
Cluster Computing with OpenHPC

Karl W. Schulz
Intel Corp.

C. Reese Baird
Intel Corp.

David Brayford
Leibniz Supercomputing

Centre

Yiannis Georgiou
Atos

Gregory M. Kurtzer
Lawrence Berkeley National

Laboratory

Derek Simmel
Pittsburgh Supercomputing

Center

Thomas Sterling
Indiana University

Nirmala Sundararajan
Dell

Eric Van Hensbergen
ARM

ABSTRACT
OpenHPC is a newly formed, community-based project that
is providing an integrated collection of HPC-centric software
components that can be used to implement a full-featured
reference HPC compute resource. Components span the en-
tire HPC software ecosystem including provisioning and sys-
tem administration tools, resource management, I/O ser-
vices, development tools, numerical libraries, and perfor-
mance analysis tools.

Common clustering tools and scientific libraries are dis-
tributed as pre-built and validated binaries and are meant to
seamlessly layer on top of existing Linux distributions. The
architecture of OpenHPC is intentionally modular to allow
end users to pick and choose from the provided components,
as well as to foster a community of open contribution. This
paper presents an overview of the underlying community vi-
sion, governance structure, packaging conventions, build and
release infrastructure and validation methodologies.

CCS Concepts
•Social and professional topics → Software manage-
ment; System management; •Software and its engineer-
ing → Software libraries and repositories; Develop-
ment frameworks and environments; •Computer systems
organization → Distributed architectures;

1. INTRODUCTION
Launched initially in November 2015, and formalized as

a collaborative Linux Foundation [6] project in June 2016,
OpenHPC is a community driven project currently com-
prised of over 25 member organizations with representa-
tion from academia, research labs, and industry. To date,
the OpenHPC software stack aggregates over 60 compo-
nents ranging from tools for bare-metal provisioning, ad-
ministration, and resource management to end-user devel-

This content is released under the Creative Commons Attribution 3.0 Unported li-
cense http://creativecommons.org/licenses/by/3.0/. This license includes
the following terms: You are free to share - to copy, distribute and transmit the work
and to remix - to adapt the work under the following conditions: attribution - you must
attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work). For any reuse or
distribution, you must make clear to others the license terms of this work.

HPCSYSPROS ’16 November 14, 2016, Salt Lake City, UT, USA
c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

opment libraries that span a range of scientific/numerical
uses. OpenHPC adopts a familiar repository delivery model
with HPC-centric packaging in mind, and provides customiz-
able recipes for installing and configuring reference designs
of compute clusters. OpenHPC is intended both to make
available current best practices and provide a framework for
delivery of future innovation in cluster computing system
software.

2. COMMUNITY BUILDING BLOCKS FOR
HPC SYSTEMS

2.1 Motivation
Many HPC sites spend considerable effort aggregating a

large suite of open-source components to provide a capable
HPC environment for their users. This is frequently mo-
tivated by the necessity to build and deploy HPC focused
packages that are either absent or outdated in popular Linux
distributions. Further, local packaging or customization typ-
ically tries to give software versioning access to users (e.g.
via environment modules or similar equivalent). With this
background motivation in mind, combined with a desire to
minimize duplication and share best practices across sites,
the OpenHPC community project was formed with the fol-
lowing mission and vision principles:

Mission: to provide a reference collection of open-source
HPC software components and best practices, lowering bar-
riers to deployment, advancement, and use of modern HPC
methods and tools.
Vision: OpenHPC components and best practices will en-
able and accelerate innovation and discoveries by broaden-
ing access to state-of-the-art, open-source HPC methods and
tools in a consistent environment, supported by a collabo-
rative, worldwide community of HPC users, developers, re-
searchers, administrators, and vendors.

The remaining sections provide a further overview of the
community project by highlighting related work (§2.2), the
technical governance structure (§2.3), repository enablement
(§2.4), packaging conventions (§2.5), underlying build infras-
tructure (§2.6), and integration testing (§2.7).

http://creativecommons.org/licenses/by/3.0/
10.1145/1235

2.2 Related Work
As highlighted in the previous section, the installation,

deployment and configuration of HPC clusters can be te-
dious work. Consequently, a variety of open-source and pro-
prietary cluster management tools have been created that
provide different approaches to help address this problem.
In the open-source arena, two widely known solutions have
been Rocks and OSCAR. Rocks [25, 12] is an open-source
Linux-based clustering solution that aims to reduce the com-
plexity of building HPC clusters. It provides a combined
bundle of an underlying CentOS distribution with additional
software components covering the different administrative
needs of a cluster, and offers a GUI to help administrators
walk through different steps of the installation procedure.
All cluster services and tools are installed and configured
during the initial installation of the front-end with no need
to download and configure other external packages. Fur-
thermore, with the use of Rolls [14], the administrator can
customize the base installation with additional optional soft-
ware that integrates seamlessly into the management and
packaging mechanisms of the base software. Rolls exist to
deploy Rocks in alternative environments such as sensor net-
works [27] and clouds [24]. The most recent version of Rocks,
version 6.2, was released in May 2015 and is based on Cen-
tOS (v6.6).

OSCAR [26, 10] (Open Source Cluster Application Re-
sources) is a fully integrated and easy to install software
bundle designed for high performance cluster computing.
OSCAR follows a different methodology than Rocks; once
the front-end is installed and booted, the cluster building
components are downloaded and installed through tools that
try to simplify the complexity of the different administrative
tasks. There have been some variations of OSCAR based on
the same framework to cover different types of cluster en-
vironments such as Thin-Oscar for diskless platforms, and
HA-Oscar to support High Availability. OSCAR has previ-
ously been supported on multiple Linux distributions such
as CentOS and Debian. However, the project is no longer
actively maintained and the latest version 6.1.1 was released
in 2011.

A common issue that arises in the design of system man-
agement tool kits is the inevitable trade-off between ease-of-
use and customization flexibility. Rocks has adopted a more
turn-key approach which necessitates the need for some level
of embedded configuration management and Rocks leverages
a hierarchical XML schema. As will be discussed further
in §2.4, OpenHPC is providing an HPC focused software
repository and adopts a more building-block approach. Con-
sequently, it expects a certain level of expertise from the
administrator, but is intended to offer a greater choice of
software components, promote flexibility for use in a variety
of system environments and scales, be compatible with mul-
tiple Linux distributions, and be interoperable with stan-
dalone configuration management systems. Furthermore,
as a community effort, OpenHPC is supported and main-
tained by a group of vendors, research centers and laborato-
ries that share common goals of minimizing duplicated effort
and sharing of best practices.

Several end-user oriented projects also exist to mitigate
the complexity of HPC and scientific software management
including EasyBuild [19] and Spack [18]. Both of these sys-
tems provide convenient methods for building and installing
many common HPC software packages. With similar goals,

Technical Steering
Committee (TSC)

Integration
Testing

Coordinator(s)

Component
Development

Representative(s)

End-User / Site
Representative(s) MaintainersProject

Leader

Figure 1: Identified roles within the OpenHPC
Technical Steering Committee (TSC).

OpenHPC differs in scope and process. We aim to provide a
complete cluster software stack capable of provisioning and
administering a system in addition to user-space develop-
ment libraries. OpenHPC also seeks to leverage standard
Linux tools and practices to install and maintain software.
Both EasyBuild and Spack are currently packaged in the
OpenHPC distribution to allow users to further extend and
customize their environment.

2.3 Governance & Community
Under the auspices of the Linux Foundation, OpenHPC

has established a two pronged governance structure con-
sisting of a governing board and a technical steering com-
mittee (TSC). The governing board is responsible for bud-
getary oversight, intellectual property policies, marketing,
and long-term road map guidance. The TSC drives the tech-
nical aspects of the project including stack architecture, soft-
ware component selection, builds and releases, and day-to-
day project maintenance. Individual roles within the TSC
are highlighted in Figure 1. These include common roles
like maintainers and testing coordinators, but also include
unique HPC roles designed to ensure influence, and capture
points of view, from two key constituents. In particular,
the component development representative(s) are included to
represent the upstream development communities for soft-
ware projects that might be integrated with the OpenHPC
packaging collection. In contrast, the end-user/site repre-
sentative(s) are downstream recipients of OpenHPC inte-
gration efforts and serve the interest of administrators and
users of HPC systems that might leverage OpenHPC collat-
eral. At present, there are nearly 20 community volunteers
serving on the TSC [9] with representation from academia,
industry, and government R&D laboratories.

2.4 Installation/Repository Overview
As mentioned previously, OpenHPC endeavors to adopt

a repository-based delivery model similar to the underly-
ing OS distributions commonly used as the basis for HPC
Linux clusters. At present, OpenHPC is providing builds
targeted against two supported OS distributions: CentOS7
and SLES12. The underlying package managers for these
two distributions are yum and zypper, respectively, and
OpenHPC provides public repositories that are compatible
with these RPM-based package managers.

The installation procedure outlined in current OpenHPC
recipes targets bare-metal systems and assumes that one
of the supported base operating systems is first installed
on a chosen master host. This is typically done leveraging
bootable media from ISO images provided by the base OS
and once installed, OpenHPC recipes highlight steps to in-
stall additional software and perform configurations to use
the master host to provision the remaining cluster.

An overview of the physical infrastructure expected for
use with current OpenHPC recipes is shown in Figure 2 and
highlights the high-level networking configuration. The mas-
ter host requires at least two Ethernet interfaces with eth0
connected to the local data center network and eth1 used to
provision and manage the cluster backend (these interface
names are examples and may be different depending on lo-
cal settings and OS conventions). Two logical IP interfaces
are expected to each compute node: the first is the standard
Ethernet interface that will be used for provisioning and re-
source management. The second is used to connect to each
host’s baseboard management controller (BMC) and is used
for power management and remote console access. Physical
connectivity for these two logical IP networks is often accom-
modated via separate cabling and switching infrastructure;
however, an alternate configuration can also be accommo-
dated via the use of a shared NIC. For power management,
we assume that the compute node BMCs are available via
IPMI from the chosen master host. For file systems, the cur-
rent recipe(s) document setting up the chosen master host
as an NFS file system that is made available to the compute
nodes. Installation information is also discussed to option-
ally include a Lustre [7] file system mount.

eth1eth0
Data

Center
Network

high speed network

tcp networking

to compute eth interface
to compute BMC interface

compute
nodes

Lustre* storage system

Master
(SMS)

Figure 2: Overview of physical cluster infrastructure
expected with OpenHPC installation recipes.

Community Repo: In cases where external network con-
nectivity is available on the master host, OpenHPC provides
an ohpc-release package that includes GPG keys for pack-
age signing and repository enablement. This package can be
downloaded from the OpenHPC GitHub community site di-
rectly (https://github.com/openhpc/ohpc). Note that addi-
tional repositories may be required to resolve package depen-
dencies and, in the case of CentOS, access to the EPEL [2]
repo is currently required.

The most recent release branch for OpenHPC is version 1.1
and the output in Figure 3 highlights the typical repository
setup after installation of the openhpc-release-1.1 RPM
in a CentOS environment. Following typical OS distro con-
ventions, two OpenHPC repositories are enabled by default:
a base repo corresponding to the original 1.1 release and an
updates repo that provides rolling fixes and enhancements
against the 1.1 tree.

2.5 Packaging
To highlight several aspects of the current packaging con-

ventions, we next present several installation examples. Note
that this discussion does not endeavor to replicate an entire
install procedure, and interested readers are invited to con-
sult the latest installation recipe(s) that are available on the
community GitHub site (or via the installable docs-ohpc

yum repolist
repo id repo name
OpenHPC OpenHPC-1.1 - Base
OpenHPC-updates OpenHPC-1.1 - Updates
base CentOS-7 - Base
epel Extra Packages for Enterprise...

Figure 3: Typical package repository configuration
after enabling OpenHPC (CentOS example).

RPM) for more detailed instructions.
Once the OpenHPC repository is enabled locally, a range

of packages are available and a typical install on the master
host begins with the installation of desired system adminis-
tration services. In the example that follows, the Warewulf
provisioning system [13] and SLURM resource manager is
installed using available convenience groups:

[sms]# yum -i groupinstall ohpc-warewulf
[sms]# yum -i groupinstall ohpc-slurm-server

Figure 4: Example installations using convenience
groups.

Convenience groups like the examples above are prefixed
with the “ohpc-” tag and install a collection of related pack-
ages. As an example, the ohpc-warewulf group expands to
include all the packages needed to enable a Warewulf pro-
visioning server. Similarly, the ohpc-slurm-server group
includes the packages needed to stand up a SLURM control
daemon for resource management [21] across the cluster. Al-
though not shown here, a related ohpc-slurm-client group
is also available to allow for installation of a smaller set of
packages needed to enable a SLURM client (typically in-
stalled in compute node images).

Note that individual packages provided via OpenHPC have
their names appended with the “ohpc” suffix. The motiva-
tion for this convention was to allow for easy wild-carding
queries with package managers, and to also provide the abil-
ity to install OpenHPC-packaged versions of software along-
side of alternate distro versions of the same packages (if
available). Finally, while the examples here continue to use
the yum package manager, equivalent commands can be sub-
stituted using zypper when using SLES.

Development Libraries: In addition to providing tools
primarily targeted at system administrators, OpenHPC also
provides pre-packaged builds for a number of popular open-
source tools and libraries used by HPC applications and
developers. For example, OpenHPC includes a variety of
builds for FFTW [15] and HDF5 [3] (including serial and
parallel I/O support), and the GNU Scientific Library (GSL).
A number of other development tools and libraries are in-
cluded and the installation recipe(s) contain a detailed pack-
age manifest highlighting what is available for a given re-
lease. Note also that the list is expected to evolve and ex-
pand over time as additional software components are inte-
grated within future releases.

General purpose HPC systems often rely on multiple com-
piler and MPI family toolchains [23] and OpenHPC supports
this strategy via the adoption of a hierarchical build config-
uration that is cognizant of the need to deliver unique builds
of a given software package for each desired compiler/MPI

https://github.com/openhpc/ohpc

permutation. The general naming convention for builds that
have these toolchain dependencies is to append the compiler
and MPI family name that the library was built against di-
rectly into the package name. For example, libraries that
do not require MPI as part of the build process adopt the
following RPM naming scheme:

package-<comp_fam>-ohpc-<ver>-<rel>.rpm

where <comp_fam> maps to the underlying compiler family
and <ver> and <rel> correspond to the individual software
version and build release number, respectively. Expanding
on this convention, packages that also require MPI as part of
the build additionally include the MPI family (<mpi_fam>)
name as follows:

package-<comp_fam>-<mpi_fam>-ohpc-<ver>-<rel>.rpm

Given the large number of installation permutations possible
for software supporting multiple compiler/MPI toolchains,
combined with the fact that HPC sites also tend to make
multiple versions of a particular component available to their
users, there is a clear need to support a flexible development
environment for end users. A popular historical choice in
this space over the years has been the use of Environment
Modules [16] to expose a modules command within a user’s
shell environment allowing them to load/unload desired soft-
ware packages via management of key environment variables
(e.g. PATH and LD_LIBRARY_PATH). Several implementations
of the modules system have evolved and OpenHPC leverages
a recent variant named Lmod [23, 4] which is Lua-based, and
has embedded support for managing the hierarchical soft-
ware matrix adopted in OpenHPC. In addition to providing
a pre-packaged build of Lmod, development libraries and
tools integrated within OpenHPC include the installation
of companion module files. Consequently, once a desired
package is installed, end users can then access and query
the software through the underlying modules system. The
packaging process includes a consistent set of environment
variables for users to access a particular package’s path for
available header files and dynamic libraries. As an exam-
ple, consider the following installation of the PETSc [11]
scientific toolkit built using the GNU compiler and MVA-
PICH2 [20] MPI toolchain.

[sms]# yum install petsc-gnu-mvapich2-ohpc

Figure 5: Installation of PETSc for a particular com-
piler/MPI combination.

Next, assume an end user has a simple C code example they
wish to build against the installed PETSc version. This can
be accomplished as follows by leveraging the environment
variables enabled through loading of the provided module
file:

joeuser $ module load petsc
joeuser $ mpicc -I$PETSC_INC petsc_hello.c \

-L$PETSC_LIB -lpetsc

Figure 6: Example compilation using variables pro-
vided by PETSc module file.

Owing to the hierarchical capabilities of Lmod, if multi-
ple PETSc permutations were installed (e.g. for different
MPI toolchains), the end user would also be able to swap
toolchains and the underlying modules system will automat-
ically update the user’s environment accordingly to be con-
sistent with the currently loaded MPI family.

2.6 Build Infrastructure
To provide the public package repositories highlighted pre-

viously in §2.4, OpenHPC utilizes a set of standalone re-
sources running the Open Build Service (OBS) [8]. OBS
is an open-source distribution development platform writ-
ten in Perl that provides a transparent infrastructure for
the development of Linux distributions and is the underly-
ing build system for openSUSE. The public OBS instance for
OpenHPC is available at https://build.openhpc.community.

While OpenHPC does not, by itself, provide a complete
Linux distribution, it does have in common many of the
same packaging requirements and targets a delivery mecha-
nism that adopts Linux sysadmin familiarity. OBS aids in
this process by driving simultaneous builds for multiple OS
distributions (e.g. CentOS and SLES), multiple target ar-
chitectures (e.g. x86 64 and aarch64), and by performing
dependency analysis among components, triggering down-
stream builds as necessary based on upstream changes. Each
build is carried out in a chroot or KVM environment for re-
peatability, and OBS manages publication of the resulting
builds into package repositories compatible with yum and
zypper. Both binary and source RPMs are made available
as part of this process.

The primary inputs for OBS are the instructions neces-
sary to build a particular package, typically housed in an
RPM .spec file. These .spec files are version controlled in the
community GitHub repository and are templated in a way to
have a single input drive multiple compiler/MPI family com-
binations. To illustrate this approach, the code in Figure 7
highlights a small portion from the .spec file used to build
METIS [22], a popular domain decomposition library. The
primary item of note is the the use of a compiler_family

macro which defaults to the gnu compiler family if not spec-
ified otherwise. This variable is then used to decide on un-
derlying build and installation requirements chosen to match
the desired runtime.

%{!?compiler_family: %define compiler_family gnu}

Compiler dependencies

BuildRequires: lmod%{PROJ_DELIM}

%if %{compiler_family} == gnu

BuildRequires: gnu-compilers%{PROJ_DELIM}

Requires: gnu-compilers%{PROJ_DELIM}

%endif

%if %{compiler_family} == intel

BuildRequires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}

Requires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}

%endif

Figure 7: Snippet from METIS .spec file highlight-
ing compiler hierarchy template used during the
build process.

To link the underlying source and build infrastructure to-
gether, OpenHPC’s public OBS instance is integrated with
the associated GitHub repository. A benefit of this integra-

https://build.openhpc.community

tion is that whenever commits are made on key git branches,
OBS automatically triggers corresponding package rebuilds.
OBS also analyzes inter-package dependencies and down-
stream packages are rebuilt as well with updated packages
published after all builds are completed.

For builds that require MPI linkage, a companion .spec
template is used which adds an mpi_family variable that de-
faults to the OpenMPI [17] stack unless specified otherwise.
To maintain the concept of having a single maintainer com-
mit drive multiple builds, our OBS configuration leverages
the ability to link related software packages together. To
illustrate this process, the text in Figure 8 contains the un-
derlying OBS package configuration syntax for the PETSc
toolkit built against MVAPICH2. The top line indicates
that the MVAPICH2-based build is simply a link to the par-
ent (default) package configuration that is OpenMPI based.
What follows after that are stanzas that tell OBS to ap-
ply patches to the resulting .spec file prior to doing a build.
In this case, the patches are trivial and simply redefine the
compiler_family and mpi_family variables at the top of
the .spec file. This linkage provides a convenient mecha-
nism to extend the hierarchical runtime family approach to
the underlying build system.

cat petsc-gnu-mvapich2/_link

<link project=’OpenHPC:1.1’ package=’petsc-gnu-openmpi’>

<patches>

<topadd>%define compiler_family gnu</topadd>

<topadd>%define mpi_family mvapich2</topadd>

</patches>

</link>

Figure 8: Underlying OBS package config highlight-
ing linkage between builds using different runtime
hierarchies.

2.7 Integration Testing
To facilitate validation of the OpenHPC distribution as a

whole, we have devised a standalone integration test infras-
tructure. In order to exercise the entire scope of the dis-
tribution, we first provision a cluster from bare-metal using
installation scripts provided as part of the OpenHPC docu-
mentation. Once the cluster is up and running, we launch a
suite of tests targeting the functionality of each component.
These tests are generally pulled from component source dis-
tributions and aim to insure development toolchains are
functioning correctly and to ensure jobs perform under the
resource manager. The intent is not to replicate a particular
component’s own validation tests, but rather to ensure all of
OpenHPC is functionally integrated. The testing framework
is publicly available in the OpenHPC GitHub repository.

A Jenkins continuous integration server [5] manages a set
of physical servers in our test infrastructure. Jenkins period-
ically kickstarts a cluster master node using out-of-the-box
base OS repositories, and this master is then customized ac-
cording to the OpenHPC install guide. The LATEX source for
the install guide contains markup that is used to generate a
bash script containing each command necessary to provision
and configure the cluster and install OpenHPC components.
Jenkins executes this script, then launches the component
test suite.

The component test suite relies on a custom autotools-
based framework. Individual runs of the test suite are cus-

#!/bin/bash

status=0
cd libs/petsc || exit 1
export BATS_JUNIT_CLASS=PETSc

bootstrap the local autotools project
./bootstrap || exit 1

for compiler in $COMPILER_FAMILIES ; do
for mpi in $MPI_FAMILIES ; do

echo "--------------------------------------"
echo "Libraries: PETSc tests: $compiler-$mpi"
echo "--------------------------------------"

module purge || exit 1
module load prun || exit 1
module load $compiler || exit 1
module load $mpi || exit 1
module load petsc || exit 1

./configure || exit 1
make clean || exit 1
make -k check || status=1

save_logs_mpi_family tests $compiler $mpi

make distclean
done

done

exit ${status}

Figure 9: Example test driver script for PETSc.

tomizable using familiar autoconf syntax, and make check

does what one might expect. The framework also allows us
to build and test multiple binaries of a particular compo-
nent for each permutation of compiler toolchain and MPI
runtime if applicable. We utilize the Bash Automated Test-
ing System (BATS) [1] framework to run tests on the cluster
and report results back to Jenkins. An example test driver
shell script for the PETSc toolkit is highlighted in Figure 9.
Recall that this package requires MPI linkage and the script
highlights the fact that multiple tests are performed for each
supported compiler and MPI toolchain.

As the test suite has grown over time to accommodate
a growing set of integrated components, the current test
harness has both short and long configuration options. The
short mode enables only a subset of tests in order to keep the
total runtime to approximately 10 minutes or less for more
frequent execution in our CI environment. For the most
recent OpenHPC release, the long mode with all relevant
tests enabled requires approximate 90 minutes to complete
approximately 1,900 individually logged tests.

3. CONCLUSIONS & FUTURE WORK
This paper has presented an overview of OpenHPC, a

collaborative Linux Foundation project with organizational
participation from academia, research labs, and industry.
The building-block nature of the OpenHPC repository was
highlighted along with some basic packaging conventions
and an overview of the underlying build and test infrastruc-
ture.

Future work by the OpenHPC Technical Steering Com-

mittee (TSC) is focused on formalizing and publishing a
component selection process by which the community can re-
quest inclusion of additional software. Currently, OpenHPC
provides simple configuration recipes for HPC clusters, but
future efforts will focus on providing automation for more
advanced configuration and tuning to address scalability,
power management, and high availability concerns. We also
hope to expand community cooperation between comple-
mentary efforts by developing package dependency conven-
tions with EasyBuild and Spack.

4. ACKNOWLEDGMENTS
We would like to thank the Linux Foundation and as-

sociated members of the OpenHPC collaborative project
for supporting this community effort. We are particularly
grateful to the additional members of the Technical Steering
Committee including Pavan Balaji, Todd Gamblin, Craig
Gardner, Balazs Gerofi, Jennifer Green, Douglas Jacobsen,
Chulho Kim, Thomas Moschny, Craig Stewart, and Scott
Suchyta. We are also grateful to donations from Intel, Cav-
ium, and Dell who have provided hardware to help support
integration testing efforts, and the Texas Advanced Com-
puting Center for hosting OpenHPC infrastructure.

5. REFERENCES
[1] Bash Automated Testing System (BATS).

https://github.com/sstephenson/bats.

[2] Extra Packages for Enterprise Linux (EPEL).
https://fedoraproject.org/wiki/EPEL.

[3] Hierarchical Data Format (HDF5).
https://www.hdfgroup.org/HDF5/.

[4] https://github.com/tacc/lmod. Lmod: An
Environment Module System based on Lua.

[5] Jenkins Automation Server for Continuous
Integration. https://jenkins.io/.

[6] Linux Foundation. https://www.linuxfoundation.org.

[7] Lustre Parallel File System. http://lustre.org.

[8] Open Build Service. http://openbuildservice.org.

[9] OpenHPC Governance.
https://github.com/openhpc/ohpc/wiki/Governance-
Overview.

[10] OSCAR. http://svn.oscar.openclustergroup.org/.

[11] PETSc: Portable, Extensible Toolkit for Scientific
Computation. https://www.mcs.anl.gov/petsc/.

[12] Rocks. http://www.rocksclusters.org/.

[13] Warewulf Project. http://warewulf.lbl.gov/trac.

[14] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M.
Papadopoulos. Rolls: modifying a standard system
installer to support user-customizable cluster frontend
appliances. In 2004 IEEE International Conference on
Cluster Computing (CLUSTER 2004), September
20-23 2004, San Diego, California, USA, pages
421–430, 2004.

[15] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[16] J. L. Furlani and P. W. Osel. Abstract yourself with
modules. In Proceedings of the Tenth Large
Installation Systems Administration Conference (LISA
’96), pages 193–204, 1996.

[17] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, September 2004.

[18] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L.
Lee, A. Moody, B. R. de Supinski, and S. Futral. The
spack package manager: bringing order to HPC
software chaos. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2015, Austin,
TX, USA, November 15-20, 2015, pages 40:1–40:12,
2015.

[19] K. Hoste, J. Timmerman, A. Georges, and S. D.
Weirdt. EasyBuild: Building Software with Ease. In
2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, Salt Lake City, UT,
USA, November 10-16, 2012, pages 572–582, 2012.

[20] W. Huang, G. Santhanaraman, H. Jin, Q. Gao, and
D. K. Panda. Design of high performance
MVAPICH2: MPI2 over infiniband. In Sixth IEEE
International Symposium on Cluster Computing and
the Grid (CCGrid 2006), 16-19 May 2006, Singapore,
pages 43–48, 2006.

[21] M. A. Jette, A. B. Yoo, and M. Grondona. SLURM:
Simple Linux Utility for Resource Management. In
Lecture Notes in Computer Science: Proceedings of
Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003, pages 44–60. Springer-Verlag, 2002.

[22] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

[23] R. McLay, K. W. Schulz, W. L. Barth, and
T. Minyard. Best Practices for the Deployment and
Management of Production HPC clusters. In State of
the Practice Reports, SC ’11, pages 9:1–9:11. ACM,
Nov. 2011.

[24] P. M. Papadopoulos. Extending clusters to amazon
EC2 using the rocks toolkit. IJHPCA, 25(3):317–327,
2011.

[25] P. M. Papadopoulos, M. J. Katz, and G. Bruno.
NPACI rocks: tools and techniques for easily
deploying manageable linux clusters. Concurrency and
Computation: Practice and Experience,
15(7-8):707–725, 2003.

[26] S. L. Scott. OSCAR and the beowulf arms race for the
”cluster standard”. In 2001 IEEE International
Conference on Cluster Computing (CLUSTER 2001),
8-11 October 2001, Newport Beach, CA, USA, page
137, 2001.

[27] Y. Tanaka, N. Yamamoto, R. Takano, A. Ota, P. M.
Papadopoulos, N. Williams, C. Zheng, W. Huang,
Y. Pan, C. Wu, H. Yu, J. H. S. Shiao, K. Ichikawa,
T. Tada, S. Date, and S. Shimojo. Building secure and
transparent inter-cloud infrastructure for scientific
applications. In Transition of HPC Towards Exascale
Computing - Selected Papers from the High
Performance Computing Workshop, Cetraro, Italy,
June 25-29, 2012., pages 35–52, 2012.

	Introduction
	Community building blocks for HPC systems
	Motivation
	Related Work
	Governance & Community
	Installation/Repository Overview
	Packaging
	Build Infrastructure
	Integration Testing

	Conclusions & Future work
	Acknowledgments
	References

