
OpenHPC: Community Building
Blocks for HPC Systems

Karl W. Schulz, Ph.D.
Enterprise High Performance Computing Group, Intel

FOSDEM’16, HPC, Big Data and Data Science Devroom
Brussels, Belgium w January 31, 2016

http://openhpc.community

Outline

•  Motivation for this new community effort

•  Community vision and participants

•  Current components overview - hierarchical approach

•  Development Infrastructure

-  packaging conventions

-  build system

-  documentation

•  Integration Testing

•  Participation/Future timeline

2

Motivation for Community Effort

Many sites spend considerable effort aggregating a large suite of open-source
projects to provide a capable HPC environment for their users:

•  necessary to obtain HPC focused packages that are either absent
or do not keep pace from Linux distro providers

•  local packaging or customization frequently tries to give software
versioning access to users (e.g. via modules or similar equivalent)

They frequently leverage a mix of external and in-house tools for:

•  provisioning, software installations/upgrades, config management
schemes, and system diagnostics mechanisms.

•  although the functionality is similar, the implementations across
sites is often different which can lead to duplication of effort

On the developer side, many successful projects must engage in continual triage
and debugging regarding configuration and installation issues on HPC systems

3

Motivation for Community Effort (cont.)

Q: Can we provide community value by focusing first on one of the least common denominators?
--> the configuration and packaging of HPC software

•  Focus on the common packages that have significant usage overlap

-  establish some basic packaging guidelines

-  embed hierarchal support (to deal with development toolchain permutations)

•  Define binary distribution and upgrade mechanisms
-  leverage significant experience from the distro communities

-  include dependency resolution

•  Do not be prescriptive on choice of config management or architecture

-  just like users have their favorite editors (mine is of course emacs, the one to rule them all), many sites
have their favorite config management system and administration policies in place

-  instead, foster community with example installation recipes

-  include validation efforts on reference systems

Assuming success above, expand further over time:

•  explore definition of interface points between key software components
•  what functional areas make sense to abstract for more seamless component swapping?
•  inclusion of future research efforts (e.g. new runtime systems, programming models)

4

Master

Login

Provision Pool

Com
pute

Management

I/O Servers

System Architecture

Intention over time is to provide reference design(s) with use cases for big and
small system designs:

-  usual designation of node types by function

-  current recipe example is “diskless”

-  intend to include diskfull examples as well

5

Master

C
om

pute

[Flat]

[Hierarchical]

6

OpenHPC: Early Community Members

OEMs ISV-OSVs HPC Sites

7

Component Overview
SW Block Diagram of Typical HPC System

Operator Interface Applications (not part of the stack initially)

Fab
ric M

g
t

System
 D

iag
no

stics

Pro
visio

ning

System
 M

anag
em

ent
(C

o
nfig

, Invento
ry)

Data
Collection

And
System

Monitors

DB
Schema

Workload
Manager

Optimized
I/O

Libraries Scalable
Debugging

& Perf
Analysis

Tools

High
Performance

Parallel
Libraries

Software
Development

Toolchain

User Space
Utilities

Scalable
DB

Resource
Mgmnt

Runtimes

I/O
Services

Compiler and
Programming-

Model
Runtimes

Overlay & Pub-Sub Networks, Identity

Linux Distro Runtime Libraries

Node-specific OS Kernel(s)

ISV Applications

8

OpenHPC 1.0 - Initial starting components

Functional Areas Components

Base OS CentOS 7.1

Administrative
Tools

Conman, Ganglia, Intel Cluster Checker**, Lmod, LosF, Nagios, pdsh, prun,
EasyBuild

Provisioning Warewulf

Resource Mgmt. SLURM, Munge

I/O Services Lustre client (community version)

Numerical/
Scientific
Libraries

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, Mumps, Intel
MKL**

I/O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

Compiler
Families GNU (gcc, g++, gfortran), Intel Parallel Studio XE (icc,icpc,ifort)**

MPI Families MVAPICH2, OpenMPI, Intel MPI**

Development
Tools

Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy, Intel
Inspector **

Performance
Tools

PAPI, IMB, mpiP, pdtoolkit TAU, Intel Advisor**, Trace Analyzer and
Collector**, Vtune Amplifier**

** Bring your own license model

Notes:
•  Additional dependencies

that are not provided by
the BaseOS or community
repos (e.g. EPEL) are also
included

•  3rd Party libraries are built
for each compiler/MPI
family (6 combinations
typically)

•  Resulting repository
currently comprised of
~250 RPMs

9

OpenHPC++ - Potential future efforts

Functional Areas Components Contributions by:
Base OS CentOS 7.1, McKernel, Kitten, mOS RIKEN, Sandia, Intel

AdminTools Conman, Ganglia, Intel Cluster Checker**, Lmod, LosF, Nagios, pdsh, prun,
 EasyBuild, ORCM Intel

Provisioning Warewulf, xCAT Community

Resource Mgmt. SLURM, Munge, ParaStation mgmt, PMIx, PBS Pro ParTec, community,
Altair

Cross Cutting OpenStack HPC suitable components Cray

Runtimes OpenMP, OmpSs, OCR BSC, Intel

I/O Services Lustre client (community version)

Numerical/
Scientific Libs Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, Mumps, Intel MKL**

I/O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

Compiler
Families GNU (gcc, g++, gfortran), Intel Parallel Studio XE (icc,icpc,ifort)**

MPI Families MVAPICH2, OpenMPI, Intel MPI**, MPICH, ParaStation MPI Argonne, ParTec

Development
Tools Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy, Intel Inspector **

Performance
Tools

PAPI, Intel IMB, mpiP, pdtoolkit TAU, Intel Advisor**, Intel Trace Analyzer and
Collector**, Intel Vtune Amplifier**, Paraver, Scalasca

BSC, Jülich

** Bring your own license model

Hierarchical Overlay for OpenHPC software

Distro Repo

OHPC Repo

Centos 7

gcc Intel Composer

MVAPICH2 IMPI OpenMPI

boost-gnu-openmpi
boost-gnu-impi
boost-gnu-mvapich2

phdf5-gnu-openmpi
phdf5-gnu-impi
phdf5-gnu-openmpi

Parallel
Apps/Libs

MVAPICH2 IMPI OpenMPI

lmod slurm munge losf

warewulf lustre client pdsh

Development Environment

General Tools
and System

 Services

hdf5-gnu hdf5-intelSerial Apps/Libs

Boost pHDF5

boost-intel-openmpi
boost-intel-impi
boost-intel-mvapich2

phdf5-intel-openmpi
phdf5-intel-impi
phdf5-intel-mvapich2

Boost pHDF5

Compilers

MPI
Toolchains

ohpc prun

Hierarchical Software - the user experience
•  The compiler and MPI stack component hierarchy is reflected in the user environment

•  End user sees compatible software build based on the currently loaded environment

•  If the user switches between compiler families (or MPI families), environment updates automagically:
-  supported via modules (Lmod implementation - built-in notion of “families”)
-  module configuration built into RPM packaging

1
1

$ module list
Currently Loaded Modules:
 1) intel/16.0.0.069 2) openmpi/1.8.4 3) ohpc 4) boost/1.58.0

$ module avail
-------------- /opt/ohpc/pub/moduledeps/gnu-openmpi -------------
 boost/1.58.0 phdf5/1.8.14

----------------- /opt/ohpc/pub/moduledeps/intel------------------
 hdf5/1.8.14 impi/5.1.0.069 mvapich2/2.1 openmpi/1.8.4

------------------- /opt/ohpc/pub/modulefiles --------------------
 autotools fsp gnu/4.9.2 intel/16.0.0.69

$ echo $BOOST_LIB
/opt/ohpc/pub/libs/intel/openmpi/boost/1.58.0/lib

$ module swap intel gnu
Due to MODULEPATH changes the following have been reloaded:
 1) boost/1.58.0 2) openmpi/1.8.4

$ echo $BOOST_LIB
/opt/ohpc/pub/libs/gnu/openmpi/boost/1.58.0/lib

12

Development Infrastructure

OpenHPC Development Infrastructure
What are we using to get the job done....?

The usual software engineering stuff:

•  GitHub (SCM and issue tracking/planning)

•  Continuous Integration (CI) Testing (Jenkins)

•  Documentation (Latex)

Capable build/packaging system

•  We are targeting a common delivery/access mechanism that adopts Linux
sysadmin familiarity - ie. yum/zypper repositories for supported distros

-  ultimately delivering RPMs

-  [base] + [update] repositories to support life-cycle management

•  Require flexible system to manage builds for multiple distros, multiple
compiler/MPI family combinations, and dependencies across packages

•  Have engineered a system using Open Build Service (OBS) which is supported
by back-end git

-  git houses .spec files, tarballs, and custom patches

-  OBS performs automated builds (more on that to come)

13

https://github.com/openhpc/ohpc

https://build.openhpc.community

14

Build System - OBS

•  Using the Open Build
Service (OBS) to
manage build process
(end-to-end)

•  OBS can drive builds
for multiple
repositories

•  Builds carried out in
chroot environment

•  Generates binary and
src rpms

•  Publishes/maintains
corresponding
package repository

https://build.openhpc.community

Build System - OBS

•  OBS manages dependency resolution
and rebuilds all downstream packages

•  Community build infrastructure hosted
in the cloud - can add additional build
servers dynamically when needed

•  Currently takes about 6 hours to build
repository from scratch for CentOS7

•  Biggest contributor is Trilinos

15

•  Leveraging ability within OBS to link
related packages

•  Convenient for packages with compiler
and MPI dependencies

•  Single commit drives all package
permutations

•  OBS builds automatically triggered via
git commit hooks

$ ls metis-*
metis-gnu:
_service

metis-intel:
_link

$ cat metis-intel/_link
<link project='ForestPeak:15.31:Factory' package='metis-gnu'>
<patches>
 <topadd>%define compiler_family intel</topadd>
</patches>
</link>
EOF

Snippets from METIS OBS config

Anatomy of a .spec file

•  Motivation is to have single input to drive multiple output configurations

•  Leverage variety of macros to aid in hierarchical builds

16

$ cat OHPC_macros
%define OHPC_BUILD 1
%define PROJ_NAME ohpc
%define OHPC_HOME /opt/%{PROJ_NAME}
%define OHPC_ADMIN %{OHPC_HOME}/admin
%define OHPC_PUB %{OHPC_HOME}/pub
%define OHPC_COMPILERS %{OHPC_PUB}/compiler
%define OHPC_MPI_STACKS %{OHPC_PUB}/mpi
%define OHPC_APPS %{OHPC_PUB}/apps
%define OHPC_LIBS %{OHPC_PUB}/libs
%define OHPC_MODULES %{OHPC_PUB}/modulefiles
%define OHPC_MODULEDEPS %{OHPC_PUB}/moduledeps

Install Path Macros
$ cat OHPC_setup_mpi
if [-z "$OHPC_MPI_FAMILY"]; then
 echo "Unknown OHPC_MPI_FAMILY"
 exit 1
fi

if ["$OHPC_MPI_FAMILY" = "openmpi"]; then
 module load openmpi
elif ["$OHPC_MPI_FAMILY" = "impi"]; then
 module load impi
elif ["$OHPC_MPI_FAMILY" = "mvapich2"]; then
 module load mvapich2
else
 echo "Unsupported OHPC_MPI_FAMILY -> $OHPC_MPI_FAMILY"
 exit 1
fi

MPI macros

Anatomy of a .spec file

•  Default family
choice
defined, but
can be
overridden

•  Family
dependencies
embedded for
package
managers

17

Install Path Macros

%include %{_sourcedir}/OHPC_macros

#-ohpc-header-comp-begin-----------------------------

OpenHPC convention: the default assumes the gnu compiler family;
however, this can be overridden by specifing the compiler_family
variable via rpmbuild or other mechanisms.

%{!?compiler_family: %define compiler_family gnu}

Compiler dependencies
BuildRequires: lmod%{PROJ_DELIM} coreutils
%if %{compiler_family} == gnu
BuildRequires: gnu-compilers%{PROJ_DELIM}
Requires: gnu-compilers%{PROJ_DELIM}
%endif
%if %{compiler_family} == intel
BuildRequires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}
Requires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}
%if 0%{?OHPC_BUILD}
BuildRequires: intel_licenses
%endif
%endif

#-ohpc-header-comp-end-------------------------------

Snippet from METIS .spec file

Anatomy of a .spec file

•  Hierarchical
module files
encoded
within
package
build

•  Provide
consistent set
of module
environment
variables
-  METIS_DIR

-  METIS_BIN

-  METIS_LIB

-  METIS_INC

18

Install Path Macros

OpenHPC module file
%{__mkdir} -p %{buildroot}%{OHPC_MODULEDEPS}/%{compiler_family}/%{pname}
%{__cat} << EOF > %{buildroot}/%{OHPC_MODULEDEPS}/%{compiler_family}/%{pname}/%{version}
#%Module1.0###

proc ModulesHelp { } {

puts stderr " "
puts stderr "This module loads the %{PNAME} library built with the %{compiler_family}
compiler toolchain."
puts stderr "\nVersion %{version}\n"

}
module-whatis "Name: %{PNAME} built with %{compiler_family} toolchain"
module-whatis "Version: %{version}"
module-whatis "Category: runtime library"
module-whatis "Description: %{summary}"
module-whatis "%{url}"

set version %{version}

prepend-path PATH %{install_path}/bin
prepend-path INCLUDE %{install_path}/include
prepend-path LD_LIBRARY_PATH %{install_path}/lib

setenv %{PNAME}_DIR %{install_path}
setenv %{PNAME}_BIN %{install_path}/bin
setenv %{PNAME}_LIB %{install_path}/lib
setenv %{PNAME}_INC %{install_path}/include
EOF

Snippet from METIS .spec file

19

Documentation Overview

OpenHPC (v1.0)
Cluster Building Recipes

CentOS7.1 Base OS
Base Linux* Edition

Document Last Update: 2015-11-12

Document Revision: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

Contents

1 Introduction 5
1.1 Target Audience . 5
1.2 Requirements/Assumptions . 5
1.3 Bring your own license . 6
1.4 Inputs . 6

2 Install Base Operating System (BOS) 7

3 Install OpenHPC Components 7
3.1 Enable OpenHPC repository for local use . 7
3.2 Installation template . 8
3.3 Add provisioning services on master node . 8
3.4 Add resource management services on master node . 9
3.5 Add InfiniBand support services on master node . 9
3.6 Complete basic Warewulf setup for master node . 9
3.7 Define compute image for provisioning . 10

3.7.1 Build initial BOS image . 10
3.7.2 Add OpenHPC components . 11
3.7.3 Customize system configuration . 11
3.7.4 Additional Customizations (optional) . 12

3.7.4.1 Increase locked memory limits . 12
3.7.4.2 Enable ssh control via resource manager . 13
3.7.4.3 Add Cluster Checker . 13
3.7.4.4 Add Lustre client . 13
3.7.4.5 Add Nagios monitoring . 14
3.7.4.6 Add Ganglia monitoring . 14
3.7.4.7 Enable forwarding of system logs . 15

3.7.5 Import files . 15
3.8 Finalizing provisioning configuration . 16

3.8.1 Assemble bootstrap image . 16
3.8.2 Assemble Virtual Node File System (VNFS) image . 16
3.8.3 Register nodes for provisioning . 16

3.9 Boot compute nodes . 17

4 Install OpenHPC Development Components 17
4.1 Development Tools . 18
4.2 Compilers . 18
4.3 Performance Tools . 18
4.4 MPI Stacks . 18
4.5 Setup default development environment . 19
4.6 3rd Party Libraries and Tools . 19

5 Resource Manager Startup 20

6 Run a Test Job 21
6.1 Interactive execution . 21
6.2 Batch execution . 22

3 Rev: bf8c471

Documentation Overview

•  We all know documentation can be an afterthought and is difficult to validate

•  System install is critical and the first thing an end-user will
experience (good or bad)
-  consequently, approach taken is to treat documentation as a first-class verification citizen
-  difficult to do this with something like MS Word
-  more approachable with a typesetting documentation format like Latex which is what we

have adopted to date

•  Endeavor to minimize repetition (for example, across distros)
-  package manager commands abstracted so that single input can support multiple distros

20

% begin_fsp_run
\begin{lstlisting}[language=bash,keywords={}]
[master]$ (*\groupinstall*) ohpc-base
[master]$ (*\groupinstall*) ohpc-warewulf
\end{lstlisting}
% end_fsp_run

Raw Latex
[master]$ yum -y groupinstall ohpc-base
[master]$ yum -y groupinstall ohpc-warewulf

[master]$ zypper -n install -t pattern ohpc-base
[master]$ zypper -n install -t pattern ohpc-
warewulf

CentOS

SLES

Resulting commands in PDF docs

Basic Cluster Install Example

•  Starting install guide/
recipe targeted for flat
hierarchy

•  Leverages image-based
provisioner (Warewulf)

-  PXE boot (stateless)

-  optionally connect
external Lustre file
system

•  Obviously need
hardware-specific
information to support
(remote) bare-metal
provisioning

21

Install Guide - CentOS7.1 Version (v1.0)

that while the example definitions above correspond to a small 4-node compute subsystem, the compute
parameters are defined in array format to accommodate logical extension to larger node counts.

• ${ohpc repo} # OpenHPC repo location

• ${sms name} # Hostname for SMS server

• ${sms ip} # Internal IP address on SMS server

• ${sms eth internal} # Internal Ethernet interface on SMS

• ${eth provision} # Provisioning interface for computes

• ${internal netmask} # Subnet netmask for internal network

• ${ntp server} # Local ntp server for time synchronization

• ${bmc username} # BMC username for use by IPMI

• ${bmc password} # BMC password for use by IPMI

• ${c ip[0]}, ${c ip[1]}, ... # Desired compute node addresses

• ${c bmc[0]}, ${c bmc[1]}, ... # BMC addresses for computes

• ${c mac[0]}, ${c mac[1]}, ... # MAC addresses for computes

• ${compute regex} # Regex for matching compute node names (e.g. c*)

Optional:

• ${mgs fs name} # Lustre MGS mount name

• ${sms ipoib} # IPoIB address for SMS server

• ${ipoib netmask} # Subnet netmask for internal IPoIB

• ${c ipoib[0]}, ${c ipoib[1]}, ... # IPoIB addresses for computes

2 Install Base Operating System (BOS)

In an external setting, installing the desired BOS on a master SMS host typically involves booting from a
DVD ISO image on a new server. With this approach, insert the CentOS7.1 DVD, power cycle the host, and
follow the distro provided directions to install the BOS on your chosen master host. Alternatively, if choosing
to use a pre-installed server, please verify that it is provisioned with the required CentOS7.1 distribution.

Tip

While it is theoretically possible to provision a Warewulf cluster with SELinux enabled, doing so is be-
yond the scope of this document. Even the use of permissive mode can be problematic and we therefore
recommend disabling SELinux on the master SMS host. If SELinux components are installed locally, the
selinuxenabled command can be used to determine if SELinux is currently enabled. If enabled, consult the
distro documentation for information on how to disable.

3 Install OpenHPC Components

With the BOS installed and booted, the next step is to add desired OpenHPC packages onto the master

server in order to provide provisioning and resource management services for the rest of the cluster. The
following subsections highlight this process.

3.1 Enable OpenHPC repository for local use

To begin, enable use of the OpenHPC repository by adding it to the local list of available package repositories.
Note that this requires network access from your master server to the OpenHPC repository, or alternatively,

7 Rev: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

eth1eth0
Data

Center
Network

high speed network

tcp networking

to compute eth interface
to compute BMC interface

compute
nodes

Lustre* storage system

Master
(SMS)

Figure 1: Overview of physical cluster architecture.

the local data center network and eth1 used to provision and manage the cluster backend (note that these
interface names are examples and may be di↵erent depending on local settings and OS conventions). Two
logical IP interfaces are expected to each compute node: the first is the standard Ethernet interface that
will be used for provisioning and resource management. The second is used to connect to each host’s BMC
and is used for power management and remote console access. Physical connectivity for these two logical
IP networks is often accommodated via separate cabling and switching infrastructure; however, an alternate
configuration can also be accommodated via the use of a shared NIC, which runs a packet filter to divert
management packets between the host and BMC.

In addition to the IP networking, there is a high-speed network (InfiniBand in this recipe) that is also
connected to each of the hosts. This high speed network is used for application message passing and optionally
for Lustre connectivity as well.

1.3 Bring your own license

OpenHPC provides a variety of integrated, pre-packaged elements from the Intel® Parallel Studio XE soft-
ware suite. Portions of the runtimes provided by the included compilers and MPI components are freely
usable. However, in order to compile new binaries using these tools (or access other analysis tools like
Intel® Trace Analyzer and Collector, Intel® Inspector, etc), you will need to provide your own valid license
and OpenHPC adopts a bring-your-own-license model. Note that licenses are provided free of charge for
many categories of use. In particular, licenses for compilers and developments tools are provided at no cost
to academic researchers or developers contributing to open-source software projects. More information on
this program can be found at:

https://software.intel.com/en-us/qualify-for-free-software

1.4 Inputs

As this recipe details installing a cluster starting from bare-metal, there is a requirement to define IP ad-
dresses and gather hardware MAC addresses in order to support a controlled provisioning process. These
values are necessarily unique to the hardware being used, and this document uses variable substitution
(${variable}) in the command-line examples that follow to highlight where local site inputs are required.
A summary of the required and optional variables used throughout this recipe are presented below. Note

6 Rev: bf8c471

Basic Cluster Install: SMS

•  Example recipe assumes base operating system is first installed on
chosen master (SMS) host

•  Then, enable OpenHPC repo and install desired components

•  Convenience aliases are provided to group related functionality

22

Add provisioning
components

Add SLURM server
components

Example optional
configuration enabling
IPoIB (e.g. to support
Lustre over IB)

Install Guide - CentOS7.1 Version (v1.0)

that the OpenHPC repository be mirrored locally. The example which follows illustrates the addition of the
OpenHPC repository using the ${ohpc repo} variable.

[sms]# ohpc_repo=http://build.openhpc.community/OpenHPC:/1.0/CentOS_7.1/OpenHPC:1.0.repo

Once set, the repository can be enabled via the following:

[sms]# wget -P /etc/yum.repos.d ${ohpc_repo}

In addition to the OpenHPC package repository, the master host also requires access to the standard
base OS distro repositories in order to resolve necessary dependencies. For CentOS7.1, the requirements are
to have access to both the base OS and EPEL repositories for which mirrors are freely available online:

• CentOS-7 - Base 7.1.1503 (e.g. http://mirror.centos.org/centos/7.1.1503/os/x86 64)
• EPEL 7 (e.g. http://download.fedoraproject.org/pub/epel/7/x86 64)

3.2 Installation template

The collection of command-line instructions that follow in this guide, when combined with local site inputs,
can be used to implement a bare-metal system installation and configuration. The format of these com-
mands is intended to be usable via direct cut and paste (with variable substitution for site-specific settings).
Alternatively, the OpenHPC documentation package includes a template script which includes a summary of
all of the commands used herein. This script can be used in conjunction with a simple text file to define the
local site variables defined in the previous section (§ 1.4) and is provided as a convenience for administrators.
For additional information on accessing this script, please see Appendix A.

3.3 Add provisioning services on master node

With the OpenHPC repository enabled, we can now begin adding desired components onto the master server.
This repository provides a number of aliases that group logical components together in order to help aid
in this process. For reference, a complete list of available group aliases and RPM packages available via
OpenHPC are provided in Appendix B. To add support for provisioning services, the following commands
illustrate addition of a common base package followed by the Warewulf provisioning system.

[sms]# yum -y groupinstall ohpc-base
[sms]# yum -y groupinstall ohpc-warewulf

Provisioning services with Warewulf rely on DHCP, TFTP, and HTTP network protocols. Depending
on the local Base OS configuration on the SMS host, default firewall rules may prohibit these services.
Consequently, this recipe assumes that the local firewall running on the SMS host is disabled. If installed,
the default firewall service can be disabled as follows:

[sms]# systemctl disable firewalld
[sms]# systemctl stop firewalld

HPC systems typically rely on synchronized clocks throughout the system and the NTP protocol can be
used to facilitate this synchronization. To enable NTP services on the SMS host with a specific ntp server
${ntp server}, issue the following:

[sms]# systemctl enable ntpd.service
[sms]# echo "server ${ntp_server}" >> /etc/ntp.conf
[sms]# systemctl restart ntpd

8 Rev: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

3.4 Add resource management services on master node

The following command adds the Slurm workload manager server components to the chosen master host.
Note that client-side components will be added to the corresponding compute image in a subsequent step.

[sms]# yum -y groupinstall ohpc-slurm-server

Slurm requires the designation of a system user that runs the underlying resource management daemons.
The default configuration file that is supplied with the OpenHPC build of Slurm identifies this SlurmUser
to be a dedicated user named “slurm” and this user must exist. The following command can be used to add
this user to the master server:

[sms]# useradd slurm

3.5 Add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# yum -y groupinstall "InfiniBand Support"
[sms]# yum -y install infinipath-psm

Load IB drivers
[sms]# systemctl start rdma

With the InfiniBand drivers included, you can also enable (optional) IPoIB functionality which provides
a mechanism to send IP packets over the IB network. If you plan to mount a Lustre file system over
InfiniBand (see §3.7.4.4 for additional details), then having IPoIB enabled is a requirement for the Lustre
client. OpenHPC provides a template configuration file to aid in setting up an ib0 interface on the master

host. To use, copy the template provided and update the ${sms ipoib} and ${ipoib netmask} entries to
match local desired settings (alter ib0 naming as appropriate if system contains dual-ported or multiple
HCAs).

[sms]# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

Define local IPoIB address and netmask
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0
[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0

Initiate ib0
[sms]# ifup ib0

3.6 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with CentOS7.1 and to
support local provisioning using a second private interface (refer to Figure 1).

9 Rev: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

3.4 Add resource management services on master node

The following command adds the Slurm workload manager server components to the chosen master host.
Note that client-side components will be added to the corresponding compute image in a subsequent step.

[sms]# yum -y groupinstall ohpc-slurm-server

Slurm requires the designation of a system user that runs the underlying resource management daemons.
The default configuration file that is supplied with the OpenHPC build of Slurm identifies this SlurmUser
to be a dedicated user named “slurm” and this user must exist. The following command can be used to add
this user to the master server:

[sms]# useradd slurm

3.5 Add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# yum -y groupinstall "InfiniBand Support"
[sms]# yum -y install infinipath-psm

Load IB drivers
[sms]# systemctl start rdma

With the InfiniBand drivers included, you can also enable (optional) IPoIB functionality which provides
a mechanism to send IP packets over the IB network. If you plan to mount a Lustre file system over
InfiniBand (see §3.7.4.4 for additional details), then having IPoIB enabled is a requirement for the Lustre
client. OpenHPC provides a template configuration file to aid in setting up an ib0 interface on the master

host. To use, copy the template provided and update the ${sms ipoib} and ${ipoib netmask} entries to
match local desired settings (alter ib0 naming as appropriate if system contains dual-ported or multiple
HCAs).

[sms]# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

Define local IPoIB address and netmask
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0
[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0

Initiate ib0
[sms]# ifup ib0

3.6 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with CentOS7.1 and to
support local provisioning using a second private interface (refer to Figure 1).

9 Rev: bf8c471

Basic Cluster Install Example

•  Recipe guides necessarily have a number of things to “cut-and-paste” if you want to
reproduce them

•  Recall that we want to use the documentation during the validation process
-  Cull out relevant commands automatically for use during CI testing

-  Seemed reasonable to make available as a script, so there is a template starting script available
with the documentation RPM, can be used for local installation and customization

23

Install Guide - CentOS7.1 Version (v1.0)

Appendices

A Installation Template

This appendix highlights the availability of a companion installation script that is included with OpenHPC
documentation. This script, when combined with local site inputs, can be used to implement a starting
recipe for bare-metal system installation and configuration. This template script is used during validation
e↵orts to test cluster installations and is provided as a convenience for administrators as a starting point for
potential site customization.

The template script relies on the use of a simple text file to define local site variables that were outlined
in §1.4. By default, the template install script attempts to use local variable settings sourced from the /opt/
ohpc/pub/doc/recipes/vanilla/input.local file, however, this choice can be overridden by the use of the
${OHPC INPUT LOCAL} environment variable. The template install script is intended for execution on the SMS
master host and is installed as part of the docs-ohpc package into /opt/ohpc/pub/doc/recipes/vanilla/
recipe.sh. After enabling the OpenHPC repository and reviewing the guide for additional information on
the intent of the commands, the general starting approach for using this template is as follows:

1. Install the docs-ohpc package

[sms]# yum -y install docs-ohpc

2. Copy the provided template input file to use as a starting point to define local site settings:

[sms]# cp /opt/ohpc/pub/doc/recipes/vanilla/input.local input.local

3. Update input.local with desired settings

4. Copy the template installation script which contains command-line instructions culled from this guide.

[sms]# cp -p /opt/ohpc/pub/doc/recipes/vanilla/recipe.sh .

5. Review and edit recipe.sh to suite.

6. Use environment variable to define local input file and execute recipe.sh to perform a local installation.

[sms]# export OHPC_INPUT_LOCAL=./input.local
[sms]# ./recipe.sh

Tip

Note that the template script provided is intended for use during initial installation and is not designed for
repeated execution. If modifications are required after using the script initially, we recommend running the
relevant subset of commands interactively.

24 Rev: bf8c471

24

Integration Testing

Integration/Test/Validation

Testing intent is to build upon existing validation efforts and augment
component-level validation with targeted cluster-validation and scaling
initiatives including:

 •  install recipes
•  cross-package interaction
•  development environment

•  scale/performance testing
•  mimic use cases common in HPC deployments
•  upgrade mechanism

OS Distribution

Hardware +

Integrated Cluster Testing

+

Dev
 Tools

Parallel
Libs

Perf.
Tools

User Env

Mini
Apps

Serial
Libs

System
Tools

Resource
Manager

Provisioner

I/O Libs

Compilers

Software

 OpenHPC

Individual Component Validation

Integration/Test/Validation

•  To facilitate global efforts in diagnostics/validation, we have devised a
standalone integration test infrastructure

•  Intent was to create families of tests that could be used during:
-  initial install process (can we build a cluster?)
-  post-install process (does it work?)
-  developing tests that touch all of the major components (can we compile

against 3rd party libraries, will they execute under resource manager, etc)

•  Requires both root-level and user-level tests:
-  Includes build and test of benchmark kernels that are not part of install RPMs

•  miniFE
•  miniDFT
•  HPCG
•  Parallel research kernels (PRK)

26

Provisioning OOB
Mgmt O/S Config

Mgmt.
Resource
Manager

User
Env Fabric Node-Level

Perf I/O 3rd Party
Libs Apps

Root Level User Space

Post Install Integration Tests - Overview

Global testing harness
includes a number of
embedded subcomponents:

•  harness is autotools based

•  major components have
configuration options to
enable/disable

•  this example shows root-
level tests

27

------------------------------------- SUMMARY -------------------------------------

Package version............... : cmt-0.11.0

Build user.................... : root
Build host.................... : master4-centos71.localdomain
Configure date................ : 2015-07-06 06:39
Build architecture............ : x86_64-unknown-linux-gnu

Submodule Configuration:

 Base operating system..... : enabled
 Out of band tools......... : enabled
 Hardware benchmarks....... : enabled
 Cluster checker........... : enabled
 Lustre client............. : enabled
 ORCM data collection...... : enabled

Root

Example ./configure output

Post Install Integration Tests - Overview

This example highlights
user-level tests:

•  end user tests need to touch
all of the supported compiler
and MPI families -

•  we abstract this to repeat the
tests with different compiler/
MPI environments:
•  gcc/Intel compiler toolchains
•  Intel, OpenMPI, MVAPICH2

MPI families

28

Package version............... : cmt-0.11.0

Build user.................... : kwschulz
Build host.................... : master4-centos71.localdomain

Submodule Configuration:

User Environment:
 RMS test harness.......... : enabled
 Munge..................... : enabled
 Apps...................... : enabled
 Compilers................. : enabled
 MPI....................... : enabled
 HSN....................... : enabled
 Modules................... : enabled
 OOM....................... : enabled
Dev Tools:
 Intel Inspector........... : enabled
 Valgrind.................. : enabled
 R base package............ : enabled
 TBB....................... : enabled
 CILK...................... : enabled
Performance Tools:
 mpiP Profiler........ : enabled
 Intel Advisor XE.......... : enabled
 Intel Trace Analyzer...... : enabled
 Intel Vtune Amplifier..... : enabled
 Papi...................... : enabled
 PETSc..................... : enabled
 TAU....................... : enabled
Libraries:
 Boost : enabled
 Boost MPI................. : enabled
 FFTW...................... : enabled
 GSL....................... : enabled
 HDF5...................... : enabled
 HYPRE..................... : enabled
 IMB....................... : enabled
 Metis..................... : enabled
 MUMPS..................... : enabled
 NetCDF.................... : enabled
 Numpy..................... : enabled
 PHDF5..................... : enabled
 Scipy..................... : enabled
 Trilinos : enabled

Non-root

Example ./configure output

29

Integration Tests - Let’s see one submodule test in action
 Lmod user environment

•  These are examples
that primarily test
interactive
commands

•  We are using the
Bash Automated
Testing System (Bats)
for these tests
-  a TAP-complaint

framework for Bash
-  available on GitHub

•  We have extended
Bats to:
-  create Junit output

for parsing into
Jenkins CI
environment

-  capture execution
runtimes

$./interactive_commands  
 ✓ [modules] module purge
 ✓ [modules] module list
 ✓ [modules] module help
 ✓ [modules] module load/unload
 ✓ [modules] module whatis
 ✓ [modules] module swap
 ✓ [modules] path updated

7 tests, 0 failures  
 
$./rm_execution
 ✓ [modules] env variable passes through (slurm)
 ✓ [modules] loaded module passes through (slurm)
 ✓ [module] module commands available (slurm)
 ✓ [module] module load propagates thru RMS (slurm)

4 tests, 0 failures

Lmod submodule

8/12/2015 (15.31) - SLES12 #936 modules [Jenkins]

http://10.23.187.83:8080/view/15.31/job/(15.31)%20-%20SLES12/936/testReport/UserLevelTests/modules/ 1/1

 log in

Test Result : modules
0 failures (±0)

11 tests (±0)
Took 8.9 sec.

All Tests

Test name Duration Status
[module] module commands available (slurm) 0.49 sec Passed
[module] module load propagates thru RMS (slurm) 0.62 sec Passed
[modules] env variable passes through (slurm) 0.44 sec Passed
[modules] loaded module passes through (slurm) 0.54 sec Passed
[modules] module help 0.47 sec Passed
[modules] module list 0.37 sec Passed
[modules] module load/unload 2.9 sec Passed

[modules] module purge 0.14 sec Passed
[modules] module swap 0.94 sec Passed
[modules] module whatis 0.46 sec Passed
[modules] path updated 1.4 sec Passed

 Back to Project

 Status

 Changes

 Console Output

 View as plain text

 View Build Information

 History

 Parameters

 Metadata

 Locked Resources

 Parameters

 Environment Variables

 Git Build Data

 Git Build Data

 Test Result

 Compare environment

 Previous Build

 Next Build

Jenkins 15.31 (15.31) - SLES12 #936 Test Results ENABLE AUTO REFRESH

UserLevelTests modules

Snapshot of Complete Integration Suite

Currently running in excess of 1,700 tests within CI environment

30

8/12/2015 (15.31) - SLES12 #936 Test Results [Jenkins]

http://10.23.187.83:8080/view/15.31/job/(15.31)%20-%20SLES12/936/testReport/ 1/1

 log in

Test Result
0 failures (±0)

1,706 tests (±0)
Took 1 hr 10 min.

All Tests

Package ↑ Duration Fail (diff) Skip (diff) Pass (diff) Total (diff)

UserLevelTests 1 hr 10
min 0 0 1669 1669

RootLevelTests 0 ms 0 0 37 37

 Back to Project

 Status

 Changes

 Console Output

 View as plain text

 View Build Information

 History

 Parameters

 Metadata

 Locked Resources

 Parameters

 Environment Variables

 Git Build Data

 Git Build Data

 Test Result

 Compare environment

 Previous Build

 Next Build

Jenkins 15.31 (15.31) - SLES12 #936 Test Results ENABLE AUTO REFRESH

Tested on Mellanox FDR and
True Scale

Quick summary on current release

•  Community collateral
-  Info Site: http://openhpc.community

-  GitHub: https://github.com/openhpc/ohpc
-  Build: https://build.openhpc.community

-  Yum Repo: http://build.openhpc.community/OpenHPC:/1.0/CentOS_7.1/OpenHPC:1.0.repo
-  Future: CI visibility

•  Participation
-  mailing lists for questions, developer interactions and announcements:

http://openhpc.community/support/mail-lists/

-  suggest additional components for selection; better yet, help with integrating and testing new
components

-  share site knowledge through development of customized usage/install recipes

-  host/contribute test infrastructure

31

1.0 Release

of defined convenience groups 27
of provided RPMs in Repo 255
Repo size 2.5 G
Size of example compute image ~300 MB
Integration test runtime (4-node cluster) ~1 hr 20 min
of root-level integration tests 37
of user-level integration tests 1,765

Thanks for your Time - Questions?

karl.w.schulz@intel.com

http://openhpc.community
https://github.com/openhpc/ohpc
https://build.openhpc.community (repo)

http://openhpc.community

