deepgram TTS with emotion-injected speech generation
- Google TTS with emotion-injected Multilingual speech generation
-
Redis
- Caches temporary session data and transcription buffers
-
FFmpeg
- Handles audio preprocessing and media conversion
-
Docker
- Ensures containerized deployment for backend and frontend
-
Alert Dispatcher
- Auto-initiates hospital calls for critical injuries or distress
- Logs incident to medical staff dashboard
-
Dashboard
- Displays Helath tools to the user
- Python 3.11+
- Node.js 18.15+
- Redis Server 7.2+
- FFmpeg 6.0+
# Clone reposito ry
git clone https://github.com/AGTechathon/DataWizard
cd DataWizard
# Install Python dependencies
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Setup frontend
cd client
npm install
npm run build
# Configure environment variables
cp .env.example .env
docker-compose -f docker-compose.prod.yml up --build