diff --git a/compiler/rustc_codegen_ssa/src/mir/operand.rs b/compiler/rustc_codegen_ssa/src/mir/operand.rs index b0d191528a891..3b08f558012ff 100644 --- a/compiler/rustc_codegen_ssa/src/mir/operand.rs +++ b/compiler/rustc_codegen_ssa/src/mir/operand.rs @@ -347,13 +347,6 @@ impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> { let val = if field.is_zst() { OperandValue::ZeroSized - } else if let BackendRepr::SimdVector { .. } = self.layout.backend_repr { - // codegen_transmute_operand doesn't support SIMD, but since the previous - // check handled ZSTs, the only possible field access into something SIMD - // is to the `non_1zst_field` that's the same SIMD. (Other things, even - // just padding, would change the wrapper's representation type.) - assert_eq!(field.size, self.layout.size); - self.val } else if field.size == self.layout.size { assert_eq!(offset.bytes(), 0); fx.codegen_transmute_operand(bx, *self, field) diff --git a/compiler/rustc_codegen_ssa/src/mir/rvalue.rs b/compiler/rustc_codegen_ssa/src/mir/rvalue.rs index e90463aacc8a1..0144a403815a0 100644 --- a/compiler/rustc_codegen_ssa/src/mir/rvalue.rs +++ b/compiler/rustc_codegen_ssa/src/mir/rvalue.rs @@ -2,12 +2,12 @@ use rustc_abi::{self as abi, FIRST_VARIANT}; use rustc_middle::ty::adjustment::PointerCoercion; use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout}; use rustc_middle::ty::{self, Instance, Ty, TyCtxt}; -use rustc_middle::{bug, mir}; +use rustc_middle::{bug, mir, span_bug}; use rustc_session::config::OptLevel; use tracing::{debug, instrument}; use super::operand::{OperandRef, OperandRefBuilder, OperandValue}; -use super::place::{PlaceRef, codegen_tag_value}; +use super::place::{PlaceRef, PlaceValue, codegen_tag_value}; use super::{FunctionCx, LocalRef}; use crate::common::{IntPredicate, TypeKind}; use crate::traits::*; @@ -229,6 +229,18 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { operand: OperandRef<'tcx, Bx::Value>, cast: TyAndLayout<'tcx>, ) -> OperandValue { + if let abi::BackendRepr::Memory { .. } = cast.backend_repr + && !cast.is_zst() + { + span_bug!(self.mir.span, "Use `codegen_transmute` to transmute to {cast:?}"); + } + + // `Layout` is interned, so we can do a cheap check for things that are + // exactly the same and thus don't need any handling. + if abi::Layout::eq(&operand.layout.layout, &cast.layout) { + return operand.val; + } + // Check for transmutes that are always UB. if operand.layout.size != cast.size || operand.layout.is_uninhabited() @@ -241,11 +253,9 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { return OperandValue::poison(bx, cast); } + let cx = bx.cx(); match (operand.val, operand.layout.backend_repr, cast.backend_repr) { _ if cast.is_zst() => OperandValue::ZeroSized, - (_, _, abi::BackendRepr::Memory { .. }) => { - bug!("Cannot `codegen_transmute_operand` to non-ZST memory-ABI output {cast:?}"); - } (OperandValue::Ref(source_place_val), abi::BackendRepr::Memory { .. }, _) => { assert_eq!(source_place_val.llextra, None); // The existing alignment is part of `source_place_val`, @@ -256,16 +266,38 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { OperandValue::Immediate(imm), abi::BackendRepr::Scalar(from_scalar), abi::BackendRepr::Scalar(to_scalar), - ) => OperandValue::Immediate(transmute_scalar(bx, imm, from_scalar, to_scalar)), + ) if from_scalar.size(cx) == to_scalar.size(cx) => { + OperandValue::Immediate(transmute_scalar(bx, imm, from_scalar, to_scalar)) + } ( OperandValue::Pair(imm_a, imm_b), abi::BackendRepr::ScalarPair(in_a, in_b), abi::BackendRepr::ScalarPair(out_a, out_b), - ) => OperandValue::Pair( - transmute_scalar(bx, imm_a, in_a, out_a), - transmute_scalar(bx, imm_b, in_b, out_b), - ), - _ => bug!("Cannot `codegen_transmute_operand` {operand:?} to {cast:?}"), + ) if in_a.size(cx) == out_a.size(cx) && in_b.size(cx) == out_b.size(cx) => { + OperandValue::Pair( + transmute_scalar(bx, imm_a, in_a, out_a), + transmute_scalar(bx, imm_b, in_b, out_b), + ) + } + _ => { + // For any other potentially-tricky cases, make a temporary instead. + // If anything else wants the target local to be in memory this won't + // be hit, as `codegen_transmute` will get called directly. Thus this + // is only for places where everything else wants the operand form, + // and thus it's not worth making those places get it from memory. + // + // Notably, Scalar ⇌ ScalarPair cases go here to avoid padding + // and endianness issues, as do SimdVector ones to avoid worrying + // about things like f32x8 ⇌ ptrx4 that would need multiple steps. + let align = Ord::max(operand.layout.align.abi, cast.align.abi); + let size = Ord::max(operand.layout.size, cast.size); + let temp = PlaceValue::alloca(bx, size, align); + bx.lifetime_start(temp.llval, size); + operand.val.store(bx, temp.with_type(operand.layout)); + let val = bx.load_operand(temp.with_type(cast)).val; + bx.lifetime_end(temp.llval, size); + val + } } } @@ -949,37 +981,6 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { /// layout in this code when the right thing will happen anyway. pub(crate) fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>) -> bool { match *rvalue { - mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, cast_ty) => { - let operand_ty = operand.ty(self.mir, self.cx.tcx()); - let cast_layout = self.cx.layout_of(self.monomorphize(cast_ty)); - let operand_layout = self.cx.layout_of(self.monomorphize(operand_ty)); - match (operand_layout.backend_repr, cast_layout.backend_repr) { - // When the output will be in memory anyway, just use its place - // (instead of the operand path) unless it's the trivial ZST case. - (_, abi::BackendRepr::Memory { .. }) => cast_layout.is_zst(), - - // Otherwise (for a non-memory output) if the input is memory - // then we can just read the value from the place. - (abi::BackendRepr::Memory { .. }, _) => true, - - // When we have scalar immediates, we can only convert things - // where the sizes match, to avoid endianness questions. - (abi::BackendRepr::Scalar(a), abi::BackendRepr::Scalar(b)) => - a.size(self.cx) == b.size(self.cx), - (abi::BackendRepr::ScalarPair(a0, a1), abi::BackendRepr::ScalarPair(b0, b1)) => - a0.size(self.cx) == b0.size(self.cx) && a1.size(self.cx) == b1.size(self.cx), - - // Mixing Scalars and ScalarPairs can get quite complicated when - // padding and undef get involved, so leave that to the memory path. - (abi::BackendRepr::Scalar(_), abi::BackendRepr::ScalarPair(_, _)) | - (abi::BackendRepr::ScalarPair(_, _), abi::BackendRepr::Scalar(_)) => false, - - // SIMD vectors aren't worth the trouble of dealing with complex - // cases like from vectors of f32 to vectors of pointers or - // from fat pointers to vectors of u16. (See #143194 #110021 ...) - (abi::BackendRepr::SimdVector { .. }, _) | (_, abi::BackendRepr::SimdVector { .. }) => false, - } - } mir::Rvalue::Ref(..) | mir::Rvalue::CopyForDeref(..) | mir::Rvalue::RawPtr(..) | diff --git a/tests/codegen/intrinsics/transmute.rs b/tests/codegen/intrinsics/transmute.rs index c9a1cd58af338..91cff38773d78 100644 --- a/tests/codegen/intrinsics/transmute.rs +++ b/tests/codegen/intrinsics/transmute.rs @@ -191,22 +191,28 @@ pub unsafe fn check_byte_from_bool(x: bool) -> u8 { // CHECK-LABEL: @check_to_pair( #[no_mangle] pub unsafe fn check_to_pair(x: u64) -> Option { - // CHECK: %_0 = alloca [8 x i8], align 4 - // CHECK: store i64 %x, ptr %_0, align 4 + // CHECK: %[[TEMP:.+]] = alloca [8 x i8], align 8 + // CHECK: call void @llvm.lifetime.start.p0(i64 8, ptr %[[TEMP]]) + // CHECK: store i64 %x, ptr %[[TEMP]], align 8 + // CHECK: %[[PAIR0:.+]] = load i32, ptr %[[TEMP]], align 8 + // CHECK: %[[PAIR1P:.+]] = getelementptr inbounds i8, ptr %[[TEMP]], i64 4 + // CHECK: %[[PAIR1:.+]] = load i32, ptr %[[PAIR1P]], align 4 + // CHECK: call void @llvm.lifetime.end.p0(i64 8, ptr %[[TEMP]]) + // CHECK: insertvalue {{.+}}, i32 %[[PAIR0]], 0 + // CHECK: insertvalue {{.+}}, i32 %[[PAIR1]], 1 transmute(x) } // CHECK-LABEL: @check_from_pair( #[no_mangle] pub unsafe fn check_from_pair(x: Option) -> u64 { - // The two arguments are of types that are only 4-aligned, but they're - // immediates so we can write using the destination alloca's alignment. - const { assert!(std::mem::align_of::>() == 4) }; - - // CHECK: %_0 = alloca [8 x i8], align 8 - // CHECK: store i32 %x.0, ptr %_0, align 8 - // CHECK: store i32 %x.1, ptr %0, align 4 - // CHECK: %[[R:.+]] = load i64, ptr %_0, align 8 + // CHECK: %[[TEMP:.+]] = alloca [8 x i8], align 8 + // CHECK: call void @llvm.lifetime.start.p0(i64 8, ptr %[[TEMP]]) + // CHECK: store i32 %x.0, ptr %[[TEMP]], align 8 + // CHECK: %[[PAIR1P:.+]] = getelementptr inbounds i8, ptr %[[TEMP]], i64 4 + // CHECK: store i32 %x.1, ptr %[[PAIR1P]], align 4 + // CHECK: %[[R:.+]] = load i64, ptr %[[TEMP]], align 8 + // CHECK: call void @llvm.lifetime.end.p0(i64 8, ptr %[[TEMP]]) // CHECK: ret i64 %[[R]] transmute(x) }