Skip to content

2bys/submit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

submit

A lightweight job submission tool that supports both local execution and SLURM cluster submissions. It uses Jinja2 templates and YAML configuration to manage job parameters and execution.

Cloud setup tutorial

My current workflow is as follows:

  1. Start by cloning submit in your working repository (e.g. $WORK/repos/my-repo/submit)
  2. Next copy submit/examples/* to submit/*, e.g. via
cp -rf ./submit/examples/* ./submit/examples/
  1. I prefer running jobs on the ML Cloud using a singularity container (cf. https://portal.mlcloud.uni-tuebingen.de/user-guide/tutorials/singularity/). To do so, copy and modify the submit/Singularity.def file in your working repository. Then, start an interactive session (using e.g. srun ...) and build the singularity container with the following command:
# Set cache and tmp directories for the Singularity build - (not optimal)
export SINGULARITY_CACHEDIR="/scratch_local/$USER-$SLURM_JOBID"
export SINGULARITY_TMPDIR="/scratch_local/$USER-$SLURM_JOBID"

# Build the singularity containers
singularity build --fakeroot --force --bind /mnt:/mnt --nv python.sif submit/Singularity.def
  1. Next, open and modify the submit/run.yaml file in the main submit directory. It is important to change the entries below scripts, regression... to the scripts you want to run and have in the repo. (Note: default_args is optional, so in most cases this section can be removed).
  2. From the working repository, run jobs with the following command structure:
python3 submit/submit.py --mode [local|cloud_local|slurm] --script <script_name> [--slurm_args <slurm_args>] [--script_args <script_args>]

You can find some more details below.

Remarks:

  • If you want to use jax, keep in mind to install it with cuda dependencies (e.g. pip install -U "jax[cuda12]")
  • All examples/* files are excluded when placed in the main submit directory to not mess with this repository.

Requirements

  • Python 3.6+
  • Jinja2
  • PyYAML

This tool is designed to run on the ML Cloud without the need for a python environment or package installations.

Configuration

The tool uses a YAML configuration file (run.yaml) to define:

  • Execution modes (local/SLURM)
  • Python kernel settings
  • Template paths
  • Script configurations
  • Default arguments

Example configuration structure:

mode:
  local:
    pykernel: "python3"
    template: "templates/local.sh"
  slurm:
    pykernel: "python3"
    template: "templates/slurm.sh"

scripts:
  my_script:
    path: "path/to/script.py"
    default_args:
      param1: [1.0, 2.0]
      param2: ["value1", "value2"]

Default is to create such a run.yaml file in the main submit directory.

More details on usage

Basic usage:

python submit.py --mode [local|cloud_local|slurm] --script <script_name> [--slurm_args <slurm_args>] [--script_args <script_args>]

Command Line Arguments

Required arguments:

  • --script: Name of the script configuration from run.yaml
  • --config_file: Path to YAML config file (default: ./submit/run.yaml)

Optional arguments:

  • --mode: Execution mode (local or slurm, default: local)

SLURM-specific arguments:

  • --partition: SLURM partition
  • --nodes: Number of nodes
  • --cpus-per-task: CPUs per task
  • --mem-per-cpu: Memory per CPU (e.g. 4G)
  • --gres: Generic resources (e.g. gpu:1)
  • --time: Time limit (e.g. 3-00:00:00)

Additional arguments:

  • Any --key value1 value2 ... pairs will be passed to the script. If multiple values are provided, the script will be run with all combinations of the script values.

Examples

Run a local job with default parameters:

python submit.py --mode local --script my_script

Run a SLURM job with custom parameters:

python submit.py --mode slurm --script my_script --partition gpu --cpus-per-task 4 --mem-per-cpu 4G

Contributing

If you think features are missing or issues occur, please reach out.

About

Lightweight job submission tool supporting the MLCloud of the Tuebingen AI center.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published