Open
Description
Steps To Reproduce
In SageCell,
H = matrix(RR,
[[-3, 0, 0, -1, 0, -1, -1, 0],
[ 0, -1, -1, 0, -1, 0, 0, -1],
[ 0, -1, -1, 0, -1, 0, 0, -1],
[-1, 0, 0, 1, 0, -1, -1, 0],
[ 0, -1, -1, 0, -1, 0, 0, -1],
[-1, 0, 0, -1, 0, 1, -1, 0],
[-1, 0, 0, -1, 0, -1, 1, 0],
[ 0, -1, -1, 0, -1, 0, 0, 3]]
)
cp = H.charpoly()
mp = H.minpoly()
print('Characteristic polynomial:', cp)
print('Minimal polynomial:', mp)
print(H^5 + 2*H^4 - 20*H^3 - 24*H^2 + 96*H)
outputs
Characteristic polynomial: x^8 - 24.0000000000000*x^6 + 16.0000000000000*x^5 + 144.000000000000*x^4 - 192.000000000000*x^3
Minimal polynomial: x^8 - 24.0000000000000*x^6 + 16.0000000000000*x^5 + 144.000000000000*x^4 - 192.000000000000*x^3
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000]
Defining H
with QQ
correctly returns the above polynomial as the minimal polynomial.
Expected Behavior
I should get the correct minimal polynomial x^5 + 2*x^4 - 20*x^3 - 24*x^2 + 96*x
in RR
.
Actual Behavior
I only get the correct answer in QQ
.
Additional Information
This is also somewhat strange to me because the matrix given has some eigenvalues which are not in QQ
(it has an eigenvalue 2*sqrt(3)
).
Environment
- Sage Version: SageCell
Checklist
- I have searched the existing issues for a bug report that matches the one I want to file, without success.
- I have read the documentation and troubleshoot guide