This package provides an elegant, fluent interface for interacting with the Qdrant Vector Database in Laravel. Qdrant is a vector similarity search engine that makes it easy to store and search for embeddings, making it ideal for AI-powered applications.
Key features:
- Simple collection management
- Fluent search API with filtering and grouping
- Efficient point operations (insert, upsert, delete)
- Vector operations (update, delete)
- Laravel Facade support
- Convenient payload handling
composer require mcpuishor/qdrant-laravel
php artisan vendor:publish --tag=qdrant-laravel-config
This will create a config/qdrant-laravel.php
file where you can set your Qdrant connections and defaults.
Update your .env
file with your Qdrant host details:
QDRANT_DEFAULT=main
QDRANT_HOST=http://localhost:6333
QDRANT_COLLECTION=collection_name
QDRANT_VECTOR_SIZE=1536
QDRANT_DEFAULT_DISTANCE_METRIC=Cosine
The config/qdrant-laravel.php
file allows multiple connections:
return [
'default' => env('QDRANT_DEFAULT', 'main'),
'connections' => [
'main' => [
'host' => env('QDRANT_HOST', 'http://localhost:6333'),
'api_key' => env('QDRANT_API_KEY', null),
'collection' => env('QDRANT_COLLECTION', 'default_collection'),
'vector_size' => env('QDRANT_VECTOR_SIZE', 128),
],
],
'default_distance_metric' => env('QDRANT_DEFAULT_DISTANCE_METRIC', 'Cosine'),
];
A collection must contain at least one vector. An optional parameter options
can contain additional
parameters described as an associative array. See the Qdrant documentation for details. The options can be specified using arrays
or DataObjects defined in the package.
The response is a boolean value, unless an exception is thrown.
use \Mcpuishor\QdrantLaravel\Facades\Schema;
use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric;
use \Mcpuishor\QdrantLaravel\DTOs\Vector;
$vector = Vector::fromArray([
'size' => 128,
'distance' => DistanceMetric::COSINE
]);
$response = Schema::create(
name: "new_collection",
vector: $vector,
options: []
);
if ($response) {
echo "Schema created successfully";
}
You can switch the connection at runtime. The connection must be defined in the
config\qdrant-laravel.php
file.
use \Mcpuishor\QdrantLaravel\Schema;
use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric;
use \Mcpuishor\QdrantLaravel\DTOs\Vector;
$vector = Vector::fromArray([
'size' => 128,
'distance' => DistanceMetric::COSINE
]);
$response = Schema::connection('backup')
->create(
name: "new_collection",
vector: $vector,
);
if ($response) {
echo "Schema created successfully";
}
A collection can contain multiple vectors per point. They need to be passed on to the Schema::create
as an array containing the definitions of each vector. The vectors can have different definitions. The
optional parameters can be specified using Data Objects defined in the package.
use \Mcpuishor\QdrantLaravel\Schema;
use \Mcpuishor\QdrantLaravel\QdrantTransport;
use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric;
use \Mcpuishor\QdrantLaravel\DTOs\Vector;
use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig;
$vector1 = Vector::fromArray([
'size' => 128,
'distance' => DistanceMetric::COSINE
//optional parameters
'on_disk' => true,
]);
$vector2 = Vector::fromArray([
'size' => 1024,
'distance' => DistanceMetric::COSINE,
//optional parameters
'hsnw_config' => Hnswconfig::fromArray([
'm' => 10,
'ef_construct' => 4,
'on_disk' => true,
]),
]);
$response = Schema::create(
name: "new_collection",
vector: array($vector1, $vector2),
);
if ($response) {
echo "Schema created successfully";
}
To delete a collection, you can call the delete
method on the Schema
facade.
It returns a Mcpuishor\QdrantLaravel\DTOs\Response
object.
use \Mcpuishor\QdrantLaravel\Facades\Schema;
$result = Schema::delete('collection_name');
if ($result) {
echo "Collection has been successfully deleted.";
}
To check if the collection defined in the config on the current connection exists:
use \Mcpuishor\QdrantLaravel\Facades\Schema;
if ( Schema::exists() ) {
echo "Collection exists.";
}
At the same time, you can check the existence of a different collection on the same connection:
use \Mcpuishor\QdrantLaravel\Facades\Schema;
if ( Schema::exists( 'another_collection' ) ) {
echo "Collection 'another_collection' exists.";
}
Updating parameters on an existing collection can be done in a similar fashion to creating one. The parameters updated can be specified using arrays or Data Objects defined in the package.
Updating the collection defined in the config\qdrant-laravel.php
:
use \Mcpuishor\QdrantLaravel\Facades\Schema;
use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig;
use \Mcpuishor\QdrantLaravel\DTOs\Collection\Params;
Schema::update(
vectors: [
],
options: [
'hnsw_config' => HnswConfig::fromArray([
'm' => 100,
'ef_construct' => 5,
]),
'params' => Params::fromArray([
'replication_factor' => 4,
'on_disk_payload' => true,
]),
]
);
Indexes in a Qdrant vector collection are created on the payload for each vector. For more details see the Qdrant documentation.
To create a payload index over a field:
use \Mcpuishor\QdrantLaravel\Facades\Qdrant;
use \Mcpuishor\QdrantLaravel\Enums\FieldType;
$result = Qdrant::indexes()->add('field_name', FieldType::KEYWORD);
It returns true
if the operation was successful, or false
otherwise.
You can use dot notation to create indexes over nested fields.
By default, indexes are stored in memory. If you have large indexes, and they
need to be stored on the disk, you can use the ->onDisk()
method before
creating the index. Choose carefully when to store an index on the disk,
as this will introduce some latency in your future queries.
Qdrant v1.8.0 has introduced a parameterized variant of the integer index.
To turn the parameterized index on you can call the ->parameterized()
method before creating an integer
index. This setting is used only for integer
fields
in the payload.
Values of the lookup
and range
can be toggled in the config\qdrant-laravel.php
file.
For more information on parameterized integer indexes and how they affect performance
check the Qdrant documentation
$result = Qdrant::indexes()->parameterized()->add('field_name', FieldType::INTEGER);
It returns true
if the operation was successful, or false
otherwise.
Qdrant supports full-text search for string payload. Full-text index allows you to filter points by the presence of a word or a phrase in the payload field.
use \Mcpuishor\QdrantLaravel\Enums\TokenizerType;
use \Mcpuishor\QdrantLaravel\Facades\Qdrant;
$result = Qdrant::indexes()->fulltext('text_field_name', TokenizerType::WORD);
It returns true
if the operation was successful, or false
otherwise.
use \Mcpuishor\QdrantLaravel\Facades\Qdrant;
$result = Qdrant::indexes()->delete('payload_field');
It returns true
if the operation was successful, or false
otherwise.
The package provides a fluent interface for searching vectors in your Qdrant collection.
To perform a simple search with a vector:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
// Search using a vector
$results = Qdrant::search()
->vector([0.2, 0.3, 0.4, ...]) // Your vector data
->limit(10)
->get();
You can also search for similar points to an existing point by its ID:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
use Mcpuishor\QdrantLaravel\DTOs\Point;
$point = new Point(id: 123);
$results = Qdrant::search()
->point($point)
->limit(5)
->get();
Control what data is returned with your search results:
// Include all payload data
$results = Qdrant::search()
->vector($vector)
->withPayload()
->get();
// Include only specific payload fields
$results = Qdrant::search()
->vector($vector)
->include(['name', 'description'])
->get();
// Exclude specific payload fields
$results = Qdrant::search()
->vector($vector)
->exclude(['internal_id'])
->get();
// Include vector data in results
$results = Qdrant::search()
->vector($vector)
->withVectors()
->get();
Control the number of results and implement pagination:
// Limit results
$results = Qdrant::search()
->vector($vector)
->limit(20)
->get();
// Pagination with offset
$results = Qdrant::search()
->vector($vector)
->limit(10)
->offset(20) // Skip first 20 results
->get();
Apply filters to search results using the fluent filter API:
// Simple equality filter
$results = Qdrant::search()
->vector($vector)
->where('category', '=', 'electronics')
->get();
// Range filter
$results = Qdrant::search()
->vector($vector)
->where('price', '>=', 100)
->where('price', '<=', 500)
->get();
// Multiple conditions
$results = Qdrant::search()
->vector($vector)
->where('category', '=', 'electronics')
->where('in_stock', '=', true)
->get();
// Nested conditions
$results = Qdrant::search()
->vector($vector)
->where(function($query) {
$query->where('category', '=', 'electronics')
->orWhere('category', '=', 'gadgets');
})
->where('price', '<', 1000)
->get();
Group search results by a payload field:
// Group results by category
$results = Qdrant::search()
->vector($vector)
->groupBy('category', 5) // 5 results per group
->get();
Perform multiple searches in a single request:
$search1 = Qdrant::search()->vector($vector1)->limit(5);
$search2 = Qdrant::search()->vector($vector2)->limit(5);
$batchResults = Qdrant::search()->batch([$search1, $search2]);
Get random points from the collection:
$randomPoints = Qdrant::search()->random();
If your collection has multiple named vectors, specify which one to use:
$results = Qdrant::search()
->vector($vector)
->using('image_embedding') // Use the named vector
->get();
The package provides a recommendation system based on positive and negative examples.
Get recommendations based on positive examples:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
// Recommend based on point IDs
$recommendations = Qdrant::recommend()
->positive([123, 456]) // Points you like
->limit(10)
->get();
Refine recommendations with both positive and negative examples:
$recommendations = Qdrant::recommend()
->positive([123, 456]) // Points you like
->negative([789, 101]) // Points you don't like
->limit(10)
->get();
Control how vectors are combined for recommendations:
use Mcpuishor\QdrantLaravel\Enums\AverageVectorStrategy;
$recommendations = Qdrant::recommend()
->positive([123, 456])
->strategy(AverageVectorStrategy::WEIGHTED) // Use weighted average
->limit(10)
->get();
Available strategies include:
AverageVectorStrategy::MEAN
- Simple average of vectorsAverageVectorStrategy::WEIGHTED
- Weighted average based on similarity
The package provides methods for managing points in your Qdrant collection.
Get points by their IDs:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
// Get multiple points
$points = Qdrant::points()->get([123, 456, 789]);
// Find a single point
$point = Qdrant::points()->find(123);
Control what data is returned with the points:
// With payload (default)
$points = Qdrant::points()->withPayload()->get([123, 456]);
// Without payload
$points = Qdrant::points()->withoutPayload()->get([123, 456]);
// With vector data
$points = Qdrant::points()->withVector()->get([123, 456]);
// Without vector data (default)
$points = Qdrant::points()->withoutVector()->get([123, 456]);
Insert a new point into the collection:
use Mcpuishor\QdrantLaravel\DTOs\Point;
// Create a point
$point = new Point(
id: 123,
vector: [0.2, 0.3, 0.4, ...],
payload: ['name' => 'Example', 'category' => 'test']
);
// Insert the point
$success = Qdrant::points()->insert($point);
Insert or update multiple points:
use Mcpuishor\QdrantLaravel\PointsCollection;
use Mcpuishor\QdrantLaravel\DTOs\Point;
// Create points collection
$points = new PointsCollection([
new Point(id: 123, vector: [0.2, 0.3, 0.4, ...], payload: ['name' => 'First']),
new Point(id: 456, vector: [0.5, 0.6, 0.7, ...], payload: ['name' => 'Second'])
]);
// Upsert the points
$success = Qdrant::points()->upsert($points);
Delete points by their IDs:
// Delete specific points
$success = Qdrant::points()->delete([123, 456]);
// Delete points matching a filter
$success = Qdrant::points()
->where('category', '=', 'test')
->delete([]);
Efficiently handle large numbers of points with automatic chunking:
// Create an autochunker with chunk size of 100
$chunker = Qdrant::points()->autochunk(100);
// Add points - they'll be automatically upserted when the chunk size is reached
foreach ($largeDataset as $data) {
$point = new Point(
id: $data['id'],
vector: $data['embedding'],
payload: $data['metadata']
);
$chunker->add($point);
}
// Manually flush any remaining points
$chunker->flush();
The package provides methods for managing vectors in your Qdrant collection.
Update vectors for existing points:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
use Mcpuishor\QdrantLaravel\PointsCollection;
use Mcpuishor\QdrantLaravel\DTOs\Point;
// Create a collection of points with updated vectors
$points = new PointsCollection([
new Point(id: 123, vector: [0.2, 0.3, 0.4, ...]),
new Point(id: 456, vector: [0.5, 0.6, 0.7, ...])
]);
// Update the vectors
$success = Qdrant::vectors()->update($points);
Delete vectors for specific points:
use Mcpuishor\QdrantLaravel\Facades\Qdrant;
// Delete vectors for specific points
$success = Qdrant::vectors()->delete([123, 456]);
php artisan qdrant:migrate --collection=plants --vector-size=256 --distance-metric=euclidean --indexes='{"species":"text","age":"integer"}'
php artisan qdrant:migrate --rollback --collection=plants
The query builder and client are Macroable, allowing custom methods:
use Mcpuishor\QdrantLaravel\QdrantClient;
QdrantClient::macro('byClimate', function ($climate) {
return $this->where('climate', '=', $climate);
});
$results = Qdrant::collection('plants')->byClimate('tropical')->get();
This package simplifies working with Qdrant in Laravel, making it easy to integrate vector search and AI-powered applications. Contributions are welcome!
This package is open-source and available under the MIT License.