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Abstract

In recent years the search for ever smaller and more power efficient electronics

has made it necessary to embrace the quantum nature of electrons. Spintronics is a

relatively new branch of engineering which hopes to capitalise on spin as a useful quan-

tum property of electrons to work in tandem with (or potentially replace) electrostatic

charge in the operation of nanoscale semiconductor devices.

This work focuses on the simulation of a promising new type of device known as the

spin field effect transistor (spin-FET) [1, 2, 3]. These devices are similar in structure

and function to more conventional Metal-Oxide Field Effect Transistors (MOSFET).

The crucial difference, however, is the use of the electron spin either alongside or instead

of charge transport, with the ultimate aim of improving both the bandwidth and power

efficiency when compared with conventional devices.

To this end, we have modified an advanced ensemble Monte Carlo device simulator

to include the spin as a separate degree of freedom of the electrons by using a Bloch

equation model, with a spin-orbit interaction Hamiltonian to account for Dresselhaus

and Rashba couplings. We then simulated electron spin transport in a realistic 25 nm

gate length In0.7Ga0.3As MOSFET and finally analysed how the spin transport was

affected by the gate voltage, the source-drain voltage, lattice temperature, compressive

strain and channel length.
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1 Introduction

1.1 Motivation

It is well known to most students of both physics and many areas of engineering that all

elementary particles possess an intriguing purely quantum mechanical property known as

spin. It is an observable quantity with no classical analogue that is associated with the

angular momentum of a particle as it rotates about its axis. Being a quantum phenomenon

however this mental picture only explains half the story as it cannot account for the fact that

the spin only takes on discrete values (i.e. its quantised) or that many particles (including

electrons) are considered as point sources and as such have no radius to rotate around.

However, we will leave the peculiar quantum nature of the spin to textbooks. [10, 11, 12].

Spin, however, as an observable (which in principle can be easily measured) has gained

considerable interest in recent years with the advent of Spintronics, a relatively new branch

of engineering which hopes to capitalise on spin as a useful property of electrons to work in

tandem with (or potentially replace) electrostatic charge in the operation of nanoscale semi-

conductor devices. Indeed much has already been achieved in this area with spin properties

such as; Tunnel magnetoresistance, being commonly used in high-speed computer memory

and giant magnetoresistance, being the basis of operation for all magnetic hard drives.

Recently, however, attention has turned to a new type of device known as the spin field

effect transistor (spin-FET) which are among the most promising spin-based semiconductor

devices and are considered a future candidate for high-performance digital computing with

ultra-low energy needs. [1, 2, 3]. These devices are similar in structure and function to more

conventional Metal-Oxide Field Effect Transistors (MOSFET) and High Electron Mobility

Transistors (HEMT) but with the crucial difference being the use of electron spin either

alongside or instead of charge transport as part of the device operation.

In the past drift-diffusion models have been invaluable tools to investigate SpinFET

devices [13]. However, these kinds of simulation are not useful for more complex device

architectures commonly found in transistors (doping, heterostructures, gates etc.) and as

such cannot give us an accurate picture as to the behaviour of spins in a nanoscale device

under realistic working conditions.

To this end, we have applied finite-element quantum-corrected ensemble Monte Carlo

simulations [7, 14] to an InGaAs field effect transistor to investigate spin and charge transport
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with realistic device geometries, doping profiles, bandstructure and scattering and a self-

consistent Poisson solver to solve for the electric field at each point on a grid across the

device structure. This simulator, which has been experimentally verified was adapted to

include the electron spin as a separate degree of freedom using a density matrix approach,

the method for which is detailed in Section 5. The simulator was used to investigate gate

and drain voltage dependence on spin transport (see Chapter 5), including the discovery of

polarization recovery effects reminiscent of magnetization refocussing [15].

The simulator was then augmented to investigate the effect of material strain on spin

transport by incorporating the effect of strain on the band energies and effective masses and

spin-orbit coupling parameters (see Chapter 6). The results suggest that the device could

operate as a room-temperature nanoscale strain sensor [15] Finally, the effect of temperature

and device geometry are studied with a view to help optimise the channel and gate length

and determine the best operating temperatures (see Chapters 6 and 7).

This approach while not entirely original [16, 17, 18] builds significantly on previous

works in that we use the Poisson equation to solve for the electric field at each point in

the device structure. This adds significantly to both the computation time and complexity

compared to previous works, which make use of a constant electric field across the entire

channel. However, our approach is generally considered to be a more realistic and robust

way of simulating complicated structures found inside real transistors and we appear to see

interesting effects (e.g. spin recovery) which have not been reported previously.

To put the work in this thesis into context, we present a brief overview of various proposed

spinFET designs as well as the challenges associated with them, before we delve into the

details on theoretical foundations of the simulator in Chapters 2-4 and present the results in

Chapters 5-7.

1.2 Spin Transistors

1.2.1 The Datta-Dass Transistor

Datta and Das proposed the first true SPINFET in 1990 [1]. Their original design involved

the use of an InAlAs/InGaAs quantum well to create a 2-dimensional electron gas (2DEG)

that would be used as the channel for a transistor with a gate contact above and ferromagnetic

source/drain contacts at either end (see Fig 1). The source would inject spin polarised
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to its dependence on k) as the spin orientation of each electron becomes progressively less

coherent (for more information see Section 2.4.2 on the D’yakonov-Perel mechanism). This

effect, however, can be reduced by decreasing the channel width in the z-plane (resulting in a

so-called quantum wire) thus, in turn, reducing the magnitude of the wave vector component

kz.

This design, however, can create a significant drawback. As noted by Bandyopadhyay and

Cahay[21] while a quantum wire does reduce the spin scatting compared with a quantum well

it also reduces the maximum conductance down to e2/~ per spin according to the Landauer

formulae[22]. Whereas for a quantum well this would be Ne2/~ where N is the number of

transverse sub-bands in the well. Thus, designs based on quantum wells could still be used

for applications where gain or bandwidth are more critical than leakage current due to spin

scattering.

The next big step in the design process came independently from both Schliemann et

al. [13] and Cartoixà et al [23] who both extended the Datta-Das design to include spin-

orbit coupling due to bulk inversion asymmetry (so-called Dresselhaus coupling) with the

intention of creating an alternative SPINFET based on Rashba and Dresselhaus “tuning”

(see Section 1.2.2 for more details). The coupling was included via an additional term to the

Hamiltonian HD = β(kxσx − kyσy) where β is a material dependent parameter.

The Dresselhaus coupling was then included in the Datta-Dass design by MinShen et al.

[16] who used ensemble Monte Carlo simulations to predict spin coherence and transconduc-

tance effects in the 2D quantum confined channel of a heterostructure III-V HEMT assuming

one sub-band approximation [16]. However, the simulations were not self-consistently cou-

pled with the Poisson equation. Thus the results are valid only at low applied electric field

[16].

The Datta-Dass transistor also has a major limitation, the spin injection/detection effi-

ciency, a problem which the majority of work in the last decade has been devoted to solving.

1.2.2 Datta-Das alternatives

Over the last decade, there have been several attempts to modify (and even replace entirely)

the Datta-Das design to overcome some of the difficulties in its practical implementation.

These have ranged from simple modifications to account for materials with different spin

properties to devices which achieve the same objective but have a vastly different mode of
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operation. This section will cover the notable work in this area.

Dresselhaus Tuned Devices - The Non-Ballistic SPINFET: As mentioned in Sec-

tion 1.2.1 both Schliemann et al. [13] and Cartoixà et al. [23] suggested the use of Rashba

tuning as a method of improving the Datta-Das design. The basic premise of this device is

to tune the Rashba interaction via the use of a gate such that it has the same strength as

the Dresselhaus interaction which is independent of the applied gate voltage and depends

only on the material of the channel. In this configuration, the spin-orbit coupling loses its

wave vector dependence, and thus momentum scatting will not change the Bloch vector as

the electrons travel down the channel.

A transistor-like action can be achieved by simply injecting spin polarised carriers at

the source if the Dresselhaus and Rashba interactions are balanced, then the polarisation

of the current at the drain will be the same as that injected at the source. However, if

we then de-tune the interaction, the polarisation will decrease to zero as the spins relax in

the channel leading to no polarisation being detected at the drain. This design does come

with a significant caveat however in that the minimum (off) current for such a device would

be half of the maximum (on) current [21] making such devices unsuitable for low energy

applications. This was further compounded by simulation data by Safir et al. [24] which

suggested that the on-off conductance ratio would only be around 15-20% for a real device.

Dresselhaus split gate designs: Bandyopadhyay and Cahay proposed another alterna-

tive design to the Datta-Das Transistor in 2004 [4]. This was an alteration that would make

use of the Dresselhaus interaction instead of Rashba via the use of a spilt top gate. The

basic device consisted of a 1-dimensional channel between a ferromagnetic source and drain

contact into which polarised spins were injected in the same manner as the original Datta-

Das device. The main difference, however, was that the gate was split into two independent

halves as shown in Figure 2.
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2 Representations of spin states

2.1 The Bloch Sphere

When measured the spin angular momentum can take one of two values ±~

2
thus electron spin

can be thought of as existing in one of two states commonly refereed to as “up” and “down”,

the classical picture of which is that of the electron being a small bar magnet spinning either

clockwise or anti-clockwise with the magnetic moment pointing towards the north or south

pole respectively. However this picture breaks down due to quantum mechanics since the

electron does not exist in two distinct states but instead as superposition of the two states

|ψ〉 given by Equation (3)[30, 31].

|ψ〉 = a |↑〉+ b |↓〉 , (3)

where |↑〉 and |↓〉 represent the up and down states respectively whilst a and b are complex

numbers for which the absolute value squared represents the probability the spin angular

momentum is aligned with the up or down state, respectively, and are defined such that

|a2|+ |b2| = 1. A good visual way to represent |ψ〉 is to look at it as a unit vector bounded

by a sphere (see figure 6). This vector can point in any direction defined by elevation and

azimuth angles θ and φ such that:

|ψ〉 = cos

(
θ

2

)

|↑〉+ eiφ sin

(
θ

2

)

|↓〉 (4)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

This representation is known as the Bloch sphere and is a good way to visualise the

quantum state |ψ〉 of a single spin. We note however that as a consequence of how the Bloch

sphere is defined orthogonal quantum states (i.e., arbitrary states |a〉 and |b〉 for which

〈a|b〉 = 0) appear on opposite points of the sphere (rather than being drawn at right angles).

Thus in this representation the “up” state |↑〉 lies at the north pole (see figure 6) and the

“down” state |↓〉 is at the south pole with the superposition states represented by every other

point on the sphere. [30] To obtain the expectation value of the spin we need an operator

(with eigenvalues of ±~

2
) to operate on the states |↑〉 and |↓〉. Such an operator was proposed

by Pauli and is given by S = ~

2
σ. Where σ represents the three 2× 2 Pauli matrices σx, σy
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2.2 Density Matrices and the representation of ensembles

To represent an ensemble of spin states a useful concept is an operator known as the density

matrix which allows us to perform calculations for a collection of spins with an initial statis-

tical distribution across the Bloch sphere and track their time evolution [31, 10]. We start

with the state |ψ〉 given by Equation (3) however instead of representing a single electron

we now use |ψ〉 to represent an ensemble of spins. This representation is known as a pure

state since we know the spin of each electron in the system is either in the up or down state,

with probabilities |a|2 and |b|2 respectively. (i.e the spin magnetic moment points parallel or

anti-parallel to the unit vector n, with a probability of |a|2 or |b|2 respectively).

The density matrix ρ for this system is given by the outer product:

ρ = |ψ〉〈ψ| =
(

a

b

)
(

a∗ b∗
)

=

(

aa∗ ab∗

ba∗ bb∗

)

=

(

|a|2 ab∗

ba∗ |b|2

)

. (6)

The diagonal elements are the probabilities of being in each state whilst the off diagonal

terms represents the capability of different components of a state to interfere with each

other this is often referred to as the coherence. ρ has the following interesting properties

which are true for all density matrices:

• It’s hermitian (i.e. ρ = ρ†),

• It is a positive operator meaning 〈u|ρ|u〉 ≥ 0 for any state vector |u〉,

• Tr(ρ) = 1 (since the sum of all probabilities is 1),

• The expectation value of an operator A can be shown to be 〈A〉 = Tr(ρA).

However real quantum systems are seldom found in pure states, often we consider systems

that are a statistical mixture of many different states. In our case, each electron in our

ensemble might well be in a different state. Thus for an ensemble of N electrons we have

|ψN〉 state vectors, we can however still use the density matrix by simply using a few extra

steps:

1. Construct density matrices for each state in the ensemble

2. Multiply each matrix by the probability of that state being in the ensemble

3. Sum over all the possible states.
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Thus for a mixed state the density matrix for the entire system is given by:

ρ =
N∑

i=1

Pi |ψi〉〈ψi| (7)

Where Pi is the probability that an electron in the ensemble is found in the state |ψi〉.

Since we can in principle construct a density matrix from any set of basis states, the

matrix representation is not unique thus we need a system to determine if the ensemble is

in a mixed or pure state. Fortunately, for a pure state, it can easily be shown that ρ2 = ρ

by using the definition of ρ in Equation (6) thus:

ρ2 = (|ψ〉〈ψ|)2 = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉〈ψ| = ρ (8)

and since Tr(ρ) = 1 → Tr(ρ2) = 1. This is not, however, the case for a mixed state thus

we can use this fact to construct a definite test for the purity of our system. Whereby if

Tr(ρ2) = 1 we have a pure state and if Tr(ρ2) < 1 we have a mixed state.

Finally, we can tie the density matrix back to the Bloch sphere with following theorem[10]:

Theorem 1 Any 2× 2 matrix M can be decomposed into products of the 3 Pauli matrices

and the 2× 2 identity matrix I as follows:

M =

(

m11 m12

m21 m22

)

M =
m11 +m22

2
I +

m11 −m22

2
σz +

m12 +m21

2
σx +

m12 −m21

2
σy (9)

So if we define a general density matrix ρ as:

ρ =

(

a+ b c− id

c+ id a− b

)

(10)

Where a,b,c and d are real numbers, using theorem 1 we obtain:

ρ = aI + cσx + dσy + bσz (11)

and since we know that Tr(ρ) = 1 we have 2a = 1 thus we can write:

ρ = 1
2
(I + 2cσx + 2dσy + 2bσz) (12)
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However we also know from our density matrix rules the expectation value of an operator A

is given by 〈A〉 = Tr(ρA) therefore:

〈σx〉 = Tr(ρσx) = 2c (13a)

〈σy〉 = Tr(ρσy) = 2d (13b)

〈σz〉 = Tr(ρσz) = 2b (13c)

and ρ can be written as:

ρ = 1
2
(I + V · σ) (14)

Where V is the Bloch vector of the system represented by the density matrix ρ and is given

by V = (〈σx〉 , 〈σy〉 , 〈σz〉).

The magnitude of V can be used as another test of the system’s purity since we recall

that for any density matrix Tr(ρ2) ≤ 1

ρ2 =

(

1
2
(I + S · σ)

)2

=
1

4

(

(〈σz〉+ 1)2 + 〈σx〉2 + 〈σy〉2 2 〈σx〉 − 2i 〈σy〉
2 〈σx〉+ 2i 〈σy〉 (〈σz〉 − 1)2 + 〈σx〉2 + 〈σy〉2

)

Tr(ρ2) =
1

4

(

(〈σz〉+ 1)2 + (〈σz〉 − 1)2 + 2 〈σx〉2 + 2 〈σy〉2
)

=
1

2

(

1 + ‖V ‖
)

≤ 1 (15)

For a pure state therefore the Bloch vector V must have a length of 1 and (much like

the single particle case) can be represented by a point on the surface of the Bloch sphere.

However for a mixed case we recall Tr(ρ) < 1 therefore V must have a length less than 1

and Bloch vector will represent a point inside the sphere.

2.2.1 Completely mixed states

In our discussion of both pure and mixed states we have so far omitted to account for the

extreme opposite of a pure state the so called completely mixed state. This is a perfectly

even statical distribution of N states which cover all possible values. Whilst in practice

this type of mixed state is difficult to achieve exactly, when dealing with large ensembles of

electrons in random distributions of spin states it is entirely possible for the density matrix

of the system to approach this kind of state.

The density matrix for such a state is in principle relatively easy to find since the prob-

ability for the system to be in each given state is identical. Thus the density matrix will be

a constant multiple of the identity matrix. So for a state space of n dimensions:

ρ =
1

n
I (16)
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and since I2 = I and Tr(I) = n we have:

ρ2 =
1

n2
I

Tr(ρ2) =
1

n

For the case of electron spin n = 2 thus the lower bound of our purity test will be 1/2

whilst the upper bound will be 1 (i.e. a pure state). Finally, using Equation (15) we can see

that Bloch vector for a completely mixed state must be zero. Physical this makes perfect

sense since the individual magnetic moments of the electrons in the ensemble will point in a

different direction such that there will be no net magnetic moment.

2.2.2 Time evolution

For a pure state the time evolution of ρ is relatively easy to obtain by using the definition

of ρ given by Equation (6)

dρ

dt
=

d

dt

(
|ψ〉〈ψ|

)
=

((
d

dt
|ψ〉
)

〈ψ|+ |ψ〉
(

d

dt
〈ψ|
))

(17)

and since the state |ψ〉 satisfies the time-dependant Schrödinger Equation [11, 32] we have:

i~
d

dt
|ψ〉 = H |ψ〉

dρ

dt
= − i

~

(
H |ψ〉〈ψ| − |ψ〉〈ψ|H

)
= − i

~
[H, ρ] (18)

We can similarly derive the time evolution of a mixed state as:

dρ

dt
=

d

dt

(
∑

j

pj |ψj〉〈ψj|
)

=
∑

j

pj

((
d

dt
|ψj〉

)

〈ψj|+ |ψj〉
(

d

dt
〈ψj|

))

= − i

~

∑

j

pj
(
H |ψj〉〈ψj| − |ψj〉〈ψj|H

)
= − i

~
[H, ρ]

Thus equation (18) applies to both pure and mixed states and is known as the Von Neumann

equation [33]

Now we know from basic quantum mechanics[11] that the sate of a system |ψ〉 at time

t1 is related to its state at time t2 by a unitary operator U which depends only on t1 and t2.

|ψ(t2)〉 = U(t1, t2) |ψ(t1)〉
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For our system we can therefore say:

|ψj(t)〉 = U(t) |ψj(0)〉
〈ψj(t)| = 〈ψj(0)|U †(t)

and hence:

ρ(t) =
∑

j

pjU(t) |ψj(0)〉 〈ψj(0)|U †(t) = U(t)ρ(0)U †(t) (19)

So we can now calculate how the length of the Bloch vector changes with time as:

Tr(ρ2(t)) = U(t)ρ2(0)U †(t) = U(t)ρ(0)ρ(0)U †(t)

and since by definition U(t)U †(t) = 1

Tr(ρ2(t)) = Tr(ρ2(0)) (20)

and therefore the time evolution preserves the length of the Bloch vector and it moves

inside the Bloch ball staying at a fixed distance from the centre. In reality, however, the

magnetisation will decay due to interactions with the environment this is characterised by

the so called Bloch equations which are the subject of the next section.

2.3 Spin relaxation and the Bloch Equations

Using Equations (18) and (14) we can obtain the equation of motion for the Bloch vector as:

dvj
dt

=
d

dt
Tr(ρσj) = Tr

(

σj
d

dt
ρ

)

= − i

~
Tr
(
σj[H, ρ]

)

= − i

2~
Tr
(
σj[H, I + V · σ]

)
(21)

In order to understand the spin relaxation it is helpful to look at the time dependence of

the individual components of vj (vx, vy and vz). For a spin 1/2 particle in a magnetic field

orientated in an arbitrary direction we can calculate the component vj of equation (21) in

the following way.

The Hamiltonian H for the system, where the gyromagnetic factor γ is given by:

H = −γ(S ·B) = −γ~
2
(σ ·B) (22)
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Substituting this into equation (21) gives:

dvj
dt

= − i

2~
Tr

(

〈σj〉
[
− γ ~

2
(σ ·B), (1 + V · σ)

]
)

= − iγ
4
Tr

(

σj(σ ·B)(1 + V · σ)− σj(1 + V · σ)(σ ·B)

)

(23)

We can then expand out the two dot products and re-group terms to obtain:

dvj
dt

=
iγ

4
Tr
(
σjσxσy(Bxvy − vxBy) + σjσxσz(Bxvz − vxBz) + σjσyσx(Byvx − vyBx)

)

+
iγ

4
Tr
(
σjσyσz(Byvz − vyBz) + σjσzσx(Bzvx − vzBx) + σjσzσy(Bzvy − vzBy)

)
(24)

Focusing on the x-component first we have:

dvx
dt

=
iγ

4
Tr(σxσxσy(Bxvy − vxBy) + σxσxσz(Bxvz − vxBz) + σxσyσx(Byvx − vyBx))

+
iγ

4
Tr(σxσyσz(Byvz − vyBz) + σxσzσx(Bzvx − vzBx) + σxσzσy(Bzvy − vzBy)) (25)

and since σ2
x = 1 this simplifies to:

dvx
dt

=
iγ

4
Tr(σy(Bxvy − vxBy) + σz(Bxvz − vxBz) + σy(Byvx − vyBx))

+
iγ

4
Tr(σxσyσz(Byvz − vyBz) + σz(Bzvx − vzBx) + σxσzσy(Bzvy − vzBy)) (26)

Now since for any A and C, Tr(AC) = CTr(A) [34] Equation (26) can be further simplified

thanks to the fact that Tr(σx) = Tr(σy) = Tr(σz) = 0 thus:

dvx
dt

=
iγ

4
Tr(σxσyσz(Byvz − vyBz) + σxσzσy(Bzvy − vzBy)) (27)

=
iγ

4
(Byvz − vyBz)Tr(σxσyσz − σxσzσy) (28)

Finally since σxσyσz = iI and σxσzσy = −iI we obtain:

dvx
dt

= −γ(Byvz − vyBz) (29a)

and following a similar procedure for the y and z components we have.

dvy
dt

= −γ(Bzvx − vzBx) (29b)

dvz
dt

= −γ(Bxvy − vxBy) (29c)
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Using Equations (29a)-(29c) we can begin to construct a more realistic model for the

time evolution of the Bloch vector. Fortunately, Bloch proposed such a modification [35] by

way of describing the interaction of spins with the environment using parameters known as

the longitudinal (T1) and transverse (T2) relaxation times. If we then take an ensemble of

spins at t = 0 and subject them to a constant magnetic field B0 along the z-axis. Equations

(29a)-(29c) become:

dvx
dt

= γ(B0vy) (30a)

dvy
dt

= −γ(B0vx) (30b)

dvz
dt

= 0 (30c)

Thus the Bloch vector will rotate on a cone centered around the z-axis with Larmor frequency

ω = γB0. This procession is equivalent to the NMR system studied by Bloch [35] in which

he and his collaborators recorded a nuclear induction signal through the generation of a

small current in their receiver coil due to the net magnetisation from the ensemble of nuclei

processing around B0. However, the recorded signal decayed and was dependant on the

material used and the rate of change of the applied magnetic field.

Bloch surmised that the decay in the signal was due to the interaction of the spins with

both the environment and each other. The two types of interaction were given time constants

T1 and T2. T1 is the time taken for the z-component of the magnetisation to return to some

equilibrium value vz0 which is determined by Boltzmann statistics (or more accurately the

time taken to for vz to grow from 0 to (1 − 1
e
) ≅ 63% of its final value[35]). This type of

relaxation is usually associated with each nucleus slowly losing energy to the environment

and thus returning from an excited state to thermodynamic equilibrium. The time T2 is the

time taken for the x and y components of the magnetisation to decay due to interactions

between the individual spins in the ensemble (again this is more accurately defined by Bloch

to be the time taken for the magnetisation to decay to a value of 1
e
≅ 37% of the initial

value[35]).

Thus we can modify equations (29a)-(29c) to give

dvx
dt

= −γ(Byvz − vyBz)−
vx
T2

(31a)

dvy
dt

= −γ(Bzvx − vzBx)−
vy
T2

(31b)

dvz
dt

= −γ(Bxvy − vxBy)−
vz − vz0
T1

(31c)
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Where vz0 is the thermodynamic equilibrium magnetization.

Thus we now have a way to track how the Bloch vector (and hence average magnetisation

of the ensemble) varies with time.

2.4 Spin-Orbit coupling in semiconductors

The main mechanism that gives rise to spin relaxation (and by extension the spin relax-

ation times T1 and T2) is spin-orbit interaction. This means electrons will interact with the

positively charged atomic nucleus as they orbit. This interaction can be determined using

two different approaches depending if the electron is moving at relativistic speeds or not

[36, 37, 38]. For the relativistic case, a magnetic field is said to be generated in the electron’s

frame of reference as it orbits the nucleus. This field will have a flux density given by:

B =
ε× v

c2γrel
, (32)

where: ε represents the electric field, v is the orbital velocity of the electron and c is the

speed of light in a vacuum and γrel =
√

1− v2

c2
.

However as pointed out by an article published in Nature [39] we need to adapt Equation

(32) with a factor of (g − 1)/2 where g is the Landé g-factor (which is equal to 2 in a vac-

uum) since the normal Lorentz transform is inexact since the electron is constantly changing

direction as it accelerates. Thus we now have:

B =
ε× v

2c2γrel
(33)

Since the spinning electron has a magnetic moment µe [40, 10] the energy of the inter-

action with B is given by

E = −µe ·B (34)

Using the gyromagnetic ratio g0 to relate the magnetic moment to the angular momentum

S as µe = −g0µBS (where µB is the Bohr magneton) Equation (34) becomes:

E = g0µBS ·B (35)

Thus using equation (32) we obtain:

E = g0µB
ε× v

2c2γrel
· S (36)
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and since S = 1
2
σ and µB = e~

2m

Erelativistic =
g0e~

4m

ε× v

c2γrel
· σ (37)

For the non relativistic case we take a different approach [38]. If we observe the orbit from

the point of view of the electron we would perceive the electron to be stationary and the

nucleus to be moving around the electron at a distance r with a velocity vorbit. Thus we can

apply Biot Savart’s law to calculate the flux density as:

B = Ze
r × vorbit

4πǫ0c2r3
, (38)

where ǫ0 is the permittivity of free space and +Ze is the charge of the nucleus.

Since Zer
4πǫ0c2r3

= ε we obtain

B =
ε× vorbit

c2
(39)

using which we can follow the same procedure as the relativistic case (i.e. using Equation

(35)) to obtain an expression for the energy.

Enonrel = g0µB
ε× v

c2
· S =

g0e~

2m

ε× v

c2
· σ (40)

Which is equivalent to Equation (37) just without the relativistic correction to the velocity

or the Thomas factor of 1/2.

Finally using Equation (37) the Hamiltonian for the spin orbit interaction of a free

electron in a vacuum is given by:

Hso = − e~

4m2c2γrel
(∇V × p) · σ ≈ − e~

4m2c2
(∇V × p) · σ (41)

where V is the electric potential and p is the momentum operator.

This single atom case, however, does not extend to electrons in crystal lattices since, due

to shielding effects, electrons in the conduction band do not experience any strong nuclear

attraction. Even so, internal effects within the lattice can still produce similar types of

spin-orbit interaction to that of Equation (41). For conduction electrons the three primary

mechanisms for spin relaxation are known as The Elliott–Yafet (EY), D’yakonov–Perel (DP),

and Bir–Aronov–Pikus (BAP) mechanisms[41] (see figure 7.)
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2.4.1 The Elliott-Yafet Mechanism

The Elliot-Yafet mechanism was first proposed by Elliott in 1954 [42] and is considered the

dominant relaxation method in elemental semiconductors (e.g. Si)[43]. It works on the

principle that in a crystal lattice the Bloch states are not true eigenstates. The periodic

spin-orbit interaction means the “up” state contains a small down amplitude b (and vice

versa). Normally this is not a problem since the spin-orbit coupling δso is small compared

to the bandwidth ∆E and so can be treated as a perturbation with b being of the order δso
∆E

and thus since b is small we can still label the states “up” and “down” according to their

largest spin component. Elliott also noted that the amplitude b is dependant on the wave

vector k thus any non-magnetic scattering events that change the value of k by a significant

amount (e.g. Impurities, acoustic phonon, device boundaries etc.) All have a probability

of causing the spin to flip from an ”up” to a ”down” state (or vice versa) with spin flips

being favoured by scattering events that cause larger changes in k (such as acoustic phonons

that scatter through large angles). Elliott then went on to build on the work of Overhauser

who did similar work on spin-orbit interaction with impurities in metals[44] to calculate a

spin relaxation rate 1
TEY

which is directly proportional to the momentum relaxation rate 1
Tm

.

With the relationship between the two being defined as[42]:

Tm
TEY

∝ ∆0

Eg

, (42)

where: ∆0 is the spin-orbit splitting of the valence band and Eg is the band-gap.

Yafet then later showed [45] that this relationship was temperature independent (bar-

ing the weak temperature dependence of ∆0 and Eg) and thus Tm and Tso have the same

temperature dependence of 1/Tso ∝ T for temperatures above the Debye temperature TD

and 1/Tso ∝ T 5 below that This was then later demonstrated experimentally for metals by

Monod and Beuneu [46].

2.4.2 The D’yakonov-Perel Mechanism

The D’yakonov-Perel mechanism is considered the dominant cause of spin relaxation in III-

V and II-IV materials. It is caused by spin-orbit coupling with electric fields generated

due to the breaking of inversion symmetry of the lattice. This symmetry breaking can

be grouped into two mechanisms: Structural (SIA: often referred to as Rashba coupling)

and Bulk inversion Asymmetry (BIA: also called Dresselhaus coupling). The former arises
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from the electric field generated by gradients in the internal potential energy (such as band

discontinuities in Heterostructures) or external fields applied via the use of gates. The latter

occurs if the crystal lattice itself is not symmetric as is the case with III-V semiconductors

such as GaAs in which the constituent atoms create dipoles as they are repeated throughout

the lattice.

D’yakonov and Perel first studied these effects in 1971 [47] where they investigated elec-

tron spin orientation using circularly polarised light. They posited that relaxation occurs

because the electric fields caused by the symmetry breaking are k-dependent so when the

spins encounter these fields they will begin to process around them until a momentum change

occurs due to scattering. This will change the direction and orientation of the field at which

point the precession will start again but along a different axis.

Thus if we consider the Bloch vector for an ensemble of electrons drifting through the

lattice, with spins that are initially all polarised in the same direction and the individual

electron velocities do not change with time (i.e. the electrons don’t undergo any form of

scattering). We can see that the k-dependant field B(k) is the same for all the electrons.

Thus the spins will precess around the field at the same frequency, and after an arbitrary

time, t will still be pointing in the same direction. Hence the magnitude of the Bloch vector

will be unchanged, and no spin relaxation will occur. However if the electrons do undergo

scattering, after time t the individual spins will all be pointing in random directions due to

each one experiencing different changes in k. This will cause them to process at random

angles along all three axes while the Bloch vector (and by extension the net magnetisation)

will decay to zero as the individual spins in the ensemble spread out across the Bloch sphere.

To account for the both of these mechanisms, we will need to compute a 14× 14 Hamil-

tonian for the system using the k · p method to calculate the band structure in the vicinity

of a known point in the Brillouin zone. In our case, we can easily incorporate the effects of

spin-orbit coupling (and eventually strain) into these calculations and thus investigate the

impact of spin relaxation on an electron in a crystal lattice. This method is discussed in

detail in section 3.

2.4.3 The Bir-Arnov-Pikus mechanism

The Bir-Arnov-Pikus mechanism is a form of spin relaxation that occurs in systems with

large concentrations of holes (e.g. heavily doped semiconductors) and is associated with a
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spin-dependent exchange interaction between electrons and holes. Bir, Aronov, and Pikus

first investigated by this [48] (after whom the effect is named), and posited that if there is

a large concentration of holes the electrons will generally be in proximity to a hole thus the

wave functions will overlap and an exchange interaction will occur. This interaction causes

the electron spins to “see” the hole spins as a pseudo-magnetic field and they will begin to

process about this field. However, hole spins change at a much faster rate than electron spin

precession. Thus the magnetic field associated with the hole spin will change after a random

time, after which the electron spin will precess around the new magnetic field, this causes

spin relaxation in manner analogues to that of D’yakonov-Perel whereby the Bloch vector

will slowly shrink as the electron spins diverge from one another and spread across the Bloch

sphere.

The rate at which this occurs τ−1
BAP is proportional to the hole relaxation time and was

estimated for bulk semiconductors by reference [49] to be:

1

τBAP

=
2a3B
τ0vB

(
2Ecb

m∗

)1/2(

nf |ψ(0)|2 +
5

3
nb

)

, (43)

where na and nb are the concentrations of free and bound holes respectively, Ecb is the energy

of an electron in the conduction band and

aB =

(
m0

µ

)

ǫra0 vB =
~

µaB

τ0 =
64EB~

3π∆2
x

EB =
~2

2µa2B

|ψ(0)|2 = 2π
κ

(
1− e−

2π
κ
)−1

κ =
√

E/EB

.

2.5 Overview

In this chapter we have presented the theoretical basis for modelling spin and spin transport

using the Bloch equation and the main mechanisms for spin orbit coupling in semiconductors.

In the next chapter we will cover electronic bandstructure calculations in bulk semiconductors

using the k · p method.
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Theorem to re-write equation (44) as[50]
(

p 2

2m0
+G(r)+ ~

4m2
0c

2

(
∇V×p

)
·σ+ ~

m0
k·p+ ~2k2

2m0
+ ~

4m2
0c

2

(
∇V×k

)
·σ
)

unk(r) = Eunk(r) (45)

The term ~

4m2
0c

2

(
∇V ×k

)
·σ is a k-dependent spin-orbit interaction, which is small compared

with the other terms because the crystal momentum k is small compared with p thus this

term is often neglected and equation (45) can be simplified to:

Hunk(r) ≈
(

p 2

2m0
+G(r) + ~

4m2
0c

2

(
∇V × p

)
· σ + ~

m0
k · p+ ~2k2

2m0

)

unk(r) = Eunk(r) (46)

In order to solve equation (46) we need to make use of perturbation theory, we assume that

the solution to the Schrödinger equation is known for a particular potential with Hamiltonian

H0 and we have obtained the eigenfunctions |n〉 and eigenvalues ε0n of n bands such that

H0 |n〉 = ε0n |n〉

We now take a new Hamiltonian H which is close to our original Hamiltonian H0 but differs

by a small amount W thus H = H0 +W . We can apply this approach to equation (46) by

noting that our Hamiltonian has two parts one that is k-dependant and one that is not.

Hunk(r) ≈
(

p 2

2m0
+G(r) + ~

4m2
0c

2

(
∇V × p

)
· σ

︸ ︷︷ ︸

H0

+ ~

m0
k · p+ ~2k2

2m0
︸ ︷︷ ︸

W (k)

)

unk(r) = Eunk(r)

Thus we can take the k-dependant part W (k) as our perturbation and using some simple

results from none degenerate perturbation theory [51, 31] we can approximate the eigenvalues

εn and eigenfunctions |ψ〉 to second order as:

εn ≈ ε0n +∆ε1n +∆ε2n (47)

|ψ〉 ≈ |n〉+
∑

m 6=n

〈n|W |m〉
εn − εm

|m〉 (48)

Where ∆ε1n and ∆ε2n are the first and second order corrections to the energy given by:

∆ε1n ≈ 〈n|W |n〉 (49a)

∆ε2n ≈ | 〈n|W |m〉|2
ε0n − ε0m

(49b)

At this point, we note that these perturbation corrections rely on diagonal matrix elements

and thus the interaction of each band with every other band in the system. As we in principle

would need to include an infinite number of bands (which is computationally impractical

at best) we need a way to reduce the number of bands and parameters required for the

calculation. Fortunately, two factors work in our favour:
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For our s-like state us L = 0 → J = 1/2 and for the three p-like states ux, uy and uz:

L = 1 → J = 3/2 or 1/2. Thus our conduction band (uc) and three valence band states

(uHH , uLH , and uSO) may be written as the following simple linear combinations of our Bloch

functions. [53, 8, 50].

uc ↑= |us ↑〉 , uc ↓= |us ↓〉 (50a)

uHH ↑= − 1√
2
(|ux ↑〉+ i |uy ↑〉) (50b)

uHH ↓= 1√
2
(|ux ↓〉 − i |uy ↓〉) (50c)

uLH ↑= − 1√
6
(|ux ↑〉+ i |uy ↑〉 − 2 |uz ↓〉) (50d)

uLH ↓= 1√
6
(|ux ↓〉+ i |uy ↓〉 − 2 |uz ↑〉) (50e)

uSO ↑= − 1√
3
(|ux ↑〉+ i |uy ↑〉+ |uz ↑〉) (50f)

uSO ↓= 1√
3
(|ux ↓〉+ i |uy ↓〉+ |uz ↓〉) (50g)

Finally we must consider the band energies at Γ point in our case we will take the energy

at the bottom of the conduction band to be 0, this means the degenerate heavy and light

hole bands will have energy Ev = −E0 where E0 is the direct band gap of the material

and the split-off band will have energy Eso = −E0 − ∆0 (see Figure 9). These can all be

determined experimentally and thus can be used as input parameters alongside P . Using

this information, we can now construct the Hamiltonian for the system

H8×8 =

(

Hc Hcv

Hvc Hv

)

(51)

where Hc, Hv and Hcv are matrix blocks the explicit form of which can be found in Appendix

A.

Finally using equations (47) to (49) we can now calculate the nth eigenvalue of equation

(46) as:

εn(k) =
~2k2

2m2
0

+
~2

m2
0

∑

m 6=n

| 〈un(0, r)|k · p|um(0, r)〉|2
εn(0)− εm(0)

(52)

Thus we can compute the eigenvalues corresponding to the conduction and valence band
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dispersions as:

εc(k) =
~2k2

2m0
+ k2P 2

3
(3E0+2∆)
E0(E0+∆)

= ~2k2

2m∗
c

(53a)

εHH(k) = −E0 +
~2k2

2m0
(53b)

εLH(k) = −E0 +
~2k2

2m0
− 2k2P 2

3E0
= −E0 − ~2k2

2m∗
LH

(53c)

εso(k) = −E0 −∆+ ~2k2

2m0
− k2P 2

3E0+∆
= − E0 −∆− ~2k2

2m∗
so

(53d)

It should be noted however that this model gives an incorrect band dispersion for the heavy

holes as experimental measurements show it should curve downwards, analogous to that of

the light hole but with an effective mass ofm∗
hh (see Figure 9). This anomaly can be overcome

by the inclusion of coupling with distant bands we can do this by following the method laid

out by Pfeffer and Zawadzki [54] in which they adapted the 8 × 8 Kane model to include

two additional conduction bands, one doubly and the other quadruply degenerate making a

total of 6 extra bands with spin (the so called extended Kane model[8, 53]). Alongside this,

they modified the valance band part of the Hamiltonian to include the effects of even more

distant bands using a method developed by Luttinger and Kohn [55] which makes use of

the Löwdin perturbation method[53] (also called Löwdin partitioning) to include far band

effects using so called Luttinger parameters.

3.2 The extended Kane Model

To extend our existing Hamiltonian (and hence increase the accuracy of our calculations) we

can include the effects of two additional conduction bands. To do this, we’ll introduce some

new notation borrowed from group theory [8]. Thus the lowest conduction band doublet is

denoted as Γ6c, the heavy/light hole quadruplet is Γ8v, and the split off doublet is Γ7v. The

two new bands will be denoted as the doublet Γ7c, which has energy minimum E1 and the

quadruplet Γ8c which has its minimum at E1 +∆1 (see Figure 11).

These bands have p-like symmetry similar to that of the valence bands. Thus we can

extend our ”intelligent” basis using the Bloch functions u′x, u
′
y and u′z to obtain similar basis

functions and energies which are given in table 1. Finally in addition to P we have 3 new

non-zero matrix elements:

1. i~
m0

〈us|p|u′i〉 = i~
m0

〈us|p′i|u′i〉 = P1

2. ~

m0
〈ux|py|u′z〉 = − ~

m0
〈u′x|py|uz〉 = Q

along with all other equivalent combinations e.g: 〈uy|px|u′z〉
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Band Basis function Energy

Γ6c |uc ↑〉 0

|uc ↓〉 0

Γ8v −1
2
|(ux + iuy) ↑〉 −E0

1
2
|(ux + iuy) ↓〉 −E0

√
2
3
|uz ↑〉 − 1√

6
|(ux + iuy) ↓〉 −E0

√
2
3
|uz ↓〉+ 1√

6
|(ux + iuy) ↑〉 −E0

Γ7v − 1√
3
|uz ↑〉 − 1√

3
|(ux + iuy) ↓〉 −(E0 +∆0)

1√
3
|uz ↓〉 − 1√

3
|(ux + iuy) ↑〉 −(E0 +∆0)

Γ8c −1
2

∣
∣(u′x + iu′y) ↑

〉
E1 − E0 +∆1

1
2

∣
∣(u′x + iu′y) ↓

〉
E1 − E0 +∆1

√
2
3
|u′z ↑〉 − 1√

6

∣
∣(u′x + iu′y) ↓

〉
E1 − E0 +∆1

√
2
3
|u′z ↓〉+ 1√

6

∣
∣(u′x + iu′y) ↑

〉
E1 − E0 +∆1

Γ7c − 1√
3
|u′z ↑〉 − 1√

3

∣
∣(u′x + iu′y) ↓

〉
E1 − E0

1√
3
|u′z ↓〉 − 1√

3

∣
∣(u′x + iu′y) ↑

〉
E1 − E0

Table 1: Basis functions/energies for 14-band k · p model [8]

Hamiltonian and involves a different approach to the problem of interactions with far bands.

Instead of ignoring the effects of far bands Luttinger proposed separating out the bands of

interest (in our case the 6 valence bands) in order to treat them exactly whilst treating the

interactions with all other bands as a perturbation.

Thus in the intelligent basis used in table 1 we can replace the 6× 6 matrix Hv with the

6× 6 Luttinger-Kohn Hamiltonian given by:[55, 56, 57]

HLK = −
















P +Q −S R 0 − S√
2

√
2R

−S+ P −Q 0 R −
√
2Q

√
3
2
S

R+ 0 P −Q S
√

3
2
S+

√
2Q

0 R+ S+ P +Q −
√
2R+ −S+√

2

−S+√
2

−
√
2Q+

√
3
2
S −

√
2R P +∆so 0

√
2R+

√
3
2
S+

√
2Q+ −S+√

2
0 P +∆so
















(54)

32



Where

P =
~2γL

1

2m0
(k2x + k2y + k2z)

Q =
~2γL

2

2m0
(k2x + k2y − 2k2z)

R = ~2

2m0
[−

√
3γL2 (k

2
x + k2y) + 2i

√
3γL3 kxky]

S =
~2γL

3

m0

√
3(kx − iky)kz

The constants γL1 , γ
L
2 and γL3 are know as Luttinger parameters and can be expressed using

momentum matrix elements as:

− ~2

2m0
γL1 = 1

3
(L+ 2M)

− ~2

2m0
γL2 = 1

6
(L−M)

− ~2

2m0
γL3 =

N

6

where

L = ~2

2m0
+ ~2

m2
0

∑

j

|〈ux|Px|uj〉|2
Ep−Ej

M = ~2

2m0
+ ~2

m2
0

∑

j

|〈ux|Py |uj〉|2
Ep−Ej

N = ~2

2m0

∑

j

〈ux|Px|uj〉〈uj |Px|uy〉+〈ux|Py |uj〉〈uj |Px|uy〉
Ep−Ej

Ep =
2m0

~2
p 2

In practice, however, the Luttinger parameters have been experimentally determined for a

number of materials using cyclotron resonance [58]. Thus they are used as inputs in the

same manner as the band energies (E0, E1,∆0 and ∆1) and Kane parameters (P, P1, Q and

∆−) from the previous sections. There is however one more modification required to adapt

the 14 × 14 extended Kane Hamiltonian. Due to the explicit inclusion of the 8 condition

bands in the Hamiltonian we will need to modify the Luttinger parameters using Equations

(58)a-c[54, 53].

γ1 = γL1 + 2m0

~2
P 2

3E0
− 2m0

~2
Q2

3(E1)
− 2m0

~2
Q2

3(E1+∆1)
(58a)

γ2 = γL2 + 2m0

~2
P 2

6E0
+ 2m0

~2
P 2

6(E1)
(58b)

γ3 = γL3 + 2m0

~2
P 2

6E0
− 2m0

~2
5Q2

9E1
(58c)
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where: r is the position in real space, σ represents the spin eigenstates (↑, ↓), Fj(r) are

slowly varying envelope functions, uj0 are the periodic part of the Bloch functions at k = 0

and j is an index that runs across all included bands.

For our case though, we have a wavefunction in each material A and B thus

ψA(r) =
∑

j

FA
j (r)u

A
j0

ψB(r) =
∑

j

FB
j (r)uBj0

However since the periodic Bloch functions are assumed to be the same in each material (i.e.

uAj0 = uBj0) the heterostructure wavefunction can be written as:

ψA,B(r) =
∑

j

FA,B
j (r)uj0 (61)

we can make a further observation that if uAj0 = uBj0 is true the inter-band matrix element

px from 〈S| px |X〉 must be the same in both materials and if we also assume the lattice

constants of the two materials are the same thus the envelope is invariant under translation

in the layer (x− y) plane thus it can be re-written as:

FA
j (r) = FA

j (r⊥, z) =
1√
S
exp(ik⊥ · r⊥)χA

j (z) (62)

FB
j (r) = FB

j (r⊥, z) =
1√
S
exp(ik⊥ · r⊥)χB

j (z) (63)

FA,B
j (r) = FA,B

j (r⊥, z) =
1√
S
exp(ik⊥ · r⊥)χA,B

j (z) (64)

Where S is the sampled area and k⊥ = (kx, ky) and is assumed to be the same in both layers

A and B.

By substituting equation (61) into 59 multiplying the left hand side by u∗j0 and integrating

over one unit cell (of volume Ω) we obtain the eigenvalue problem:

∑

j

([

ε0j − E + pz

2m0
+

~2k2
‖

2m0

]

δjj′ +
1

m0

(

pz +
~k‖
m0

)

· πjj′
)

χA,B
j (z) = 0 (65)

where: ε0j is the band edge energy at the Γ point for the jth band, δjj′ is the Kronecker delta

and

πjj′ =
1

Ω

∫

Ω

u∗j′(r)

[

p+ ~σ×∇V (r)
4m0c2

]

uj(r)d
3r ≈ pjj′

Finally, in order to solve for the 14 envelope functions χj(r) and (ultimately calculate the

band structure for the quantum well) we need the 14 × 14 system Hamiltonian. Bastard
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showed, [59] that if we assume the envelope functions are continuous at the A-B interface

the system Hamiltonian can be found by making a few small changes from the bulk k · p
Hamiltonian given by equation (3.2) these are [50, 53, 60]:

1. The addition of the potential V (z) on the diagonal

2. The substitution of kz → −i ∂
∂z
.

Thus we have all the information we need to obtain the 14 coupled differential equations

needed to calculate the 14 wave-functions and thus the bandstructure for the system.

3.5 Calculation of Rashba and Dresselhaus constants

Finally, we would like to estimate the constants associated with the D’yakonov-Perel mecha-

nism for spin-orbit coupling, i.e. The so-called Dresselhaus and Rashba material dependent

constants associated with bulk and structural inversion asymmetry respectively (see section

2.4.2 for more information).

We start with an asymmetric quantum well with the growth direction z taken as the

[001] crystallographic direction similar to the example used in the previous section. The

Hamiltonian corresponding to the conduction band can be approximated as the following[8]:

H̃c = Hc −Hur(Hlr − E)−1Hll (66)

where

Hur =
(

HT
cc HT

cc′

)

Hll =
(

Hcv Hcc′

)

Hlr =

(

Hv Hvc′

Hc′c Hc′

)

with all other matrix blocks having the same definitions given in Equation (3.2).

The matrix inversion (Hlr − E)−1 can be simplified by making the decomposition

(Hc − E) = A − D, where A is a matrix with diagonal elements equal to the those of

Hlr −E and D is a matrix whose off-diagonal elements are equal to those of Hlr −E. Thus,

Hc − E = A(112×12 − A−1D) and therefore:

(Hlr − E)−1 = (112×12 − A−1D)−1A−1 ≈
[
(112×12 − A−1D)−1(A−1D)2 + (A−1D)3 . . .

]
A−1
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Thus keeping the expansion up to second order we obtain:

(Hlr − E)−1 ≈ A−1 + A−1DA− 1 + (A−1D)2A−1 (67)

where:

A =

(

Hv − E 0

0 Hc′ − E

)

and D = −
(

0 Hvc′

Hc′v 0

)

Finally, using equations (66) and (67) we obtain the approximate Hamiltonian for the two

conduction bands

H̃c = −~2

2

∂

∂z

[
1

m∗(z, E)

∂

∂z

]

+
~2k2‖

2m∗(z, E)
+ V (z) +HBR +HD +H ′

D (68)

where

1
m∗(z,E)

= 1
m0

+ 2P 2

3~2

(

2
Ev(z)−E

+ 1
Eso(z)−E

)

− 2P 2
1

3~2

[

1
Ec′ (z)−E

+ 2
Gc′ (z)−E

]

− 8P1P∆−

9~2

[

1
Ec′ (z)Eso(z)−E

− 1
Ev(z)Gc′ (z)−E

]

with

Ev(z) = Ec(z)− E0(z) + Vext(z), Eso(z) = Ev(z)−∆0(z)

Ec′(z) = Ec(z) + [E1(z)− Ec(z)], Gc′(z) = Ec′(z) + ∆1(z)

The termsHBR and HD correspond to the Rashba and Dresselhaus spin orbit interactions

and are given by:

HBR = αBR(z)(kxσy − kyσx) (69)

HD = (kxσx − kyσy)
∂

∂z

(

γ(z)
∂

∂z

)

(70)

H ′
D = i(k2y − k2x)σz

[
1

2

dγ(z)

dz
+ γ(z)

d

dz

]

+ γ(z)(kyσx − kxσy)kxky (71)

with the material dependant spin orbit coupling parameters αBR and γ being given by:

αBR(z) =
dβ(z)

dz

β(z) = P 2

3

(
1

Ev(z)−E
− 1

Eso(z)−E

)
+

P 2
1

3

(
1

Gc′ (z)−E
− 1

Ec′ (z)−E

)
+ 2PP1∆−

9

(
1

Ev(z)Gc′ (z)−E
+ 2

Ec′ (z)Eso−E

)
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γ(z) = 4P1PQ
3

(

1
Ev(z)Ec′ (z)−E

− 1
Eso(z)Gc′ (z)−E

)

+

4Q∆−

9

[

P 2
1

Ec′ (z)Gc′ (z)−E

(

1
Ev(z)−E

+ 2
Eso(z)−E

)

− P 2

Ev(z)Eso(z)−E

(
2

Ec′ (z)−E
+ 1

Gc′ (z)−E

)
]

These can then be further simplified by noting that a general function of the form 1
x−y

−
1

x−y−z
can be approximated as the following series

1

x− y
− 1

x− y − z
=

n=∞∑

n=0

(
1

(y + z)n
− 1

yn

)

xn

Therefore by remembering the definitions (and dependence on Vext) of Ev and Eso, and

taking the zero of energy to be the bottom of the conduction band (i.e. Ec = 0) we can

express the equations for αBR and γ to first order as

αbr(z) =
1
3

[
P 2

(E0 +∆0)2
− P 2

E2
0

+
P 2
1

E2
1

− P 2
1

(E1 +∆1)2

]
dVext
dz

−2P1P∆
−

9

[
1

E1(E1 +∆1)2
− 1

E2
0(E1 +∆1)

− 2

E1(E0 +∆0)2
+

2

E2
1(E0 +∆0)

]
dVext
dz

(72)

γ(z) =
4PP1Q

3

[
1

E0E1

− 1

(E0 +∆0)(E1 +∆1)

]

− 4P 2Q∆−

9E0(E0 +∆0)

[
2

E1

+
1

E1 +∆1

]

− 4P 2
1Q∆

−

9E1(E1 +∆1)

[
1

E0

+
2

E1 +∆0

] (73)

3.6 Overview

In this chapter we have presented the mathematics of the k ·p technique for calculating elec-

tronic bandstructures in bulk semiconductors, its adaptation for semiconductor heterostruc-

tures and the calculation of Rashba and Dresselhaus spin orbit coupling coefficients αbr and

γ used in the density matrix model for the spin-orbit coupling. In the next chapter will cover

the details of the Monte Carlo technique for device simulations.
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4 Monte Carlo Simulations

The Monte Carlo method is a powerful simulation tool based on selections random numbers.

The initial method is generally attributed to the work of Fermi and Von Neumann during the

Manhattan project in which the technique was used in connection with neutron scattering.

The procedure itself, however, is quite universal and was adopted in the late 1960’s for use in

semiconductor transport simulations [61]. The basic technique involves tracking the random

motion of an ensemble of electrons as they move through a material; under the influence of

an electric (or magnetic) field, and can be used to examine the effects of random scattering

events, doping, material boundaries, heterojunctions and gates on the electron transport.

4.1 The Ensemble Monte Carlo Method

The basic principle of the ensemble Monte Carlo method for electron transport is to simulate

the motion of an ensemble of carriers in momentum space. We will start by considering the

motion of just one electron in an electric field over a time step τ . First the “free flight”

time tau is determined using a random number generator. The electron is then allowed

to drift in the field for this period after which it undergoes some scattering event, due to

interactions with phonon’s, ionised impurities etc. (see section 4.3). This whole process

is then repeated until the total time t is greater than some time tmax at which point the

simulation is halted (see figure 13a). The time τ is dependent upon the total scattering rate

ΓT (Ek) =
∑N

j=1 Γj(Ek) where j is an integer subscript to denote the scattering mechanism,

thus for N possible mechanisms we have j = 1, 2, 3, . . . , N . Thus the probability of an

electron travelling for a time τ and then being scattered P (τ) is[62]

P (τ) = ΓT (Ek) exp

(

−
∫ τ

0

ΓT (Ek)dt

)

. (74)

Therefore, to determine τ for a given P (τ) using a random number r1 we need to evaluate

this integral, however, this is far from easy due to the complex forms that the various

scattering mechanisms take. To simplify this problem and allow for an analytical solution to

equation (74) we can employ a so-called “self-scattering” mechanism[62, 61]. This involves

imputing a virtual scattering event which does not change the k-vector of the electron but

has a scattering rate Γ0 such that the new total scattering rate Γ becomes constant, i.e.

Γ0 = Γ−∑N
j=1 Γj(Ek) and thus:
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scattering, however, the value of τ is added to t1, and then τ is re-calculated for the next

cycle. If however τ + t1 is greater than ∆t the electron is allowed to drift for the remaining

time t2 = ∆t − t1 after which the process moves to the next particle in the ensemble. Figure

13b shows a flowchart of the ensemble method which is repeated for each particle and for

each time step until a time t = tmax is reached.

Now that we have the basic method we will need to develop the free flight and scattering

processes in more detail which will be the subject of the next two sub-sections.

4.2 Electron transport in a semiconductor crystal lattice

We recall from section 3 that for electrons in a periodic crystal lattice we can re-write the

general Schrödinger equation using Bloch’s Theorem as:

Hunk(r) ≈
(

p 2

2m0
+ U(r) + ~

4m2
0c

2

[
∇V × p

]
· σ + ~

m0
k · p+ ~2k2

2m0

)

unk(r) = Eunk(r), (77)

where p = −i~∇ and U(r) is the periodic potential of the lattice and obeys

U(r) = U(r +R) for all vectors R of the direct lattice.

This equation leads to the formation of energy bands with a characteristic separation

of energy Eg between the lowest conduction band minima and the highest valence band

maxima. For electron transport, however, only the region near the conduction band minima

(and by extension the valence band maxima) needs to be considered to capture the necessary

physics of the system. As such it is common to approximate the band dispersion ε(k) using

a quadratic function of k [61, 62]. For conduction band minima at the Γ point (k = 0):

ε(k) = ~2k2

2m∗ (78)

where m∗ is the effective mass given by:

1

m∗ =
1

~2

∂2ε(k)

∂k2

For conduction band minima lying on the Λ or ∆ lines

ε(k) = ~

2

( k2l
2m∗

l
+

k2t
2m∗

t

)
(79)

where kt and kl represent the longitudinal and transverse components of k with respect to

the valley direction whilst m∗
l and m

∗
t are the longitudinal and transverse components of the

effective mass.
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For the valance bands, a similar procedure can be adopted for the light and heavy hole

bands (the split-off band is not usually considered because of its energy separation and

comparatively small density of states [61])

ε(k) =
~

2m0

(Ak2 ± [B2k4 + C2(k2xk
2
y + k2yk

2
z + k2zk

2
x)]

1/2) (80)

where m0 is the electron mass, ± represents the heavy and light hole bands respectively and

the coefficients A,B and C are parameters determined from experimental data.

Aside: non-parabolic approximations For particularly high electric fields the carrier

energy may be far from the band edge in which case we will need to switch to a non-parabolic

approximation for ε(k) which is given by [62]:

ε(k) =

√
1+4αγ(k)−1

2α
(81)

where γ(k) = ~2k2

2m∗ and α is a material dependant constant given by α = 1
Eg

(
1− m∗

m0

)2

These dispersion relationships show us that electrons in a crystal behave just like free

electrons only with the electron mass being replaced by the effective mass m∗ and ~k playing

the role of momentum (this is often referred to as the crystal momentum). Thus as long as

the potential energy ’felt’ by the electrons is slowly varying when compared to the crystal

potential, we are able to ignore quantum effects such as tunnelling and we can use classical

equations of motion to describe the electrons as they travel through the crystal.

If we take the total energy of the system H = Ek + U , where Ek and U are the kinetic

and potential energies respectively. We can adapt this equation by making the kinetic energy

k-dependant and setting the potential as the conduction band minimum Ec(r) given by:

Ec(r) = Evac − χ(r)− eV (r)

Where Evac is the vacuum level χ(r) is the electron affinity and V (r) is the electrostatic

potential.

The equations of motion can thus be easily constructed as[62]:

dk

dt
= −1

~
∇H (82)

dr

dt
=

1

~
∇kH (83)

where ∇ and ∇k are the gradient operator for real and k-space respectively.
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Thus for a conduction band minima at the gamma point (see equation (78)) the group

velocity is given by:

vg =
~k

m∗ (84)

and for minima along Λ or ∆ (see equation (79)) we have:

vg =
~kl

m∗
l

+ ~kt

m∗
t

(85)

assuming the electron is travelling through a constant electric field E the work done δǫ by

the field in time interval δt is:

δǫ = −eEvgδt

We now note that

δǫ =
dǫ

dk
δ = ~vgδk

Thus we have

δk = −
(
eE

~

)

δt

which we can re-write in terms of the external force F as

~
dk

dt
= −eE = F (86)

we can also include the effects of the Lorentz force from a constant weak magnetic field B

as [51, 61, 62]

~
dk

dt
= −e(E + vg ×B) (87)

4.3 Carrier Scattering: Basic Theory

Electron Scattering is important to consider when simulating electron transport though a

semiconductor crystal lattice. The various scattering processes involved can a have a marked

effect on the electron dynamics as the ensemble moves across the lattice. Thus in order to

achieve a realistic device simulation that matches experimental observation the importance

of scattering cannot be ignored. There are several different mechanisms by which scattering

can occur (the physical origins of which will be discussed latter in this section). Quantum

mechanically however, all forms of electron scattering can by regarded as a small perturbation

H ′ to the electron Hamiltonian H0 the effects of which can be accounted for using time

dependant perturbation theory.
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To derive the fist order approximation for transition the probability P (k,k′) between

initial and final eigenstates k and k′ due to a perturbation H ′, we must first introduce a

real dimensionless parameter λ such that the time dependant Schödinger equation for the

system can be re-written as [62]:

i~
∂ψ(r, t)

∂t
= (H0 + λH ′)ψ(r, t) (88)

If we now assume that the unperturbed Hamiltonian operator H0 is simple and has a known

solution given by:

H0ψk = Ekψk

where Ek are the eigenvalues with corresponding eigenfunctions ψk. We can re-write the

time dependant solution as:

ψ0
k(r, t) = ψke

−iEkt/~

and since ψ0
k is a complete orthonormal set, we can express ψ(r, t) as a linear combination

of ψ0
k, with coefficient Ck(t) such that:

ψ(r, t) =
∑

k

Ck(t)ψ
0
k(r, t) = Ck(t)e

−iEkt/~

Substituting this into equation (88) gives:

i~
∑

k

∂Ck(t)

∂t
ψk(r)e

−iEkt/~ = λ
∑

k

H ′Ck(t)ψk(r)e
−iEkt/~

Finally multiplying both sides by ψ∗
k(r)e

iEk′ t/~ and integrating over r gives us:

i~
∑

k

∂Ck′(t)

∂t
= λ

∑

k

〈k′|H ′|k〉Ck(t)e
i[E′

k−Ek]t/~ (89)

To approximate the coefficient Ck(t) we use a power series in λ[62]

Ck(t) = C0
k + λC1

k(t) + λ2C2
k(t) . . .

substituting this approximation up to second order into Equation (89) gives

i~

(
∂C0

k′

∂t
+ λ

∂C1
k′(t)

∂t
+ λ2

∂C2
k′(t)

∂t

)

=
∑

k

〈k′|H ′|k〉 ei[E′
k−Ek]t/~(λC0

k + λ2C1
k(t) + λ3C2

k(t))
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If we equate powers of λ on both sides we find

i~
∂C0

k′

∂t
= 0 (90a)

i~
∂C1

k′(t)

∂t
=
∑

k

〈k′|H ′|k〉C0
ke

i[E′
k−Ek]t/~ (90b)

i~
∂C2

k′(t)

∂t
=
∑

k

〈k′|H ′|k〉C1
k(t)e

i[E′
k−Ek]t/~ (90c)

...

From this we can see that the zero-order approximation of Ck(t) (C0
k) is constant in time

and thus we can easily evaluate Ck(t) to first order using using equation (90b). If we now

consider the initial condition at t = 0 that all except one C0
k are zero i.e. the electron is in

a definite perturbed eigenstate ki at t = 0 we have

Ck′(0) = C0
ki
= 1

Ck′(0) = C0
k = 0 (k 6= ki)

and

i~
∂Ck′(t)

∂t
= 〈k′|H ′|ki〉 ei(Ek′−Eki

)t/~ (91)

We now assume that H ′ depends harmonically on the time as

H ′(t) = H ′e±iωt

(this is considered a valid assumption since even if it is not directly a harmonic dependence, it

may be harmonic for one Fourier component of a more general function of time, see reference

[62] for more details.)

Substituting this into equation (91) gives

i~
∂Ck′(t)

∂t
= 〈k′|H ′|ki〉 ei(Ek′−Eki

±i~ω)t/~

Integration from 0 to t then gives

Ck′(t) =
1

i~
〈k′|H ′|ki〉 e

i(Ek′−EKi
±~ω)t/~−1

i(Ek′−Eki
±~ω)/~

(92)

This can then be re-written as

Ck′(t) =
1

i~
〈k′|H ′|ki〉 eiζt

sin(ζt)

ζt
t (93)
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where ζ = (Ek′ − Eki ± ~ω)/2~.

Since probability of finding an electron with wave vector k′ at time t is given by |Ck′(t)|2

we can calculate the transition probability from a state ki to k′ per unit time (i.e. the

transition rate) as

P (ki,k
′) =

|Ck′(t)|2
t

=
| 〈k′|H ′|ki〉|2

~2

[
sin(ζt)

ζt

]2

t (94)

We now note that in the limit t→ ∞ the width of the function [ sin(ζt)
ζt

]2 becomes very small

and can be approximated as a Dirac δ-function. Thus finally, using the identity

∫ ∞

−∞

[
sin(ζt)

ζt

]2

dζ =
π

t

we can replace [ sin(ζt)
ζt

]2 by δ(ζ)π/t and the transition rate can be written as

P (k,k′) =
2π

~
| 〈k′|H ′|ki〉|2δ(Ek′ − Ek ± ~ω) (95)

For Monte Carlo calculations however we need the scattering rate Γ which can easily be

found by integrating Equation (95) with respect to the final state k′ to give

Γ(k) =
2π

~

Ω

(2π)3

∫

| 〈k′|H ′|ki〉|2δ(Ek′ − Ek ± ~ω)dk′ (96)

This is the well known Fermi Golden rule and is used in the Monte Carlo engine to calculate

the probability that a scattering event has occurred during the time step δt. The precise

from of H ′ is depends upon the scattering mechanism that is considered this will be the

subject of the next section.

Aside: Form factor for non-parabolic approximations It should be noted that Equa-

tion (96) assumes the use of a parabolic band approximation. To adapt the equation for use

with non-parabolic bands we need to introduce a overlap integral G(k,k′) (often called a

form factor) into the matrix element 〈k′|H ′|ki〉 such that [61, 62],

Γ(k) =
2π

~

Ω

(2π)3

∫

| 〈k′|H ′|ki〉|2|G(k,k′)|2δ(Ek′ − Ek ± ~ω)dk′ (97)

for the parabolic case G(k,k′) ≈ 1 and so is often neglected. For the non-parabolic case

however, |G(k,k′)|2 can be approximated as [62, 61]

|G(k,k′)|2 = (akak′ + bkbk′ cos(θ))2) (98)
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where θ is the angle between k and k′ and ak and bk are given by

ak =

[
1 + αE(k)

1 + 2αE(k)

]1/2

and ck =

[
αE(k)

1 + 2αE(k)

]1/2

where α is the same material dependant constant used in Equation (81).

More information alongside a more detailed derivation for the overlap integral can be

found in References [61] and [62] for the remainder of this work; however, we assume that

all the scattering mechanisms use parabolic bands and thus G(k,k′) is neglected.

4.4 Scattering Mechanisms

We will now briefly discuss the physical origins of several common scattering mechanisms

that are important for simulations of electron transport in semiconductors. These are:

• phonon scattering

• interactions with ionised impurities

• alloy scattering

• surface roughness

All of these interactions can be classified by there initial and final energies as either Inter-

valley; whereby the initial and final energy states lie in the same conduction band valley, or

Intravalley where the initial and final states are in different valleys.

Phonon Scattering When considering the effects of scattering on the electron transport

through a solid perhaps the most important interaction is that of electrons with Phonons. A

phonon is simply put a quasi-particle that is associated with vibration in the crystal lattice.

In a perfect crystal, each atom is joined to its neighbours in 3 dimensions by bonds in a

repeating pattern. This system can be modelled as masses joined together by tiny springs.

As one atom gains energy from outside the system (usually from heat or sound waves),

it vibrates, and this vibration travels down the chain of particles as a mechanical wave.

These waves which travel throughout the crystal have a definite momentum and energy and

thus can be divided into small packets which are discrete units (quantum) of vibrational

mechanical energy. Therefore, we can treat these wave packets quantum mechanically as
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whereby for an symmetric crystal we have for any given q one longitudinal mode (q is parallel

to êq) and two transverse modes (q is perpendicular to êq).

If we now take a phonon moving through the crystal lattice, the small change in lattice

constant will produce a small instantaneous change in the energy bands it is this change in

energy that causes the electrons to scatter. The change in lattice spacing can be expressed

by the induced strain in the lattice given by ∇ · u(r, t) Thus we can write the interaction

potential H ′ as:

H ′ = Ξd∇ · u(r, t)

for acoustic phonons where Ξd is the acoustic deformation potential.

Since ∇ · u(r, t) vanishes for transverse phonons we can substitute these into equation

(99) to obtain:

H ′
acoustic =

∑

q

iΞdq

(
~

2ρΩωq

)1/2

êq(aq + a+−q)e
iq·R. (100)

The operators a+q and aq satisfy the commutator relation aqa
+
q − a+q aq = δqq. Therefore

the Hamiltonian for the absorption or emission of a phonon can be expressed as [62]

H =
∑

q

~ωq(a
+
q aq +

1
2
)

and if we denote the eigenfunction of the initial state of the electron as |c〉 and the final

state as |c′〉 we have a+q aq |c〉 = nq |c〉, where nq is the number of phonons with mode q in

state |c〉. which for a Bose-Einstein distribution at lattice temperature TL is given by [62]

〈nq〉 =
1

exp(~ωq/kBTL)− 1
(101)

Thus we can obtain the energy eigenvalues as

εq = ~ωq(nq +
1
2
)

The matrix elements corresponding to the phonon emission and absorption processes are

then given by:

〈c′| aq |c〉 =
√
nq - absorption (102)

〈c′| a+q |c〉 =
√

nq + 1 - emission (103)
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Therefore by using the golden rule given by Equation (95) we can obtain the probability

per unit time of an electron transitioning from state k to k′ due to interaction with a non-

polar acoustic phonon as [62, 61]:

Pacoustic(k,k
′) =

πΞ2
dq

2

ρωqΩ
(nq +

1
2
± 1

2
)δ(k′ − k ± q)δ(E(k′)− E(k)± ~ωq) (104)

The two delta functions in equation (104) ensure the conservation of both momentum and

energy, since E(k′) = E(k)± ~ωq and k′ = k + q.

If we now note that for a parabolic energy band the energy conservation can be expressed

as ~k′2

2m∗ = ~k2

2m∗ ± ~ωq we can combine the two δ functions as follows

δ(k′ − k ± q)δ(E(k′)− E(k)± ~ωq) = δ

(
~q 2

2m∗ ± ~kq cos θ′

m∗ ± ~ωq

)

(105)

where θ′ is the polar angle between k and q and

cos θ′ =
1

2

(

± q

k
+

~ωqk

E(k)q

)

(106)

We can further simplify this calculation by making the observation that at room temper-

ature ~ωq ≪ kBT . Thus we can assume the phonon scattering to be elastic (i.e. ~ωq = 0)

and we can approximate nq from equation (101) as nq ≈ kBTL

~ωq
. Finally, we note that for long

wavelength phonons ωq/q = vs where vs is the velocity of sound in the semiconductor, thus

we can rewrite equation (104) as

Pacoustic(k,k
′) =

πΞ2
dkBTL
~ρv2s

k

E(k)q
δ

(
q

2k
± cos θ′

)

(107)

The scattering rate can then be evaluated by substituting equation (107) into 96 and inte-

grating over k′. However, it is much easier to integrate with respect to q in spherical polar

coordinates thus we obtain

Γ(k)acoustic =
πΞ2

dkBTL
8π2~ρv2s

k

E(k)

∫
1

q
δ

(
q

2k
± cos θ′

)

dq

=
πΞ2

dkBTL
8π2~ρv2s

k

E(k)

∫ qmax

qmin

∫ 1

−1

∫ 2π

0

δ

(
q

2k
± cos θ′

)

dφd(cos θ′)qdq (108)

integration over φ is straightforward as is that over cos θ′, due to the delta function. Thus

all we need is the limits for the integration over q which are easily obtained since cos θ′ is

limited to ±1 thus using equation (106) we can obtain
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qmin = 0

qmax = 2k

and thus we can finally obtain the scattering rate as

Γ(k)acoustic =
πΞ2

dkBTL
8π2~ρv2s

k

E(k)
2π

∫ qmax

qmin

qdq =
πΞ2

dkBTL
8π2~ρv2s

k

E(k)
4πk2

and therefore

Γ(k)acoustic =
2πΞ2

dkBTL
~ρv2s

N(E(k)) (109)

where N(E(k)) is the electron density of states given by

N(E(k)) =
(2m∗)3/2

√

E(k)

4π2~3
(110)

Optical Phonons For non-polar optical phonons an equation for Poptical can be obtained

in a similar manner to equation (104) with two notable differences:

1. The acoustic deformation potential Ξd is replaced with an optical deformation potential

D0.

2. The optical phonon energy is nearly constant as a function of q thus we can replace

nq and ωq with constant values n0 and ω0 respectively.

Thus the probability per unit time for interaction with a non-polar optical phonon is

given by:

Poptical(k,k
′) =

πD2
0q

2

ρω0Ω
(n0 +

1
2
± 1

2
)δ(k′ − k ± q)δ(E(k′)− E(k)± ~ω0) (111)

Like the acoustic case we can use equation (105) to once again combine the two δ func-

tions. However we must note that unlike the acoustic phonons the phonon energy ~ω0 for the

optical case is not less than kbT at room temperature thus optical phonons undergo inelastic

scattering and the probability is given by

Poptical(k,k
′) =

πD2
0q

2

ρω0Ω
(n0 +

1
2
± 1

2
)δ

(
~q 2

2m∗ ± ~kq cos θ′

m∗ ± ~ωq

)

(112)
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This can then be substituted into equation (96) and integrated with respect to q (similar

to equation (107)) to obtain the scattering rate as

Γ(k)optical =
D2

0

8π2ρω0

(n0 +
1
2
± 1

2
)

∫

δ

(
~q 2

2m∗ ± ~kq cos θ′

m∗ ± ~ωq

)

dq

=
D2

0

8π2ρω0

(n0 +
1
2
± 1

2
)

k

E(k)

∫ qmax

qmin

∫ 1

−1

∫ 2π

0

1
q
δ

(

q

2k
± cos θ′ ± ~ω0k

2qE(k)

)

dφd(cos θ′)q 2dq

(113)

the limits qmin and qmax can then be defined using the δ function as

qmin = k

∣
∣
∣1−

(
1± ~ω0

E(k)

)1/2
∣
∣
∣

qmax = k

(

1 +
(
1± ~ω0

E(k)

)1/2
)

Thus we obtain

Γ(k)optical =
D2

0

8π2ρω0
(n0 +

1
2
± 1

2
)2πk

3

E(k)

(
1± ~ω0

E(k)

)1/2
=

πD2
0

ρω0
(n0 +

1
2
± 1

2
)N(E(k)± ~ω0) (114)

where N(E(k)± ~ω0) is once again the density of states given by equation (110).

Interactions with Polar Phonons When dealing with ionic semiconductors (e.g. GaAs,

InP etc.) phonons can cause polarisation waves, which are created by the oscillating electric

dipole as the vibrations move through the lattice. These types of phonons will strongly inter-

act with electrons causing polar scattering and can either be acoustic or optical. Interactions

with polarised acoustic phonons (often referred to as piezoelectric scattering) are important

at low temperatures in very pure semiconductors. The interaction Hamiltonian H ′ can be

written as

H ′ =

∫

ρ(r)φ(r)dr (115)

where ρ is the charge density, and φ is the electric potential associated with the polarisation

of the crystal.

The electrostatic field produced by the plane wave is given by [63, 61]

Ei =
−Pijkejk

ε
(116)

where pijk is the appropriate component of the piezoelectric tensor, ejk is the strain tensor

and ε is the dielectric constant.
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When this is used in the golden rule calculation (Equation (96)) the transition rate from

state k to k′ can be shown to be [61, 63]

P (k,k′) =
8π2e2p20KBT

~V q2V 2
soε

2ρ

(
q 2

q 2 + β2

)2

zδ[E(k′)− E(k)] (117)

where Vso is the average sound velocity in the materiel, p0 is an appropriate piezoelectric

constant and β is the inverse screening length given by

β =

(
4π2e2ne

εKbT

)1/2

where ne is the free carrier concentration.

Equation 117 can then be integrated over all k′ to give the scattering rate Γpiezo as

Γ(k)piezo(Ek) =

√
m∗e2p20KbT√
8ε2~2ρV 2

so

E(k)−1/2

(

log
(

1 + 8m∗E(k)
~2β2

)

− 1
1+[~2β2/8m∗E(k)]

)

(118)

For polar optical phonons the interaction with electrons is very strong and is dominant at

room temperature in compound semiconductors [62]. The strength of the polar interaction

is proportional to the dipole moment created by the displacement of positive and negative

ions (u+ and u− respectively). The relative displacement u = u+ − u− can be written as

[62]

u(r, t) =
∑

q

(
~

2NMω0

)1/2

eq(aq + a±q )e
iq·r (119)

where N is the number of pair ions and M is the reduced mass of the positive and negative

ions (with 1/M = 1/M+ + 1/M−). The polarisation P due to the relative displacement is

then given by:

P =
e∗N

Ω
u

where e∗ is the effective charge given by [63]

e∗ =

(
ΩM

N

)1/2

ω0ǫopt

(
1

ǫopt
− 1

ǫs

)1/2

with ǫopt being the optical frequency range and ǫs the dielectric constant of the semiconductor.

The polarisation due to the displacement combines with the polarisation due to the ions

themselves Pion to create a dielectric displacement D given by

D = ǫ0F + Pion +
e∗N

Ω
u
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where ǫ0 is the dielectric constant of a vacuum and F is the electric field.

since Pion is related to ǫopt as ǫoptF = ǫ0F + Pion thus we can re-write D as

D = ǫoptF +
e∗N

Ω
u (120)

However D is expected to vary as D = Deqe
iq·r and since ∇ ·D = 0 for polarised charges

iq ·D = 0

which implies that D = 0 for non-zero q. Thus substituting D = 0 into equation (120) we

obtain an expression for the electric field

F = −Ne
∗U

Ωǫopt
(121)

from here it is straightforward to find the electrostatic potential φ(r) as

φ(r) = −
∫

F dr = −iN
Ω

e∗

qǫopt
u(r)

and thus finally the perturbation Hamiltonian H ′ as

H ′ = −eφ(r) =
∑

q

i
e

q

(
~ω0

2ǫpΩ

)1/2

(aq + a±q )e
iq·r (122)

where 1/ǫp = 1/ǫopt − 1/ǫs.

This then allows us to calculate the scattering probability per unit time using equation

(96) as [62, 61]

P (k,k′) =
πe2ω0

ǫpΩ

1

q2
[n(ω0) + 1/2∓ 1/2]δ(k′ − k ∓ q)δ(E(k)− E(k′)∓ ~ω0) (123)

and the scattering rate Γpopt as[62]

Γ(k)popt =
e2ω0

8πǫp

k

E(k)
[n(ω0) +

1
2
∓ 1

2
] ln

(
qmin

qmax

)

(124)

where qmin and qmax are given by

qmin = k

∣
∣
∣1−

(
1± ~ω0

E(k)

)1/2
∣
∣
∣

qmax = k

(

1 +
(
1± ~ω0

E(k)

)1/2
)
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Ionised Impurity Scattering electron scattering due to shallow donor impurities is often

considered an elastic process since the mass of the impurity atom is much larger than that

of the electron thus any change in energy that would occur during such an interaction is

considered negligible. In order to derive the perturbation HamiltonianH ′ (and ultimately the

scattering probability P (k,k′) we will first consider the case of an electron that is scattered

by a positively charged donor impurity in an n-type semiconductor. If the impurity has a net

positive charge of Ze then the potential can be approximated as the bare coulomb potential

given by:

V (r) =
Ze

4πǫ0ǫsr

This however does not account for the effect of screening due to the presence of other elec-

trons surrounding the donor. This was employed in the method developed by Brooks (and

independently by Herring)[61, 62] in which he showed the screened potential V ′(r) can be

expressed by

V ′(r) =
Ze

4πǫ0ǫsr
e−r/λD (125)

where λD is known as the Debye length and is given by

λD =

√

ǫ0ǫsKBT

e2n0

The perturbation Hamiltonian can then be written as

H ′ = eV ′(r) =
Ze2

4πǫ0ǫsr
e−r/λD (126)

and thus the matrix element can be obtained by

〈k′|H ′|k〉 = 1

Ω

Ze2

4πǫ0ǫsr

∫

Ω

e−ik′·r e
−r/λD

r
e−ik·rd3r

=

∫ π

0

∫ ∞

0

e−ik·r
(
e−r/λD

r

)

r2 sin(θr)dθrdr

=
e2λ2D

Ωǫ0ǫs(1 +K2λ2D)

(127)

where d3r = 2πr2 sin(θr)dθrdr and K = k′ − k Thus using equation (96) the transition

probability due to a single ionised impurity can be found as

P (k′,k) =
2π

~

(
Ze2

Ωǫ0ǫs

)2
δ(Ek′ − Ek)λ

4
D

(1 +K2λ2D)
2

(128)

Finally this can then be multiplied by the number of impurities NiΩ in the crystal volume

thus we have

P (k′,k) =
2π

~

NiZ
2e4

Ωǫ20ǫ
2
s

δ(Ek′ − Ek)λ
4
D

(1 +K2λ2D)
2

(129)
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The scattering rate Γionised can then be found by once again by integration over all k′ to

give

Γ(k)ionised =
2πNiZ

2e4N(E(k))

~ǫ20λ
2
D(4k

2 + λ2D)
(130)

where N(E(k)) is once again the density of states gievn by equation (110).

Alloy Scattering In alloys (GaAs, InP etc.) due to the random distribution of component

atoms among the available lattice sites a new mechanism for carrier scattering is introduced.

This alloy scattering occurs due to the change in potential as the carriers randomly encounter

different atomic cores as they move across the lattice. The amount of scattering, therefore,

depends on three factors. The alloy concentration x, the difference in potential between

the two alloyed atoms DAlloy (this potential can be fitted to experimental data, taken as a

difference in electron affinities or as an electronegative difference) and the amount of disorder

in the lattice (this is usually achieved with a constant d for which d = 0 is perfectly ordered

and d = 1 is considered random). All of this was taken into account in a model developed

by Harrison and Hauser [64, 65] in which they showed that the alloy scattering rate ΓAlloy

can be expressed as

ΓAlloy =
3π

8
√
2

(m∗)3/2

~4
ΩdD2

Alloyx(1− x)
√
E (131)

where: Ω is the crystal unit cell, and g3D is the 3D density of states.

Surface Roughness Scattering Surface roughness scattering (sometimes referred to as

interface roughness scattering) is an elastic scattering process where electrons move in the

vicinity of the surface of a material (or an imperfect interface between two different materi-

als). Scattering occurs due to small local variations in the potential due to imperfections in

the surface (or interface). This type of scattering often considered for 2-dimensional electron

gasses where it can be induced due to the proximity of the heterostructure that creates the

quantum well. It is also considered at low temperatures where its effects are comparatively

stronger due to the reduced influence of phonons.

For a z-confined 2D heterostructure the “local” potential will fluctuate based on position

in th x − y plane. The commonly used expression for the resulting scattering rate [66, 67]

assumes that the roughness has a Gaussian Fourier transform ∆z(r) with height ∆ and

correlation length Λ and is isotropic across the x-y plane such that such that

〈∆z(r)∆z(r
′)〉 = ∆2 exp

(

|r − r′|2
Λ2

)
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The perturbation H ′ due to a position shift ∆z can then be expressed as

H ′ = V [z −∆z(r)]− V (z) ≈ −∆z(r)
dV (z)

dz

The 2D scattering matrix element Fsr can then be expressed as

Fsr = 〈k′|H ′|k〉

This then leads to the scattering rate ΓSR from equation (96) as

ΓSR =
m ∗∆2Λ2|Fsr|2

~3

∫ π

0

dθe−(k′−k)Λ2/4 (132)

4.5 Device Simulations

Now that we have covered the basic method for bulk semiconductors we must turn our

attention to how to adapt the Monte Carlo method for use with device simulations. In order

to achieve this four additional factors must be taken into account.

1. The motion of carriers is spatially restricted to a device region, unlike the bulk case

where the motion spreads in a vast region.

2. The carriers must be allowed to both enter and exit the simulation area through the

device terminals.

3. The potential calculation must be done self-consistently through the solution of the

Poisson equation with appropriate boundary conditions.

4. The boundary conditions applied to the carrier motion must also be consistent with

the boundary condition applied to the Poisson equation.

To address point 1, we can use a surface boundary condition, whereby a boundary is set

to be the edge of the simulation area such that when the particles are about to cross they

are instead reflected into the device region. Point 2 can be addressed by not simulating the

motion of all the particles but instead holding some particles outside the simulation using a

reservoir. The surface boundaries can then be adapted in the region of the contacts to either

allow carriers in the reservoir into the simulation area or allow carriers in the simulation area

to exit back into the reservoir (see figure 15a). Finally to address points 3 and 4 we can use

a finite element approach to solve the Poisson equation (the various detailed methods for

which can be found in any good computational physics textbook see for example references
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[68, 61, 62]). To achieve this we need to define a grid of mesh points across the device each

surrounded by a cell (see figure 15a ) we can then obtain the charge density at each grid

point by regarding each particle as a “super” particle.

In reality, the carrier density of a semiconductor is on the order of 106, but in practice,

we are computationally limited to at most a few hundred thousand particles. Thus to

approximate the charge density at each grid point, we must treat each particle as a cloud of

charge that that is spread spatially such that the charge density is a step function of position

(see figure 15b). By counting the number of particles inside each cell, we can then obtain

the carrier density as:

n(i, j) = N(i, j)
Npp

∆x∆y

(133)

where N(i, j) is the number of particles in the cell, around grid points i and j and Npp is

the number of particles that each “super” particle represents.

Therfore, we can now solve the Poisson equation for the potential φ at each grid point

as:

∇
2φ(i, j) = −n(i, j)

εs
(134)

using dirichlet boundary conditions for the source-drain and gate contacts.

Thus we now have all the information we need to create a Monte Carlo method for

electron transport in a semiconductor device. Fist we must define our device including:

device geometry, doping profile, position of the terminals and structure of the semiconductor

layers (if simulating a heterostructure). We then need to initialise or particles by calculating

the initial particle distributions in real and k-space and specifying the initial potential profile

used fro the device. For the initial spacial distributions it is common to use a density profile

based on the drift diffusion model that is computed in advance to save time.[62] The initial

energy and k-space distributions are usually then handled using either a Fermi-Dirac or

Boltzmann distribution (depending on the Lattice temperature) and the magnitude of the

k-vector can then be found by re-arranging Equations (78) or (81). The direction of the

k-vector can then be determined randomly using spherical polar coordinates given by:

kx = |k| sin(θ) cos(φ)
ky = |k| sin(θ) sin(φ)

kz = |k| cos(θ)
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with

φ = 2πr1

cos(θ) = 1− 2r2

sin(θ) =
√

1− cos2(θ)

where r1 and r2 are random numbers between 0 and 1.

The next step initially follows the ensemble Monte Carlo method whereby for each particle

we perform successive cycles of free flight and scattering. The main difference, however, is

that now after each free-flight we check to see if the particle has crossed a boundary and if

so then either reflect the particle into the simulation area or remove the particle into the

reservoir. After all the particles have moved to there new positions we then need to add

a new routine to handle particles in the region surrounding the source and drain. This

routine is essential for two reasons. The first reason is that if the particles can only leave

the simulation and are not replaced, we will eventually run out of particles in the simulation

area.

The second reason, however, is less apparent and stems from the fact that we are assuming

the source and drain contacts to be ohmic. Ohmic contacts are usually modelled as charge-

neutral areas that are always in thermal equilibrium even when current is flowing. Thus need

to maintain charge neutrality in the vicinity of the source and drain, since the voltage drop

in this area will be negligible, and hence no power is dissipated in this area. To achieve this,

we need a routine that will keep the number of particles constant in the cells that correspond

to the source and drain contacts.

Thus once all the particles have finished moving the number of particles in the contact

regions needs updating by either removing or replacing particles (using a similar procedure

to the initialisation) depending on the initial doping density in that region (that we defined

in the initial set-up). The final step is then to calculate the charge density and solve the

Poisson equation for the potential at each grid point. We then repeat the whole process

starting at the free-flight and scattering until we reach the desired end time t = tmax (see

figure 16).
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4.6 Overview

In this chapter we have presented the fundamentals of the Monte Carlo method and the

scattering processes that are important for the realistic semiconductor transport. The final

few chapters we will now cover our application of all the techniques discussed thus far to the

simulation of an InGaAs spin-FET.
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5 Electron Spin in III-V Monte Carlo

5.1 Why III-V?

The use of III-V compound semiconductors for spintronic applications goes back to the ear-

liest days of the field. Not only was the original Datta-Das Transistor based on a GaAs

quantum well (see section 1.2) but also much of the early theoretical work on both spin

transport and relaxation is based on these materials and the physics is by now well under-

stood. The main reason for the this is that unlike more common Si, III-V materials (such as

GaAs) have a direct band gap. This property makes them optically active and thus allows

for highly efficient optical spin injection and detection through the use of circularly polarised

light, as opposed to more problematic and inefficient electrical methods. This along with the

observations of very long spin coherence times in bulk GaAs (on the order of 10’s of ns [69])

has made GaAs based devices a top contender for use in spintronics (although Si has gained

more ground in recent years due to advances in spin injection and lower device fabrication

costs).

5.2 Simulation Method

The main method used in this work for studying the spin transport in InGasAs is an adap-

tation of the method laid out in [16]. This involved augmenting an existing ensemble III-V

Monte Carlo simulation of a InGaAs MOSFET by including the electron spin as an additional

degree of freedom. The simulator is an advanced 2D finite element III-V heterostructure

Monte Carlo simulation tool, which was developed in-house and is self-consistently coupled

with solutions to the Poisson equation that accounts for both long-range electron-electron

interactions and quantum corrections using the effective quantum potential [7, 70].

The simulator uses an analytical band-structure with non-parabolic energy dispersion

that accounts for the Γ, L andX conduction band valleys [71]. Furthermore, electron scatter-

ing was considered for: polar optical phonons, inter-valley and intra-valley optical phonons,

non-polar optical phonons, acoustic phonons, interface roughness, interface phonons at the

dielectric/semiconductor interface, and ionised impurity scattering using a static screening

model. Finally, the alloy scattering, as well as strain effects on bandgap, electron effective

mass, optical phonon deformation potential and energy were included in the device channel

[70].
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This device simulation tool was verified with experimental data for various devices, in-

cluding measured I-V characteristics of a 120 nm gate length In0.2Ga0.8As pseudomorphic

[71], lattice matched metamorphic HEMT [72], and a 50 nm gate length In0.7Ga0.3As/InP

HEMT [73].

The electron spin was accounted for using a spin density matrix ρ(t) in addition to the

3D k-space and 2D real space freedoms already present in the simulator. Since electrons are

spin 1
2
particles the density matrix is given by

ρ(t) =

(

ρ↑↑(t) ρ↑↓(t)

ρ↓↑(t) ρ↓↓(t)

)

(135)

where ρ↑↑ ρ↓↓ represent the probability finding an electron in the spin up or spin down state

and ρ↑↓ ρ↓↑ represent the coherence. With ρ↓↑(t) = ρ↑↓(t)
∗ and ρ↑↑(t) + ρ↓↓(t) = 1. The time

evolution of a density matrix has already been discussed in section 2.2.2 and is governed by

the Von Neumann equation dρ(t)
dt

= − i
~
[H, ρ(t)] where H is the system Hamiltonian. Since

the D’yakov-perrel mechanism is the main cause of spin relaxation in an InGaAs quantum

well[17, 19, 16] the Hamiltonian contains two terms relating to the spin-orbit interaction.

1. The simplified Dresselhaus Hamiltonian HD = γ〈k2y〉(kzσz − kxσx) which accounts for

spin-orbit coupling as a result of bulk inversion asymmetry of the crystal in the limit

k2x, k
2
z << 〈k2y〉.

2. The Rashba Hamiltonian HR = αbr(kzσx−kxσz) which accounts for spin-orbit coupling

due to structural inversion asymmetry of the quantum well.

where x is taken to be the transport direction along the device channel, y is the growth

direction of the quantum well, and the material dependent parameters αbr and γ are the

so-called Rashba and Dresselhaus parameters respectfully.

The value of these parameters was estimated using k·p bandstructure calculations, details

of which can be found in section 3. Using Kane parameters for GaAs and InAs obtained

from a 40 band tight binding model by Jancu et al. [9] (which are in good agreement

with reported experimental values, see for example [58]) we then estimated the Rashba and

Dresselhaus parameters for In0.3Ga0.7As using linear interpolation and equations (72) and

(73) from section 3 the values for which are given in table 2. We must note at this stage,

however, that αbr is dependant on the strength of the electric field in the y-direction Fy thus

we have used the k · p calculations to obtain the field independent part of αbr, α0 such that

αbr = α0Fy(r) where r is the position of the electron in the device.
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parameter InAs GaAs In0.3Ga0.7As

E0 (ev) 0.418 1.519 1.107

E1 (ev) 4.480 4.540 4.522

∆0 (ev) 0.380 0.341 0.353

∆1 (ev) 0.310 0.200 0.233

∆− (ev) -0.050 -0.170 -0.134

P (evÅ) 9.010 9.880 9.619

P1 (evÅ) 0.660 0.410 0.485

Q (evÅ) 7.720 8.680 8.392

α0 (Å2) 122.525 4.819 7.600

γ (evÅ3) 48.578 24.368 22.959

Table 2: Band energies and Kane parameters obtained from reference [9] used in the cal-

culation of α0 and γ. Note: α0 is the field independent part of αbr given by αbr = α0Fy(r)

where Fy is the electric field in the growth direction of the well (in our case along the y

axis).

According to [16] during each Monte Carlo ”free flight” τ the spin density matrix evolves

as

ρ(t+ τ) = e−i(Hr+HD)
τ
~ ρ(t)ei(Hr+HD)

τ
~ (136)

and using basic matrix algebra it can be shown that

e−i(Hr+HD)
τ
~ =

(

cos(|α|τ) i α
|α| sin(|α|τ)

iα
∗

|α| sin(|α|τ) cos(|α|τ)

)

(137)

and the hermitian conjugate for the operator ei(Hr+HD)
τ
~ . Where

α = ~
−1[(αbrkz − γ〈k2y〉kx) + i(αbrkx − γ〈k2y〉kz)]

As seen in section 2.1 the density matrix can be parametrised as a spin-polarisation

(Bloch) vector S = (sx, sy, sz)
T where Sj = Tr(σjρ(t)), j = x, y, z and σj are the Pauli

matrices. Thus using equation 137, we can show that the time evolution of the density

matrix during each ”free flight” causes a rotation of the spin Bloch vector, the angle and

direction of which depend on the k-vector, i.e. momentum, of the electron.

For our simulations, we began with a 25 nm gate length In0.3Ga0.7As MOSFET with a
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(a) ID-VD characteristic. (b) Confinement potential showing the

quantum well at the InGaAs/GaAs interface

(c) Electron density across the device

Figure 18: Initial results for 25 nm gate length In0.3Ga0.7As MOSFET.

behaviour whereby as the source-drain voltage increases we initially see a linear increase

in current flow which eventually reaches saturation at which point further increasing VD

has no effect on the current flow through the channel. Figure 18b shows the confinement

potential created by the GaAs/InGaAs heterostructure this forms a quantum well in the

Γ conduction band which in turn leads to the formation of a 2-dimensional electron gas

(2DEG) near the interface. This can also be seen in Figure 18c which contains a plot of the

average electron density. As predicted the electrons are concentrated in a thin slice of the

structure corresponding to the position of the quantum well between y = −5 and −12 nm

(see Figure 18b) with the majority of the electrons being located at the bottom of the well

at y = −11.5 nm.

A surface plot of the electric field across the device is shown in Figure 19a. The electric
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field was calculated using a 2D a Poisson solver, approximating the charge density at each

grid point using the ”super-particle” method outlined in section 4.5. The plot shows that

the field is highly non-linear and as expected is exceptionally high in the region of the

source, drain and gate contacts, with fringe fields at the edges of the contacts on the order

of 109 Vm−1.

However, the vast majority of the electrons are found in the 2D channel at the bottom

of the quantum well formed by the In0.7Ga0.3/GaAs interface (located at y = −11.5 nm).

Because the fringe fields are an order of magnitude higher than that in the channel (≈
107 Vm−1) to view the electric field in the channel better, we have taken a thin slice across

the device in the x-direction corresponding the centre the channel.

The electric field plotted against the position (x) in the slice is shown in Figure 19b. As

expected much like the full surface plot the electric field rises and falls with the x-position of

the contacts. From this, we can see that the field at the right-hand side of the source contact

(x = −52 nm) initially slightly decreases but then begins to rise linearly as we move across

the channel towards the left-hand side of the gate at −26 nm. As we move underneath the

gate, the field fluctuates around 4.5× 107 Vm−1 and before rising to a maximum value of

4.92× 107 Vm−1 at the right-hand side of the gate. The field then rapidly decreases as we

move past the gate contact to a minimum of 6.13× 106 Vm−1 before finally rising to a final

value of 3.40× 107 Vm−1 as we approach the left-hand side of the drain at 26 nm.

Finally, Figure 19d shows the average velocity of the electrons in the x-direction (i.e. the

direction of transport) with the position in the channel. As we move across the channel, the

electrons begin to accelerate as they move from the source and pass underneath the gate.

With the two main regions of acceleration corresponding to the two peaks in the x-component

of the electric field (see Figure 19c). They reach maximum velocity at the right-hand side of

the gate after which they sharply decelerate as they enter the right-hand side of the channel

and head towards the drain.
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(a) (b)

(c) (d)

Figure 19: (a) Surface plot of the total electric field across the device structure. (b) Total

electric field against position in the the centre of the device channel at y = −11.5 nm. (c)

x and y components of the electric field across the device channel. (d) average velocity in

the x-direction of the electrons with the position in the channel.

5.3 Results

For our initial investigation we fixed the gate voltage (VG) at 0.7V and the drain voltage (VD)

at 0.5V and ran the spin-transport simulator with 100 000 super-particles, for a total time of

10 ps in time steps of 1 fs. The electron spins in the device were initially randomly polarised

such that there was no net magnetisation. For each time step, the average Bloch vector was

calculated for the electrons contained in 100 evenly spaced slices across the channel. This

entire process was then repeated for three different injected polarisations parallel to the x, y
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and z axes.

Figure 20 show surface plots of the x, y and z components of the magnetization (Sx, Sy and

Sz) for Sx injection in both position and time. From these we can see that the magnetization

vector quickly reaches a steady state in around 2000 fs. Time slices taken at t =8ps for each

of the injection polarizations are given in Figure 21. For Sx injection as expected we see a

high Sx polarization at the source (x =−52 nm) which decreases non-uniformly as we move

across the channel towards the drain. The amount of decay fluctuates as we cross the gate

(x =−26 nm to 0 nm) and then recovers slightly as we reach the drain (x =26nm) leading

to a net magnetization of S = (0.43, 0.12, 0.01).

(a) x component (b) y component

(c) z component

Figure 20: Surface plots in position and time of the x, y and z components of the magneti-

zation for Sx injection.
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(a) Sx Injection (b) Sy Injection

(c) Sz Injection

Figure 21: Time slice at 8 ps showing x, y and z components of the magnetization for

Sx, Sy and Sz injection against position (x) in the device channel. The Error bars show

the standard deviation in the mean over 10 simulation runs.

The case is much the same for both Sy and Sz injections with both showing similar non-

uniform magnetisation decay followed by a recovery at the drain (with Sy injection leading to

a more significant recovery when compared to Sx or Sz). We can also see from the behaviour

of the vector components that as we move across the device, the Bloch vector undergoes a

coherent rotation. This rotation can also be seen in Figure 21b where a marked rise in Sz

accompanies the initial in decay in Sy.

Since there are no external magnetic fields, this rotation (and recovery) must be caused by

spin-orbit coupling as the electrons travel through the channel. The strength of the spin-orbit

coupling is in turn dependant upon the strength of the electric field due to the applied gate
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and source-drain bias. The effect of these voltages on the strength of the Rashba coupling is

straightforward to explain since the value of the Rashba parameter αbr is directly dependant

on the strength of the electric field in the y-direction (see Equation (72) in section 3). A

plot of the calculated value of αbr with the position in the 2D-channel can be seen in Figure

22. As expected αbr is highest in the region underneath the gate (Reaching a peak value

of 39meV Å) due to the high field in the y-direction underneath the gate. Thus we should

see more of a rotation in this region of the channel due to the stronger Rashba coupling.

However, we should also see an increase in the strength of both coupling mechanisms in

this region due to the increased scattering in the presence of the higher electric field. This

will indirectly control the strength of the spin-orbit coupling due to the more substantial

increase in the random changes in the value of the k-vector (which is the ultimate cause of

D’yakanov-Perrel dephasing, see section 2.4.2).

Figure 22: Plot of Rashba parameter αbr against position in the 2D channel.

To help visualise the rotation of the Bloch vector due to the spin-orbit coupling we will

map the Bloch vector onto a new set of axesX ′, Y ′ and Z ′ and use spherical polar coordinates

to describe the relative rotation of each injected state (see Figure 23). The injection direction

is mapped to X ′ while the two orthogonal directions are mapped to Y ′ and Z ′ which in turn

define the azimuth (θ) and elevation (φ) angles.

Figures 24a to 24c show how the average rotation angle for the Sx, Sy and Sz injection

states vary with position. For the Sx injection case (Figure 24a) we can see an increase in

the azimuth angle θ, indicating a rotation of the Bloch vector in the X ′-Y ′ plane from 3.6◦

to maximum of 8.7◦ as we move across the channel (this corresponds to an increase in the

Sy component and a decrease in Sx of the Bloch vector see Figure 23).
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peak of 60◦ around the right-hand side of the gate before rapidly decreasing to a low of −19◦

and before finally recovering slightly to a net rotation of −7.5◦ at the drain.

For the final case Sz (Figure 24c) we see θ steadily decrease from −8◦ at the source to a

low of −89.1◦ at the right-hand side of the gate. This again a rotation in the X ′-Y ′ plane,

in this case corresponding to a decrease in both the Sz and Sy components of the Bloch

vector. However, once the electrons cross the right-hand side of the gate at the rotation

rapidly reveres direction, and θ rises to a maximum of 35.5◦ before finally decreasing to a

net rotation of 12.1◦ at the drain. φ on the other hand slowly increases from 0.1◦ at the

source to around 4◦ before decreasing to a low of −27.1◦ as the electrons pass the right-hand

edge of the gate. The value then quickly recovers to a final net rotation −2.9◦ of at the drain

edge.

(a) Sx Injection (b) Sy Injection

(c) Sz Injection

Figure 24: rotation angles θ and φ vs position in the channel for Sx, Sy and Sz injection.

To help explain the origin of this rotation further, we can calculate the components of the
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Rasha and Dresselhaus spin-orbit coupling Hamiltonians for each electron n in the channel

as:

H
(n)
R = (Tr(HRσx),Tr(HRσy),Tr(HRσz))

= 2αbr(kz, 0,−kx),
H

(n)
D = (Tr(HDσx),Tr(HDσy),Tr(HDσz))

= 2γ〈k2y〉(−kx, 0, kz) (138)

Figure 25 shows the Dresselhaus vectors H
(n)
D (as blue arrows) for all of the electrons at

four different x-positions along the channel for one Monte Carlo run. The average value

is also plotted as a red arrow. For x = −55 nm the field vectors are randomly oriented.

Thus we see a vanishing mean field and the electrons in the slice experience rotations due

to spin-orbit coupling about a randomly oriented axis. For x = −20 nm (corresponding to a

region underneath the gate) there is less spread in the individual field vectors. This leads to

on average a non-vanishing field vector, and thus the rotations are not completely random,

and we instead see a net coherent rotation of the spin ensemble. This effect is further

illustrated by Figure 26 which shows how the average spin-orbit coupling Hamiltonians vary

across the different regions of the device channel. From this, we can see the strength of both

Hamiltonians is lowest in the vicinity of the source and drain contacts. However, the strength

of the Hamiltonians are significantly higher in the region underneath the gate and at the

edges of the three electrodes (corresponding to the high fringe fields in these regions). This

correlation strongly indicates that the amount of coherent rotation experienced is dependant

upon the strength of the electric field.
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5.4 Effects of Voltage variation

The next step in our investigation was to examine the effect on the spin of varying the

applied gate (VG) and source-drain (VSD) Voltages. In theory, a higher gate voltage will

lead to a higher electric field in the channel which will, in turn, increase the spin-orbit

coupling strength in the channel leading to a larger rotation of the Bloch vector at the drain.

Meanwhile, a higher source-drain voltage will affect the direction and length of the Bloch

vector at the drain, since it will increase the x-velocity of the electrons as they move through

the channel. This will indirectly affect the Bloch vector in two ways firstly the higher x-

velocity will decrease the amount of time that the electrons are subjected to the field from

the gate contact (thus reducing the amount of rotation experienced). It will also, however,

have the effect of increasing the amount of scattering due to increased current flow. Thus the

overall length of the Bloch vector will reduce due to the loss of coherence from the increased

random scattering events.

Put together this means that the gate and source-drain voltages could be used as an easy

method for controlling the amount and direction of the Magnetisation observed at the drain

without the use of an external magnetic field.

Gate Voltage Dependence: Figure 27 shows a plot of the total magnetisation (averaged

over ten runs) against the position in the channel for each of the three injection cases at gate

voltages between 0.5 and 0.9V. These were taken after a steady state had been reached at

t = 8ps with a fixed source-drain voltage of 0.9V. For all three cases, we see that the initial

rate of decay is is faster for lower gate voltages (with the Sx case showing the most pronounced

difference). This decreased decay rate is likely due to the increased electric field produced

by the higher gate voltages resulting in the electrons experiencing a higher acceleration. The

electrons thus are spending less time travelling through the device channel and as such are

experiencing fewer scattering events resulting in less spin dephasing as they travel through

the channel. The recovery on the approach to the drain, however, is less straightforward

to explain. For all three injection cases, we see that the amount of magnetisation recovery

appears to have a small dependence on the applied gate voltage.
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(a) Sx Injection (b) Sy Injection

(c) Sz Injection

Figure 27: Total magnetization versus position along the channel after steady-state has

been reached at different gate voltages (VG) and a fixed source-drain voltage (VD) of 0.9V.

Figure 28 shows the total magnetisation vs position in the channel for two voltages

VG = 0.5 and VG = 0.9 with error bars to indicate the standard deviation in the average over

the ten simulation runs (in this case only two voltages were chosen to aid visual clarity).

The standard deviation is generally quite low, indicating a low dispersion in the data from

the mean value. However, the deviation is significantly higher in the centre of the channel.

This increase is due to the electron density being much lower in the centre of the channel

when compared to the left and right-hand sides (see Figure 18c).
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(a) Sx Injection (b) Sy Injection

(c) Sz Injection

Figure 28: Total magnetization versus position along the channel for VG = 0.5 and 0.9V

after steady-state has been reached for a fixed source-drain voltage (VD) of 0.9V. The er-

ror bars show the standard deviation in the mean over 10 simulation runs.

The total magnetization at the drain edge (x = −26 nm), alongside the rotation angles θ

and φ for each applied gate voltage are shown in Figure 29. For the Sx injection case we see

that the magnetisation recovers to between 31−34% of its initial value and that the recovery

increases linearly with applied voltage. However, for the Sy and Sz case the magnetisation

decreases linearly with VG, reaching values of 34− 38% and 17− 21% respectively.

The rotation angles show much the same story whereby for the Sx injection case we see

a linear increase in the azimuth angle (θ) indicating a voltage-dependence on the rotation of

the Bloch vector in the X ′-Y ′ plane (in this case we see an increase the Sy and corresponding

decrease in the Sx components of the Bloch vector). We also see a minimal increase in the
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elevation angle (φ) indicating a smaller voltage dependence on the out of plane Rotation

(i.e. an increase in the Sz component). For Sy injection we see a similar increase in θ (again

voltage dependant X ′-Y ′ rotation but this time corresponding a to decrease in Sy and an

increase in Sx). We also see a similarly small increase in φ (although the actual values at the

drain are much lower indicating that the large out of plane rotation slightly decreases with

applied gate voltage). Finally for the Sz injection we see a linear decrease in θ corresponding

to a voltage-dependent rotation in the X ′-Y ′ plane (increase in Sy with a decrease in Sz)

alongside a similar linear decrease in φ indicating a voltage-dependent rotation out of the X ′-

Y ′ plane ( in this case corresponding to a decrease in Sx). Fitting parameters and adjusted

R2 values for all the interpolation lines are given in Table 4 Appendix B.

(a) Total magnetization (|S|) (b) Azimuth angle (θ)

(c) Elevation angle (φ)

Figure 29: Total magnetization (|S|), azimuth angle (θ) and elevation angle (φ) at the

drain edge (x = 26 nm) as a function of applied gate voltage (VG) for a fixed source-drain

voltage (VD) of 0.9V.
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The voltage dependence on the recovery can be attributed to the difference in the strength

of the spin-orbit coupling experienced by the electrons in the channel due to the difference

in the strength the electric field generated by the gate contact.

Figures 30 shows plots of the total electric field, its x− y components and the estimated

value of the Rashba parameter αbr respectively, with the applied gate voltage and position

in a thin slice across the centre of the channel (located at y = −11.5 nm). From these,

we can see that the Electric field the left-hand side of the gate (x = −26 nm) increases

with increasing applied gate voltage as expected due to the increased contribution from the

y-component (Figure 30c).

(a) (b)

(c) (d)

Figure 30: Electric field (a) and corresponding Rashba coefficient αbr across the device

the channel for various applied gate voltage (VG) for a fixed source-drain voltage (VD) of

0.9V.
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The peak at the right-hand side of the gate, however, is more complicated. Due to the

relatively high source-drain voltage of 0.9V there is a high fringing field at the right-hand

side of the gate this causes a massive peak in the x-component of the field for VG = 0.5V of

6.6× 107 Vm−1 which decreases with increasing gate bias.

Figure 31 shows the average electric field in the y-direction in the region underneath

the gate this appears to increase linearly with the gate bias. Therefore electrons that pass

underneath the gate will on average experience a higher field (and thus stronger spin-orbit

coupling) for a more extended period at higher applied gate voltages.

(a) (b)

Figure 31: Average electric field in the y-direction and corresponding Rashba coefficient

(αbr) in the region of the channel underneath the gate as a function of applied gate voltage

(VG) for a fixed source-drain voltage (VD) of 0.9V.

Source-Drain Voltage Dependence: Figure 32 shows the magnetisation against the

position in the channel for the three different injection cases. The source-drain voltage (VD)

was varied between 0.5 and 0.9V whilst the gate voltage was kept fixed at 0.9V.

82



(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 32: Total magnetization versus position along the channel after steady-state has

been reached for various source-drain voltages (VD) with a fixed gate voltage (VG) of 0.9V.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 33: Total magnetization versus position along the channel for VD = 0.5 and 0.9V

for a fixed Gate voltage (VG) of 0.9V. The error bars show the standard deviation in the

mean over 10 simulation runs.

For all three injection cases, we observe that the magnetization only significantly varies

with applied VD in the region between the gate and the drain (between x = 0 and 26 nm).

This makes physical sense as the electric field experienced by the electrons will be far more

significantly influenced by the source-drain voltage in the region near the drain.

For the Sx and Sy cases (Figures 32a and 32b) we observe a source-drain voltage depen-

dence on both the rate of decay in the magnetisation in the drain region and the recovery

at the drain edge. With higher applied VD leading to faster decay and a lower drain-edge

recovery. However, the Sz case appears to show no source-drain voltage dependence for the

rate of decay or the final value at the drain.
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Figure 33 shows the total magnetisation vs position in the channel for two voltages

VD = 0.5V and VD = 0.9V with error bars to indicate the standard deviation in the average

over the ten simulation runs (in this case only two voltages were chosen to aid visual clarity).

The standard deviation is generally quite low, indicating a small dispersion in the data from

the mean value. However, we can also see that the standard deviation is significantly higher

in the centre of the channel. This increase is due to the electron density being much lower in

the centre of the device channel when compared to the left and right-hand sides (see Figure

18c).

The total magnetisation at the drain edge (x = 26 nm), alongside the rotation angles θ

and φ for each applied source-drain voltage, are shown in Figure 34a. For both the Sx and

Sy cases we see that the magnetisation recovery decreases linearly with VD, reaching between

41 and 34% of the initially injected value. Conversely, the Sz case shows no VD dependence

on the recovery with the final values fluctuating around 17% regardless of applied VD.

The rotation angles (Figure 34b and 34c) also appear to show a similar dependence on

VD. The Sx and Sy cases show θ linearly decreasing from 23◦ to 22◦ and 21.5◦ to 19.7◦

respectively. φ also decreases linearly with applied voltage from 3.8◦ to 0.5◦ for Sx and

−10.1◦ to −13.2◦ for Sy. The Sz case, however, indicates a small linear increase from −6.1◦

to −5.2◦ with applied voltage for φ and shows a highly non-linear voltage dependence for θ

(with a very close fit obtained from a cubic polynomial). Fitting parameters and adjusted

R2 values for all the interpolation lines are given in Table 5 Appendix B.
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(a) Total magnetization (|S|) (b) azimuth angle (θ)

(c) elevation angle (φ)

Figure 34: Total magnetization (|S|), azimuth angle (θ) and elevation angle (φ) at the

drain edge (x = 26 nm) as a function of applied gate voltage (VG) for a fixed source-drain

voltage (VD) of 0.9V.

Once again the voltage dependence on the recovery can be attributed to the difference

in the strength of the spin-orbit coupling experienced by the electrons in the channel only

this time due to the difference in the strength the electric field generated by the drain bias.

Figure 35 shows plots of the total electric field, its x− y components and the estimated

value of the Rashba parameter αbr respectively, with applied source-drain voltage and posi-

tion in a thin slice across the centre of the channel. From these, we can see that the total

Electric field rises slightly at the left-hand side of the gate with increasing VD but then

sharply decreases at the right-hand side. The decrease on the left-hand side is due to the
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slight change in the height of the central peak in the y-component of the field (Figure 35c).

Whilst the increase on the right-hand side is due to the increasing source-drain bias causing

an increase in the right-hand peak of the x-component of the field (Figure 35d). The lower

peak in the y-component also leads to a small decrease in both the average electric field and

the corresponding Rashba coupling strength in the region underneath the gate as shown in

Figures 36a and 36b.

(a) (b)

(c) (d)

Figure 35: Total electric field, x − y components and corresponding Rashba coefficient

αbr across the device the channel for various applied source-drain voltages (VD) for a fixed

gate voltage (VG) of 0.9V.
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(a) (b)

Figure 36: Average electric field in the y-direction and corresponding Rashba coefficient

(αbr) in the region of the channel underneath the gate as a function of applied source-drain

voltage (VD) for a fixed gate voltage (VG) of 0.9V.

6 Effects of Strain and Lattice Temperature

6.1 Strain Effects

We next investigated the effects of mechanical strain applied to the device channel. Strain

alters both the symmetry of the bulk crystal and the interband energies E0, E1,∆0 and ∆1

thus applied strain will alter the amount of both the Dresselhaus and Rashba coupling.

Therefore, by carefully controlling both the amount and direction of the applied strain we

have a potential means to control both the amount of spin-orbit coupling in the channel and

the magnetisation observed at the drain.

Although we could in principle consider the effects of both tensile and compressive strain

in our model, we will only consider the compressive strain. This is because tensile strain

applied to the channel will reduce the electron mobility by increasing the effective mass in

the X-valley and increasing the rate of electron scattering with phonons, interface roughness

and ionised impurities [70, 74]. This will result in slower transport across the channel, and

as such we would expect to see an increase in the spin relaxation suppressing the observed

spin recovery.

To account for the effects of mechanical strain on the spin-orbit coupling, we will need
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to modify our k · p approach outlined in chapter 2 to include the impact of compressive

strain on the bandstructure (and ultimately the obtained values of α0 and γ). To this end

we follow the method laid out by Pikus and Bir [57] consisting of adding an extra term to

each element of the unstrained Hamiltonian H0, created by replacing kxky (and it’s circular

permutations) with the component of the strain tensor ǫxy and the Luttinger parameters

with deformation potentials.

To obtain the strain tensor for compressive strain in the [001],[110] and [111] directions

we first took a small change in the lattice spacing as of between 0% and 4% of the un-

strained lattice constant a0. The strain parallel (e‖) and perpendicular (e⊥) to the applied

force can then be calculated as:

e‖ =
as
a0

− 1

e⊥ = −D[hkl]e‖,

where h,k and l are miller indices for the direction of the strain. The co-efficient D[hkl] for

the three considered directions is given by

D[001] =
2C12

C11

(139a)

D[110] =
C11 + 3C12 − 2C44

C11 + C12 + 2C44

(139b)

D[111] =
2C11 + 4C12 − 4C44

C11 + 2C12 + 4C44

, (139c)

where C11, C12 and C44 are material dependant elastic constants.

This then allows us to calculate the 3× 3 strain tensor e[hkl] as

ǫ[001] =







e1 0 0

0 e1 0

0 0 e1






, (140a)

ǫ[111] =







e2 e3 e3

e3 e2 e3

e3 e3 e2






, (140b)

ǫ[110] =







e4 e5 0

e5 e4 0

0 0 e1






, (140c)
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where

e1 = e‖, (141a)

e2 =
1
3
(e⊥ + 2e‖), (141b)

e3 =
1
3
(e⊥ − e‖), (141c)

e4 =
1
2
(e⊥ + e‖), (141d)

e5 =
1
2
(e⊥ − e‖). (141e)

Thus we can now finally calculate the total system Hamiltonian H = H0 +Hǫ, where H0

is the unstrained Hamiltonian for the 14 band extended Kane system described in section

3.4 and the corresponding strain Hamiltonian Hǫ is given by [57, 75]

Hǫ =







Hcǫ Hcvǫ 02×6

Hvcǫ Hvǫ 06×6

06×2 06×6 06×6






, (142)

where Hvcǫ = H†
cvǫ.

Setting

Aǫ = ac(ǫxx + ǫyy + ǫzz), Dǫ = −av(ǫxx + ǫyy + ǫzz),

Gǫ = −b(ǫxx + ǫyy − 2ǫzz)/2, Sǫ = −d(ǫxz − iǫyz),

Rǫ =
√
3
2
b(ǫxx − ǫyy)− idǫxy, v = P0√

6

∑

j

(ǫxj − iǫyj),

u = P0√
3

∑

j

ǫzj,

we have

Hcǫ =

(

Aǫ 0

0 Aǫ

)

, Hcvǫ =

(√
3v† −

√
2u −v 0 −u −

√
2v

0 v† −
√
2u −

√
3v

√
2v† u

)

Hvǫ =
















(Dǫ +Gǫ) 0 −Sǫ Rǫ − Sǫ√
2

√
2Rǫ

0 (Dǫ +Gǫ) R†
ǫ S†

ǫ −
√
2R†

ǫ − S†
ǫ√
2

−S†
ǫ Rǫ (Dǫ −Gǫ) Sǫ −

√
2Gǫ

√
3
2
Sǫ

R†
ǫ Sǫ S†

ǫ (Dǫ −Gǫ)
√

3
2
S†
ǫ

√
2Gǫ

−S†
ǫ√
2

−
√
2Rǫ −

√
2G†

ǫ

√
3
2
Sǫ Dǫ −∆0 0

√
2Rǫ

−Sǫ√
2

√
3
2
S†
ǫ

√
2G†

ǫ 0 Dǫ −∆0
















.
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It should be noted however, that the influence of strain on the two highest p-type con-

duction bands (labelled Γ7c and Γ8c in our notation) is currently unknown. Thus the p-type

conduction band hydrostatic deformation potential (aΓ7c and aΓ8c ) and p-type CB shear

deformation potential (bΓ7c and bΓ8c) have been neglected.

Figure 37 shows four plots near the Γ point for the: Γ6c(conduction), Γ8v (Light/Heavy

hole) and Γ7v (split off) bands at the bottom of the considered In0.3Ga0.7As quantum well

with compressive strain in the [001],[110] and [111] directions, equivalent to a 4% lattice

mismatch. From this, we can see that all the bands shift with applied strain, with the

amount begin dependant on the direction. Both the Γ7v (Split-off) and the Γ6c (conduction)

bands decrease in energy while the Γ8v doublet breaks its degeneracy at the Γ point, with

the light hole band decreasing and the heavy hole band increasing in energy.

Using these calculations we extracted the new inter-band energies for the strained system

E ′
0, E

′
1,∆

′
0 and ∆′

1. Which we then substituted into equations (72) and (73) to calculate the

spin-orbit parameters α0 and γ as a function of applied strain. These were then finally

used in the main Monte Carlo simulations to investigate the spin dynamics as a function of

applied strain.
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(a) Γ6c (Conduction Band) (b) Γ8v (Light Hole)

(c) Γ8v (Heavy Hole) (d) Γ7v (Split off)

Figure 37: Calculated band energies near the Γ point at the bottom of the considered

In0.3Ga0.7As quantum well with compressive strain in the [001],[110] and [111] directions

equivalent to a 4% lattice mismatch.

The obtained values of γ and the average value of αbr as a function of applied strain in

the [001],[110] and [111] directions are shown in Figures 38 for VG = 0.9V and VD = 0.9V .

As we can see the spin-orbit coupling coefficients both increase non-linearly with applied

strain due to the change in the energy gap at the gamma point, E0, between the Γ6c and Γ7v

bands.
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no significant dependence. Figure 41b shows a non-linear increase in the azimuthal angle θ

with the applied strain in all three directions. Finally, Figure 41c shows the elevation angle

only fluctuates around 1◦ for strain in all directions, suggesting φ is not significantly affected

by strain.

(a) Strain in [001] direction. (b) Strain in [110] direction.

(c) Strain in [111] direction.

Figure 39: Magnetization along the device channel vs. strain ranging from 0 − 4% for

three different strain directions, taken after a steady state was reached at t = 8ps for x-

injection with VG = 0.7V, VD = 0.5V.
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(a) Strain in [001] direction. (b) Strain in [110] direction.

(c) Strain in [111] direction.

Figure 40: Magnetization along the device channel vs. strain equivalent to a lattice mis-

match of 0%, 2% and 4% for three different strain directions, with VG = 0.7V, VD = 0.5V.

The error bars indicate the standard deviation in the mean over 10 simulation runs.
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(a) Total Magnetization (b) Azimuthal angle

(c) Elevation angle

Figure 41: Steady state magnetization showing total magnetization (a), and azimuthal (b)

and elevation angle (c) at drain as a function of strain along different axis (x-injection,

VG = 0.7V,VD = 0.5V) with non-linear spline fits shown by lines to serve as a guide to the

eye in elucidating trends in the data.

6.2 Temperature effects

The next step in our investigation was to study the effects of lowering the lattice temperature

T . We expect the temperature to affect the magnetisation at the in two distinct ways. Firstly

lowering the temperature will decrease the number of scattering events as the electrons travel

through the channel, this will, in turn, decrease the amount of decay in the magnetisation

leading to a higher net magnetisation at the drain. The second effect is due to both the

Rashba and Dresselhaus coupling decreasing with temperature. This effect has been well

studied for GaAs [76, 77] and is attributed to the temperature dependence of the lattice
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constant a0 leading to a increase in the band energies E0, E1,∆0 and ∆1 with decreasing

temperature, which leads to a change in the Dresselhaus and Rashba parameters αbr and

γ. It should be noted at this stage however that due to a still unresolved bug in the Fermi-

Dirac integral solver used in the main Monte Carlo engine we were unable to simulate lattice

temperatures below 85K reliably. Thus our work will focus on the spin-dynamics between

85K and 300K.

The temperature dependence of the band-gap energies for GaAs has been investigated ex-

perimentally [77, 78] from which the following generic functional relation for the temperature

dependence of the band energies Eg(T ) has been proposed.

Eg(T ) = Eg0 − αB

(

1 +
2

e
θ
T − 1

)

, (143)

where T is the lattice temperature and the parameters Eg0, αB and θ are obtained by fitting

to experimental data. It was then latter shown by [77] that the Kane parameters P0 P1 also

have a small temperature dependence of the same form as Equation (143).

The temperature dependence for InAs (and by extension InGaAs) however, is not as well

documented in the literature with only limited experimental data for the fitting parameters θ

and αB being published for the inter-band energies [79, 80] and no data on the dependence of

the Kane parameters P0 and P1. Thus more data will be needed to make more accurate pre-

dictions for low-temperature spin transport. However, our work is still useful for elucidating

trends in the data and examining the general effects of temperature on the magnetisation.

The fitting parameters used to calculate the band energy dependence are listed in Table 3

and for this work, we have assumed P1 and P0 to be temperature independent for InAs due

to the lack as mentioned earlier of available data.

Figure 42 shows how the Dresselhaus (γ) and Rashba (αbr) coefficients vary with lattice

temperature. From this, we can see that as expected both coefficients increase non-linearly

due to the changes in the inter-band energies, with both varying cubically.
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Parameter GaAsa InAs In0.3Ga0.7As

Eg0(eV) αB(meV) θ(K) Eg0(eV) αB(meV) θ(K) Eg0(eV) αB(meV) θ(K)

E0 1.571 57 240 0.414b 28.10b 147b 1.224 48.30 212.10

E1 4.456 59 323 4.453c 41.00c 262c 4.455 53.60 304.70

E0 +∆0 1.907 58 240 0.807b,d 28.10b,d 147b,d 1.577 49.03 212.10

E1 +∆1 4.659 59 323 4.936e 64.00e 159e 4.742 60.50 273.80

2P 2
0 /~

2 30.58 1040 240 - - - - - -

2P 2
1 /~

2 8.84 1040 240 - - - - - -

a. obtained from reference [77]

b. obtained from reference [80]

c. obtained from reference [81]

d. Due to lack of data this was assumed to have the same dependence as E0

e. obtained from reference [79]

Table 3: Fitting parameters Eg0, θ, and αB used to obtain the temperature dependant

band energies and Kane parameters. Note: we have assumed that P1 and P0 are temper-

ature independent for InAs and that E0 + ∆ has the same temperature dependence as E0

due to the aforementioned lack of available data.

(a) Dresselhaus coupling (b) Rashba coupling

Figure 42: Temperature dependence of Dresselhaus (γ) and Rashba (αbr) coefficients be-

tween 4 and 300K. The Rashba coefficient was estimated using an average electric field of

4.219× 107Vm−1 corresponding to VG = 0.7V, VD = 0.5V. The dark green lines are cubic

fits to the data.

Figure 43 shows the total magnetization against position in the device channel using
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Sx, Sy and Sz injection for various lattice temperatures between 85K and 300K. For all

three injection cases, we see as expected a higher rate spin of decay as the electrons move

across the device due too the increased scattering rates and SOC coefficients. We also see

a large decrease in the recovery at the drain edge with decreasing temperature, with all

three injection directions losing approximately 13.1% of the total magnetisation over the

temperature range considered.

(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 43: Total magnetization versus position along the channel after steady-state has

been reached for temperatures of 85K to 300K with VG = 0.7V and VD = 0.5V.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 44: Total magnetization versus position along the channel for T= 85, 150 and

300K with VG = 0.7V and VD = 0.5V. The error bars indicate the standard deviation

over 10 simulation runs.

Figure 44 shows the total magnetization against position in the device channel for 85, 150

and 300K once again we see that the standard deviation is generally quite low (indicating

low dispersion from the mean) but rises in the centre of the channel due to the lower number

of electrons in that region of the device.

Figure 45a shows the magnetisation at the drain for all three injection cases. From this,

we can see the decrease appears linear and has a similar gradient for all three cases. This

indicates that the change in scattering rate (which is the same for all three cases) may have

more of an impact on the magnetization recovery than the change in the spin-orbit coupling

strength, given that due to the nature of the Hamiltonian the effects of αbr and γ on Bloch
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vector S depend upon the injection direction, and therefore one would expect to see a change

with temperature that is different for each injection case.

(a) Total Magnetization (b) Azimuthal angle

(c) Elevation angle

Figure 45: Steady state magnetisation showing total magnetisation (a), and azimuthal (b)

and elevation angle (c) at drain as a function of temperature for VG = 0.7V and VD =

0.5V with linear regression fits to show trends in the data.

For all three injection cases we also a linear increase in the azimuth angle (θ) the change

appears largest for Sz injection showing increased rotation in the Z − Y plane from 9.14◦

at 85K to 18.64◦ at 300K, with the Sx and Sy cases showing much smaller increases of

14.22 − 18.92◦ and 12.29 − 15.23◦ respectively. The elevation angle φ however, behaves

differently. For the Sy case we see a linear decrease from −6.03 to −10.22◦ (a rotation

into the X − Y plane in the +Z direction) whereas Sx and Sz show almost no change with

temperature, hovering around 1.5◦ and −1.99◦ respectively. Fitting parameters and adjusted
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7.1 Gate Length (XGG)

Figure 47 shows how the total magnetization across the channel varies with gate length for

Sx,Sy and Sz polarized spin injection. For all three cases the shape of the Magnetization

decay appears similar although the centre of the curve around the region of the gate is

elongated as expected. The Magnetization recovery also appears essentially unchanged with

only minor variations which are within the variance between simulation runs.

Figure 48 shows the magnetisation curves for 25, 35 and 45 nm with error bars indicating

the standard deviation in the mean over ten simulation runs. From this we can see that

the standard deviation is highest in the centre of the channel and lower towards the left

and right-hand sides due to the much higher electron densities around the source and drain

contacts (see Figure 18c). Overall, however, the standard deviation is relatively small across

the channel indicating that the dispersion from the mean is very low.

The magnetisation at the drain is shown Figure 49a. From this we can see that the

variation in magnetization between 25 nm and 45 nm is very small with: Sy injection seeing

a small linear increase from 47.6% at 25 nm to 49.7% at 45 nm, Sz increasing linearly from

28.4% to 30.3% and Sx remaining at 46.6%.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 47: Total magnetization versus position along the channel after steady-state has

been reached for gate lengths of 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 48: Total magnetization versus position along the channel for XGG = 25, 35 and

45 nm after steady-state has been reached with VG = 0.7V and VD = 0.5V. The error bars

show the standard deviation in the mean over 10 simulation runs.

In contrast however, the azimuth and elevation angles for the Sy and Sz cases do show

some different behaviour. For Sy the elevation angle φ decreases linearly from −6.08◦ to

−8.69◦ indicating a average decrease in the Sz component due to rotation out of the X − Y

plane in the −Z direction. For Sz φ increases linearly from −4.02◦ to −2.57◦. In this case

indicating an increase in the Sx component due to rotation out of the Z − Y plane in the

+X direction. The azimuth angle however, only increases for Sz injection going from 9.8◦

to 14.1◦. Fitting parameters and adjusted R2 values for all the interpolation lines are given

in Table 7 Appendix B.

105



(a) Total Magnetization (b) Azimuthal angle

(c) Elevation angle

Figure 49: Steady state magnetization showing total magnetization (a), and azimuthal (b)

and elevation angle (c) at drain as a function of gate length for VG = 0.7V and VD = 0.5V

with linear regression fits to show trends in the data.

Figure 50 shows how the electric field and Rashba co-efficient αbr vary across the device

channel. As expected the Electric field (and hence the strength of αbr) spreads out and

reaches a higher maximum with increasing gate length. These two factors lead to an increase

in the average Rashba coupling shown in Figure 51 which appears to fit well with a quadratic

interpolation (magenta line) with an adjusted R2 of 0.911.
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(a) x-component of electric field across the

channel

(b) y-component of electric field across the

channel

(c) Total electric field across the channel (d) Rashba Coefficient across the channel

Figure 50: Electric field and Rashba coefficient αbr versus position along the channel for

Gate Lengths of 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.
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Figure 51: Average αbr in the region underneath the gate with increasing gate length the

magenta line represents a quadratic interpolation.

Finally, Figure 52 shows the average velocity of the electrons in the x-direction with

the position in the channel. As before we see two main asymmetric regions of acceleration

corresponding to the two peaks in the x-component of the electric field at the left and right

edges of the gate contact (see Figure 50a). As expected the distance between the acceleration

peaks increases with increasing gate length, however, the maximum velocity decreases.

Figure 52: Average velocity of the electrons in the x direction with position in the channel

for gate lengths of 25 nm to 45 nm. For VG = 0.7V and VD = 0.5V
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7.2 Left Spacer Length (XGL)

Figure 53 shows how the total magnetisation varies across the device channel for three differ-

ent injection directions. From this, we can see that the amount of decay slightly increases in

the region between the source and the gate with increasing XGL for all three injection cases.

This is not unexpected since the electrons are spending more time in the channel and thus

experiencing more scattering events which will lead to increased spin dephasing. We also see

the magnetisation at the drain edge increase with XGL for all three injection cases. Figure

54 shows three curves for 25,35 and 45 nm (chosen to aid visual clarity) with error-bars rep-

resenting the standard deviation in the mean over 10 simulation runs. Like in all previous

cases the standard deviation is minimal in the regions of the source and drain indicating a

low dispersion from the mean in these regions. However, the standard deviation increases as

we move through the centre of the channel due to the lower electron concentration in this

region during the time slice (see Figure 18c).
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 53: Total magnetization versus position along the channel after steady-state has

been reached for XGL between 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 54: Total magnetization versus position along the channel for select values of XGL

after steady-state has been reached with VG = 0.7V and VD = 0.5V. The error bars

indicate the standard deviation over 10 simulation runs.

Figure 55a shows the magnetisation at the drain. For all three injection cases, we see an

increase in Magnetisation with XGL which fit nicely with linear regression. The Sx and Sz

cases increase from 46.6% to 54.1% and 28.5% to 35.4% respectively with the same gradient

of 0.0036. The Sy injection meanwhile increases from 47.7% to 53.3% with a slightingly lower

gradient of 0.0027.

The Azimuthal(θ) and elevation (φ) at the drain are shown in Figures 55b and 55c. For

θ we see a linear decrease with increasing XGL for all three injection cases with: Sx going

from 15.41◦ to 12.57◦ (rotation from Y to X), Sy going from 13.11◦ to 11.12◦ (rotation from

X to Y ) and Sz going from 9.74◦ to 8.17◦ (rotation from Y to Z). φ however, shows no
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significant change with increasing XGL with: Sx staying at around 2◦, Sy at around −5.8◦

and Sz at around −4◦.

The individual adjusted R2 values and parameters used for the fitted lines in Figure 54

are given in Table 8 in Appendix B.

(a) Total magnetisation (b) Azimuthal angle

(c) Elevation angle

Figure 55: Steady state magnetisation showing total magnetisation (a), and azimuthal (b)

and elevation angle (c) at drain as a function of XGL for VG = 0.7V and VD = 0.5V with

linear regression fits to show trends in the data.

Finally, Figure 56 shows a plot of the average x-velocity of the electrons against the

position in the channel. Once again we see two main regions of acceleration corresponding

to the two peaks in the x-component of the electric field at the left and right-hand sides

of the gate contact. The maximum velocity at the right-hand edge of the gate (x = 0)

increases with increasing XGL. This is because the electrons will accelerate faster in the
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shorter distance between the source and the gate and as a result, will gain kinetic energy

more quickly. However, this will cause increased phonon emission which will cause the

electrons to lose kinetic energy resulting in a reduction in the maximum velocity.

Figure 56: Average velocity of the electrons in the x direction with position in the channel

for left spacer lengths (XGL) of 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.

7.3 Right Spacer Length (XGR)

Figure 57 shows how the total magnetisation across the device varies with right spacer

length (XGR) for three different injection directions. As expected we initially see similar

amounts of decay as the electrons move from the source (x = −42 nm) towards the left-hand

side of the gate (x = −26 nm). For all three injection cases, however, we see a decreased

amount of decay as the electrons travel across the gate followed by an increased amount

of recovery at the drain with increasing XGR. Figure 58 shows three selected curves (once

again chosen to aid visual clarity) representing the 25, 35 and 45 nm spacer lengths with the

corresponding standard deviation in the mean over ten simulation runs. Like in all previous

cases the standard deviation is minimal in the regions of the source and drain indicating a

low dispersion from the mean in these regions. However, the standard deviation increases as

we move through the centre of the channel due to the lower electron concentration in this

region during the time slice (see Figure 18c).
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 57: Total magnetization versus position along the channel after steady-state has

been reached for XGR between 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.
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(a) Sx injection (b) Sy injection

(c) Sz injection

Figure 58: Total magnetization versus position along the channel for select values of XGR

after steady-state has been reached with VG = 0.7V and VD = 0.5V. The error bars

indicate the standard deviation over 10 simulation runs.

Figure 59a shows the magnetisation at the drain edge for each injection case. For the

case of Sx-injection, we see virtually no increase with increasing XGR, with the magnetisation

hovering around 45.5%. We do, however, see small linear increases for both the Sy and Sz,

from 45.7% to 47.7% and 26.9% to 29.8%.

Figures 59b and 59c show the azimuth and elevation angles at the drain. For θ we see

virtually no change for Sx injection with the value staying around 16◦. Sy injection shows a

small linear decrease from 13.79◦ to 12.29◦ (indicating rotation from X to Y ) while the Sz

injection shows a linear increase from 11.26◦ to 13.72◦ (indicating rotation from Z to Y ).

φ shows a small linear increase for all three injection cases from 1.99◦ to 3.76◦ for Sx
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(rotation out of the X − Y plane in the +Z direction), −7.28◦ to −5.87◦ for Sy (rotation

into the Y − X plane in the +Z direction) and −4.41◦ to −2.28◦ for Sz(rotation into the

Z − Y plane in the +X direction). Fitting parameters and adjusted R2 values for all the

interpolation lines used in Figure 59 are given in Table 9 Appendix B.

(a) Total Magnetization (b) Azimuthal angle

(c) Elevation angle

Figure 59: Steady state magnetization showing total magnetization (a), and azimuthal (b)

and elevation angle (c) at drain as a function of XGR for VG = 0.7V and VD = 0.5V with

linear regression fits to show trends in the data.

Finally, Figure 60 shows a plot of the average x-velocity of the electrons against the

position in the channel. Much like the previous cases we see two main regions of acceleration

corresponding to the two peaks in the x-component of the electric field at the edges of the

gate. The final velocity at the drain, however, is more complex to explain. This velocity is

highest for 25 nm and decreases for 30 nm but then slightly increases for 35, 40 and 45 nm.

This effect due to the acceleration of the electrons as they approach the drain. Initially,
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the electrons decelerate due to scattering, the rate of which increases with increasing XGR.

They then begin to accelerate as they approach the drain. However, because the electrons

will accelerate faster when the distance between the gate and drain is shorter, they will gain

kinetic energy more quickly. As a consequence, however, the rate of phonon emission will

increase causing the electrons to lose kinetic energy resulting in a reduced the maximum

velocity. This effect is not noticeable in the 25 and 30 nm cases since the initial deceleration

rate was lower and therefore the electrons had a higher velocity when they began to accelerate

and thus a higher velocity at the drain edge.

Figure 60: Average velocity of the electrons in the x direction with position in the channel

for right spacer lengths (XGR) of 25 nm to 45 nm with VG = 0.7V and VD = 0.5V.
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8 Conclusion

Our ensemble Monte Carlo device simulations of electron spin transport through a realistic 25

nm gate length In0.3Ga0.7As MOSFET show that the total magnetization and its orientation,

represented by the length and direction of the Bloch vector associated with the spin degrees

of freedom can be controlled via the applied gate bias (and to a lesser extent the source-

drain bias). With higher applied gate voltages leading to increased magnetisation decay and

a stronger coherent rotation of the Bloch vector from its initial state.

Previous work in this area has been based on micron-sized devices [17, 18, 19, 20, 16].

Although the range of observed rotation angles is much lower when compared to these

devices, we can still see significant magnetisation dependent modulations in the drain current

which are potentially observable at room temperature. Furthermore, we have observed an

unreported recovery of the magnetisation in the region between the gate and drain contacts.

This effect appears to be a spin-refocusing effect (similar to that which occurs in nuclear

magnetic resonance) caused by the high field in the region underneath the gate. If observed

experimentally, this effect could be exploited by future devices to mitigate some of the loses

in magnetization over long distances due to decay.

Our investigations into the effects of mechanical strain show that the amount of applied

mechanical strain does influence the spin transport. Increasing the amount of strain leads to

a decrease in the magnetisation decay across the channel, with the amount being dependent

upon the direction in which the strain is applied. We also observe a coherent rotation in the

magnetisation vector due to spin-orbit coupling. In this case, the azimuthal rotation angle

exhibits a non-linear increase with strain for all strain directions.

We next studied the effect of the lattice temperature. As expected we saw a decrease in

the magnetisation decay across the device channel as a result of both the reduced rate of

electron scattering and the reduced strength of the Dresselhaus and Rashba coefficients. We

also saw an increase in the magnetisation at the drain edge, with decreasing temperature

which was constant regardless of the injection direction.

However, our work was limited, this time due to technical issues caused by an as yet

unresolved bug in the Fermi-Dirac integral solver which prevented reliable device simulations

below 85K. These problems, however, are much less of a concern since information in the

literature on how the bandstructure changes with temperature for many semiconductors is

still lacking (most notably in our case InAs). Thus our ability to make accurate predictions
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at these temperatures is limited.

Finally we investigated the impact of channel length on the spin, Specifically varying the

length of the gate region XGG, the distance between the source contact and the gate XGL

and the distance between the gate and drain contact XGR.

Varying the gate length showed as expected an increased rate of decay in the region of

the gate but only a small dependence for the magnetisation recovery at the drain edge in

the Sy and Sz injection cases, with no change seen for the Sx injection.

The rotation angles also show a similar story with Sy and Sz injection cases indicating a

small net rotation from z to y and the Sx injection showing no significant net rotation.

Changing the length of the left spacer led to a slightly increased magnetisation decay

across the device channel, with the effect being more significant for the Sy and Sz injection

cases. All three injection cases also showed a linear increase in the magnetisation at the

drain and a linear decrease in the azimuthal angle θ.

Changing the length of the right spacer showed no significant changes to the decay across

the device and only small increases to the magnetisation at the drain for the Sy and Sz

injection cases.

Overall our simulation results for changing the channel lengths are somewhat unexpected

and confusing. Given we would expect to see a decay in the magnetisation at the drain

edge, in particular for the gate length due to the increased area within the high Electric

field. However, our results seem to show the length has little to no effect. These types of

simulation, however, a quite complex (in particular the various scattering mechanisms that

are incorporated). Thus more work will be needed to gather more data and understand the

precise mechanisms at play.

In conclusion, we have augmented an advanced 2D, finite element, Monte Carlo simulation

of a 25 nm gate length In0.3Ga0.7As MOSFET. We observe a significant and previously

unreported magnetisation recovery in the region of the channel between the gate and drain.

We demonstrated the potential to control the spin degrees of freedom via the applied gate

bias (and to a lesser extent the source-drain bias) and showed how the magnetisation decay

(and recovery) varies with lattice temperature, compressive strain and channel length.

Future work could potentially look into the role of spin-injection and detection which

were absent from this work since we did not wish to limit the scope of the simulation results
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by considering specific injection and detection mechanisms. However, in practice, these

issues play an essential role. In particular, the possibility of room temperature operation

will depend on whether we can achieve sufficiently high injection and detection efficiencies

to measure the predicted changes, which may be challenging if these changes are small.

One could also look into different transistor architectures (e.g. HEMT’s) or materials

with alternative spin properties such as Si, in which the spin-orbit coupling is much weaker

such that the Elliott-Yafet mechanism is the dominant form of spin relaxation at room

temperature. Si is also a material that has seen much attention for spintronics in recent

years [82] due to its extensive use in conventional semiconductor technology making it an

attractive option for future commercial applications. Alternatively, one could look into GaN

which has higher mobility, a higher density of states and lower spin-orbit interaction when

compared to GaAs and is predicted to have a spin lifetime that is about three orders of

magnitude longer than GaAs [83].

Another exciting avenue would be investigating single spins trapped in quantum dots

and the potential to measure control the precise spin-state of such electrons to gain a greater

understanding of the core physics involved. There is also the potential to continue the work

on the low-temperature dependence by investigating the effects of ultra-low temperatures

(less than 4K) a regime very different to room temperature in which could lead to some

exciting new physics.

120



References

[1] S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Applied Physics

Letters, vol. 56, no. 7, pp. 665–667, 1990.

[2] S. Sugahara and M. Tanaka, “A spin metal–oxide–semiconductor field-effect transis-

tor using half-metallic-ferromagnet contacts for the source and drain,” Aplied Physics

Letters, vol. 84, no. 13, pp. 2307–2309, 2004.

[3] W. Y. Choi, H. Kim, J. Chang, S. H. Han, H. C. Koo, and M. Johnson, “Electrical

detection of coherent spin precession using the ballistic intrinsic spin hall effect,” Nat

Nano, vol. 10, no. 8, pp. 666–670, 2015.

[4] S. Bandyopadhyay and M. Cahay, “Alternate spintronic analog of the electro-optic

modulator,” Applied Physics Letters, vol. 85, no. 10, p. 1814, 2004.

[5] J. Wunderlich, A. C. Irvine, and J. Sinova, “Spin-injection hall effect in a planar pho-

tovoltaic cell,” Nature Physics, vol. 5, p. 675, 2009.

[6] J. Wunderlich, B. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotova, P. Nemec, V. Novak,

J. Sinova, and T. Jungwirth, “Spin hall effect transistor,” Science, vol. 330, p. 1801,

2010.
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A 8× 8 and 14× 14 Kane Hamiltonians

This appendix contains the explicit forms of the matrix blocks used to create the H8×8 and

H14×14 bulk matrix Hamiltonians used in the Kane and extended Kane models discussed in

sections 3.1 and 3.2 of the main text. Where H8×8 and H14×14 are defined as

H8×8 =

(

Hc Hcv

Hvc Hv

)

H14×14 =


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


Hc Hcv Hcc′

Hvc Hv Hvc′
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
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Hcc′ =
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and k± = kx ± iky.

The Kane parameters P, P1, Q and ∆− are defined in sections 3.1 and 3.2 whilst the

Energies E0, E1,∆0 and ∆1 are defined in table 1 of section 3.2. Finally Hc′c and Hc′v are

obtained by the transposition of Hcc′ and Hvc′ , respectively, with the following substitutions:

k± → k∓, P1 → −P1, Q→ −Q and ∆− → −∆−
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B Fitting Parameters for ”drain edge” plots

This appendix contains the fitting parameters for the plots of the polar angles (θ and φ) and

the Total Magnetisation (|S|) at the left hand side of the drain contact. These plots were

used throughout chapter 5 and cover the effects of varying: The gate voltage (VG), source-

drain voltage (VD), lattice temperature (T ), the Gate length (XGG) and the Left/right spacer

lengths (XGL and XGR). All the parameters were obtained using the Matlab curve fitting

tool box.

B.1 Gate Voltage (VG)

Injection P1 P2 R2 Adjusted R2

|S| Sx -0.4349 (-0.06122, -0.02576) 0.3834 (0.3707, 0.396) 0.9531 0.9375

Sy -0.09915 (-0.1179, -0.08042) 0.4274 (0.4141, 0.4408) 0.9895 0.9861

Sz -0.1137 (-0.1315, -0.096) 0.2762 (0.2635, 0.2888) 0.9928 0.9905

θ Sx 26.15 (16.58, 35.72) -1.047 (-7.882, 5.788) 0.9618 0.9491

Sy 22.04 (15.68, 28.41) -0.152 (-4.696, 4.392) 0.9759 0.9679

Sz -7.723 (-13.75, -1.698) 29.55 (25.24, 33.85) 0.8473 0.7963

φ Sx 2.977 (1.499, 4.456) -1.791 (-2.847, -0.7355) 0.9319 0.9092

Sy 5.062 (1.506, 8.618) -17.98 (-20.52, -15.45) 0.8725 0.8299

Sz -11.56 (-20.16, -2.952) 6.303 (0.1575, 12.45) 0.8589 0.8119

Table 4: Fitting parameters for figure 29 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain contact

against applied Gate Voltage (VG). All the curves are fit to a linear polynomial model

with y = P1x + P2. The values in brackets are the 95% confidence bounds for the speci-

fied parameter.
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B.2 Source-Drain Voltage (VD)

Injection P1 P2 R2 Adjusted R2

|S| Sx -0.1449 (-0.1703, -0.1195) 0.4748 (0.4567, 0.4929) 0.991 0.988

Sy -0.1252 (-0.1525, -0.09783) 0.4536 (0.4341, 0.4731) 0.9861 0.9814

Sz -0.04425 (-0.08532, -0.003176) 0.212 (0.1816, 0.2424) 0.9148 0.8723

θ Sx -5.512 (-10.41, -0.6124) 27.16 (23.66, 30.66) 0.8103 0.7471

Sy -4.361 (-6.046, -2.675) 23.82 (22.62, 25.02) 0.9576 0.9435

Sz - - - -

φ Sx -6.496 (-9.329, -3.664) 6.758 (4.735, 8.78) 0.9467 0.9289

Sy -8.152 (-15.24, -1.063) -5.665 (-10.73, -0.603) 0.817 0.756

Sz 5.569 (-23.49, 34.63) -9.201 (-28.91, 10.51) 0.8577 0.7113

Table 5: Fitting parameters for figure 34 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain con-

tact against applied Source-Drain Voltage (VD). The curves are fit to a linear polynomial

model with y = P1x + P2. The values in brackets are the 95% confidence bounds for the

specified parameter. It should be noted that the Sz values for θ did not fit to a polynomial

curve and a cubic spline fit was used instead, thus these values have been excluded from

this table.
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B.3 Lattice Temperature

Injection P1 P2 R2 Adjusted R2

|S| Sx -0.0006517 (-0.0007819, -0.0005216) 0.5826 (0.557, 0.6082) 0.9797 0.9747

Sy -0.0006269 (-0.0007354, -0.0005184) 0.6106 (0.5892, 0.6319) 0.9847 0.9809

Sz -0.0006144 (-0.0007355, -0.0004933) 0.4124 (0.3886, 0.4363) 0.9802 0.9753

θ Sx 0.02079 (0.01763, 0.02395) 12.47 (11.85, 13.09) 0.9881 0.9852

Sy 0.01445 (0.01233, 0.01657) 10.9 (10.48, 11.32) 0.9889 0.9862

Sz 0.04315 (0.04026, 0.04604) 5.74 (5.171, 6.308) 0.9977 0.9971

φ Sx -0.001839 (-0.004099, 0.0004208) 1.924 (1.445, 2.403) 0.691 0.588

Sy -0.01947 (-0.02173, -0.0172) -4.385 (-4.831, -3.938) 0.993 0.9912

Sz 0.003897 (-0.001934, 0.009727) -2.42 (-3.48, -1.36) 0.8053 0.7079

Table 6: Fitting parameters for figure 45 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain con-

tact against Lattice Temperature. The curves are fit to a linear polynomial model with

y = P1x + P2. The values in brackets are the 95% confidence bounds for the specified

parameter.
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B.4 Gate Length (XGG)

Injection P1 P2 R2 Adjusted R2

|S| Sx 0.0001215 (-0.0008518, 0.001095) 0.4588 (0.4241, 0.4936) 0.04998 -0.2667

Sy 0.001049 (-0.0001846, 0.002282) 0.4466 (0.4026, 0.4907) 0.7094 0.6125

Sz 0.001059 (-0.0005044, 0.002623) 0.253 (0.1971, 0.3088) 0.6077 0.477

θ Sx -0.007367 (-0.05275, 0.03802) 15.61 (13.98, 17.24) 0.8097 0.194

Sy -0.01301 (-0.04872, 0.02269) 13.46 (12.14, 14.78) 0.5515 0.3273

Sz 0.2266 (0.05173, 0.4014) 4.694 (-1.549, 10.94) 0.8501 0.8001

φ Sx 0.01029 (-0.01831, 0.0389) 1.63 (0.6087, 2.651) 0.8718 0.7435

Sy -0.1424 (-0.2654, -0.01938) -2.606 (-7.157, 1.945) 0.9254 0.8881

Sz 0.07222 (-0.008551, 0.153) -5.984 (-8.775, -3.193) 0.881 0.8214

Table 7: Fitting parameters for figure 29 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain con-

tact against Gate Length (XGG). The curves are fit to a linear polynomial model with

y = P1x + P2. The values in brackets are the 95% confidence bounds for the specified

parameter.
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B.5 Left Spacer Length (XGL)

Injection P1 P2 R2 Adjusted R2

|S| Sx 0.003642 (0.002985, 0.0043) 0.3747 (0.3512, 0.3981) 0.9904 0.9873

Sy 0.002716 (0.00139, 0.004041) 0.4089 (0.3616, 0.4562) 0.9341 0.9121

Sz 0.003465 (0.002639, 0.004291) 0.1977 (0.1682, 0.2272) 0.9834 0.9779

θ Sx -0.1411 (-0.1967, -0.08548) 18.69 (16.71, 20.68) 0.956 0.9414

Sy -0.09117 (-0.1542, -0.02814) 15.21 (12.95, 17.46) 0.876 0.8346

Sz -0.07558 (-0.1386, -0.01259) 11.89 (9.639, 14.14) 0.8294 0.7725

φ Sx 0.0644 (-0.3723, 0.5011) -8.789 (-25.03, 7.453) 0.7783 0.5566

Sy -0.1424 (-0.2654, -0.01938) -2.606 (-7.157, 1.945) 0.9254 0.8881

Sz -0.008257 (-0.0931, 0.07659) -3.595 (-6.625, -0.5654) 0.03098 -0.292

Table 8: Fitting parameters for figure 55 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain contact

against Left Spacer Length (XGL). The curves are fit to a linear polynomial model with

y = P1x + P2. The values in brackets are the 95% confidence bounds for the specified

parameter.
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B.6 Right Spacer Length (XGR)

Injection P1 P2 R2 Adjusted R2

|S| Sx 2.052e-05 (-0.0004561, 0.0004972) 0.4542 (0.4372, 0.4712) 0.006216 -0.325

Sy 0.001112 (-1.539e-05, 0.00224) 0.4337 (0.3934, 0.4739) 0.7666 0.6888

Sz 0.00157 (0.0007451, 0.002395) 0.2313 (0.2019, 0.2608) 0.9244 0.8992

θ Sx 0.01142 (-0.01101, 0.03386) 15.67 (14.9, 16.45) 0.7059 0. 0.5589

Sy -0.07413 (-0.1323, -0.01597) 15.37 (13.29, 17.44) 0.8458 0.7944

Sz 0.09448 (-0.02743, 0.2164) 9.472 (5.119, 13.83) 0.6697 0.5596

φ Sx 0.09169 (0.005842, 0.1775) -9.632 (-12.7, -6.567) 0.7939 0.7252

Sy 0.09169 (0.005842, 0.1775) -9.632 (-12.7, -6.567) 0.7939 0.7252

Sz 0.1034 (-0.006197, 0.2131) -6.48 (-10.4, -2.565) 0.7503 0.6671

Table 9: Fitting parameters for figure 59 from Chapter 5, containing plots of the Total

Magnetisation (|S|) and polar angles (θ and φ) at the left hand side of the drain contact

against Right Spacer Length (XGR). The curves are fit to a linear polynomial model with

y = P1x + P2. The values in brackets are the 95% confidence bounds for the specified

parameter.
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