|
| 1 | +import numpy as np |
| 2 | + |
| 3 | + |
| 4 | +def _find_circle_center_and_tangent_points(a, b, c, r, max_ratio=1): |
| 5 | + """ |
| 6 | + Find the center of a circle and its tangent points with given vertices and radius. |
| 7 | +
|
| 8 | + Parameters |
| 9 | + ---------- |
| 10 | + a, b, c : array-like |
| 11 | + Vertices of a triangle (b is the middle vertex) with shape (2,) or (3,). |
| 12 | + r : float |
| 13 | + Radius of the circle. |
| 14 | + max_ratio : float, optional, default: 0.5 |
| 15 | + Maximum allowed ratio of the distance to the tangent point relative to the length of the triangle sides. |
| 16 | +
|
| 17 | + Returns |
| 18 | + ------- |
| 19 | + tuple |
| 20 | + Circle center, tangent point a, tangent point b as NumPy arrays. |
| 21 | + """ |
| 22 | + # Calculate the unit vectors along AB and BC |
| 23 | + norm_ab = np.linalg.norm(a - b) |
| 24 | + norm_bc = np.linalg.norm(c - b) |
| 25 | + ba_unit = (a - b) / norm_ab |
| 26 | + bc_unit = (c - b) / norm_bc |
| 27 | + |
| 28 | + dot_babc = np.dot(ba_unit, bc_unit) |
| 29 | + if dot_babc == -1: # angle is 180° |
| 30 | + return None |
| 31 | + theta = np.arccos(dot_babc) / 2 |
| 32 | + tan_theta = np.tan(theta) |
| 33 | + d = r / tan_theta |
| 34 | + if d > norm_bc * max_ratio or d > norm_ab * max_ratio: |
| 35 | + rold, dold = r, d |
| 36 | + print("r, d, norm_ab, norm_bc: ", r, d, norm_ab, norm_bc) |
| 37 | + d = min(norm_bc * max_ratio, norm_ab * max_ratio) |
| 38 | + r = d * tan_theta if theta > 0 else 0 |
| 39 | + # warnings.warn(f"Radius {rold:.4g} is too big and has been reduced to {r:.4g}") |
| 40 | + ta = b + ba_unit * d |
| 41 | + tb = b + bc_unit * d |
| 42 | + |
| 43 | + rl = (d**2 + r**2) ** 0.5 |
| 44 | + bisector = ba_unit + bc_unit |
| 45 | + unit_bisector = bisector / np.linalg.norm(bisector) |
| 46 | + circle_center = b + unit_bisector * rl |
| 47 | + |
| 48 | + return circle_center, ta, tb |
| 49 | + |
| 50 | + |
| 51 | +def _interpolate_circle(center, start, end, n_points): |
| 52 | + """ |
| 53 | + Interpolate points along a circle arc between two points. |
| 54 | +
|
| 55 | + Parameters |
| 56 | + ---------- |
| 57 | + center : array-like |
| 58 | + Center of the circle with shape (2,) or (3,). |
| 59 | + start, end : array-like |
| 60 | + Start and end points of the arc with shape (2,) or (3,). |
| 61 | + n_points : int |
| 62 | + Number of points to interpolate. |
| 63 | +
|
| 64 | + Returns |
| 65 | + ------- |
| 66 | + list |
| 67 | + List of NumPy arrays representing the interpolated points. |
| 68 | + """ |
| 69 | + angle_diff = np.arccos( |
| 70 | + np.dot(start - center, end - center) |
| 71 | + / (np.linalg.norm(start - center) * np.linalg.norm(end - center)) |
| 72 | + ) |
| 73 | + angles = np.linspace(0, angle_diff, n_points) |
| 74 | + v = start - center |
| 75 | + w = np.cross(v, end - start) |
| 76 | + w /= np.linalg.norm(w) |
| 77 | + circle_points = [ |
| 78 | + center + np.cos(angle) * v + np.sin(angle) * np.cross(w, v) for angle in angles |
| 79 | + ] |
| 80 | + return circle_points |
| 81 | + |
| 82 | + |
| 83 | +def _create_fillet_segment(a, b, c, r, N): |
| 84 | + """ |
| 85 | + Create a fillet segment with a given radius between three vertices. |
| 86 | +
|
| 87 | + Parameters |
| 88 | + ---------- |
| 89 | + a, b, c : array-like |
| 90 | + Vertices of a triangle (b is the middle vertex) with shape (2,) or (3,). |
| 91 | + r : float |
| 92 | + Radius of the fillet. |
| 93 | + N : int |
| 94 | + Number of points to interpolate along the fillet. |
| 95 | +
|
| 96 | + Returns |
| 97 | + ------- |
| 98 | + list |
| 99 | + List of NumPy arrays representing the fillet points. |
| 100 | + """ |
| 101 | + res = _find_circle_center_and_tangent_points(a, b, c, r) |
| 102 | + if res is None: |
| 103 | + return [b] |
| 104 | + circle_center, ta, tb = res |
| 105 | + return _interpolate_circle(circle_center, ta, tb, N) |
| 106 | + |
| 107 | + |
| 108 | +def create_polyline_fillet(polyline, max_radius, N): |
| 109 | + """ |
| 110 | + Create a filleted polyline with specified maximum radius and number of points. |
| 111 | +
|
| 112 | + Parameters |
| 113 | + ---------- |
| 114 | + polyline : list or array-like |
| 115 | + List or array of vertices forming the polyline with shape (N, 2) or (N, 3). |
| 116 | + max_radius : float |
| 117 | + Maximum radius of the fillet. |
| 118 | + N : int |
| 119 | + Number of points to interpolate along the fillet. |
| 120 | +
|
| 121 | + Returns |
| 122 | + ------- |
| 123 | + numpy.ndarray |
| 124 | + Array of filleted points with shape (M, 2) or (M, 3), where M depends on the number of |
| 125 | + filleted segments. |
| 126 | + """ |
| 127 | + points = np.array(polyline) |
| 128 | + radius = max_radius |
| 129 | + if radius == 0 or N == 0: |
| 130 | + return points |
| 131 | + |
| 132 | + closed = np.allclose(points[0], points[-1]) |
| 133 | + if closed: |
| 134 | + points = np.append(points, points[1:2], axis=0) |
| 135 | + filleted_points = [points[0]] |
| 136 | + n = len(points) |
| 137 | + for i in range(1, n - 1): |
| 138 | + a, b, c = ( |
| 139 | + filleted_points[-1], |
| 140 | + points[i], |
| 141 | + points[i + 1], |
| 142 | + ) |
| 143 | + if closed and i == n - 2: |
| 144 | + c = filleted_points[1] |
| 145 | + try: |
| 146 | + filleted_points.extend(_create_fillet_segment(a, b, c, radius, N)) |
| 147 | + except ValueError: |
| 148 | + raise ValueError(f"The radius {radius} on position vertex {i} is too large") |
| 149 | + if closed: |
| 150 | + filleted_points[0] = filleted_points[-1] |
| 151 | + else: |
| 152 | + filleted_points = np.append(filleted_points, points[-1:], axis=0) |
| 153 | + return np.array(filleted_points) |
| 154 | + |
| 155 | + |
| 156 | +def _bisectors(polyline): |
| 157 | + """ |
| 158 | + Calculate and normalize bisectors of the segments in a polyline. |
| 159 | +
|
| 160 | + Parameters |
| 161 | + ---------- |
| 162 | + polyline : numpy.ndarray |
| 163 | + A 2D array of shape (N, 3) representing N vertices of a polyline in 3D space. |
| 164 | +
|
| 165 | + Returns |
| 166 | + ------- |
| 167 | + bisectors_normalized : numpy.ndarray |
| 168 | + A 2D array of shape (N-2, 3) representing normalized bisectors for each pair of consecutive |
| 169 | + segments in the polyline. |
| 170 | + """ |
| 171 | + # Calculate the segment vectors |
| 172 | + segment_vectors = np.diff(polyline, axis=0) |
| 173 | + |
| 174 | + # Normalize the segment vectors |
| 175 | + normalized_vectors = ( |
| 176 | + segment_vectors / np.linalg.norm(segment_vectors, axis=1)[:, np.newaxis] |
| 177 | + ) |
| 178 | + |
| 179 | + # Calculate the bisectors by adding normalized adjacent vectors |
| 180 | + bisectors = normalized_vectors[:-1] + normalized_vectors[1:] |
| 181 | + |
| 182 | + # Normalize the bisectors |
| 183 | + bisectors_normalized = bisectors / np.linalg.norm(bisectors, axis=1)[:, np.newaxis] |
| 184 | + |
| 185 | + return bisectors_normalized |
| 186 | + |
| 187 | + |
| 188 | +def _line_plane_intersection(plane_point, plane_normal, line_points, line_directions): |
| 189 | + """ |
| 190 | + Find the intersection points of multiple lines and a plane. |
| 191 | +
|
| 192 | + Parameters |
| 193 | + ---------- |
| 194 | + plane_point : numpy.ndarray |
| 195 | + A 1D array of shape (3,) representing a point on the plane. |
| 196 | + plane_normal : numpy.ndarray |
| 197 | + A 1D array of shape (3,) representing the normal vector of the plane. |
| 198 | + line_points : numpy.ndarray |
| 199 | + A 2D array of shape (N, 3) representing N points on the lines. |
| 200 | + line_directions : numpy.ndarray |
| 201 | + A 2D array of shape (N, 3) representing the direction vectors of the lines. |
| 202 | +
|
| 203 | + Returns |
| 204 | + ------- |
| 205 | + intersection_points : numpy.ndarray |
| 206 | + A 2D array of shape (N, 3) representing the intersection points of the lines and the plane. |
| 207 | + """ |
| 208 | + # Calculate the plane equation coefficients A, B, C, and D |
| 209 | + A, B, C = plane_normal |
| 210 | + x0, y0, z0 = plane_point |
| 211 | + D = -np.dot(plane_normal, plane_point) |
| 212 | + |
| 213 | + # Calculate the parameter t |
| 214 | + t = -(A * line_points[:, 0] + B * line_points[:, 1] + C * line_points[:, 2] + D) / ( |
| 215 | + A * line_directions[:, 0] |
| 216 | + + B * line_directions[:, 1] |
| 217 | + + C * line_directions[:, 2] |
| 218 | + ) |
| 219 | + |
| 220 | + # Find the intersection points by plugging t back into the parametric line equation |
| 221 | + intersection_points = line_points + np.expand_dims(t, axis=-1) * line_directions |
| 222 | + |
| 223 | + return intersection_points |
| 224 | + |
| 225 | + |
| 226 | +def move_grid_along_polyline(verts, grid): |
| 227 | + """ |
| 228 | + Move a grid along a polyline, defined by the vertices. |
| 229 | +
|
| 230 | + Parameters |
| 231 | + ---------- |
| 232 | + verts : np.ndarray, shape (n, d) |
| 233 | + Array of polyline vertices, where n is the number of vertices and d is the dimension. |
| 234 | + grid : np.ndarray, shape (m, d) |
| 235 | + Array of grid points to move along the polyline, where m is the number of points. |
| 236 | +
|
| 237 | + Returns |
| 238 | + ------- |
| 239 | + np.ndarray, shape (m, n, d) |
| 240 | + Array of moved grid points along the polyline, with the same dimensions as the input grid. |
| 241 | + """ |
| 242 | + grid = grid.copy() |
| 243 | + pts = [grid] |
| 244 | + normals = _bisectors(verts) |
| 245 | + closed = np.allclose(verts[0], verts[-1]) |
| 246 | + if closed: |
| 247 | + v_ext = np.concatenate([verts[-2:], verts[1:2]]) |
| 248 | + last_normal = _bisectors(v_ext) |
| 249 | + else: |
| 250 | + last_normal = [verts[-1] - verts[-2]] |
| 251 | + normals = np.concatenate([normals, last_normal]) |
| 252 | + for i in range(len(verts) - 1): |
| 253 | + plane_point = verts[i + 1] |
| 254 | + plane_normal = normals[i] |
| 255 | + line_points = pts[-1] |
| 256 | + line_directions = np.tile(verts[i + 1] - verts[i], (line_points.shape[0], 1)) |
| 257 | + pts1 = _line_plane_intersection( |
| 258 | + plane_point, plane_normal, line_points, line_directions |
| 259 | + ) |
| 260 | + pts.append(pts1) |
| 261 | + if closed: |
| 262 | + pts[0] = pts[-1] |
| 263 | + return np.array(pts).swapaxes(0, 1) |
0 commit comments