|
| 1 | +#include <algorithm> |
| 2 | +#include <cstdint> |
| 3 | +#include <limits> |
| 4 | +#include <random> |
| 5 | +#include <ranges> |
| 6 | +#include <vector> |
| 7 | + |
| 8 | +#if __has_include(<simd/simd.h>) |
| 9 | +#define HAS_SIMD_HEADER 1 |
| 10 | +#include <simd/simd.h> |
| 11 | +#else |
| 12 | +#define HAS_SIMD_HEADER 0 |
| 13 | +#endif |
| 14 | + |
| 15 | +#include "benchmark/benchmark.h" |
| 16 | +#include <iostream> |
| 17 | + |
| 18 | +namespace { |
| 19 | + |
| 20 | +using m44 = double __attribute__((matrix_type(4, 4))); |
| 21 | + |
| 22 | +class MatrixMult4x4Benchmark : public benchmark::Fixture { |
| 23 | +public: |
| 24 | + void SetUp(const benchmark::State &) override { |
| 25 | + std::default_random_engine generator; |
| 26 | + std::uniform_real_distribution<double> distribution(-10.0, 10.0); |
| 27 | + |
| 28 | + mats.clear(); |
| 29 | + mats_res.clear(); |
| 30 | + for (unsigned X = 0; X < kDataSize; ++X) { |
| 31 | + m44 M; |
| 32 | + for (unsigned J = 0; J < 4; ++J) |
| 33 | + for (unsigned I = 0; I < 4; ++I) |
| 34 | + M[J][I] = distribution(generator); |
| 35 | + mats.push_back(M); |
| 36 | + mats_res.push_back(M); |
| 37 | + } |
| 38 | + |
| 39 | +#ifdef HAS_SIMD_HEADER |
| 40 | + mats_simd_res.clear(); |
| 41 | + mats_simd.clear(); |
| 42 | + for (auto &m : mats) { |
| 43 | + simd_double4x4 s; |
| 44 | + s.columns[0] = {m[0][0], m[1][0], m[2][0], m[3][0]}; |
| 45 | + s.columns[1] = {m[0][1], m[1][1], m[2][1], m[3][1]}; |
| 46 | + s.columns[2] = {m[0][2], m[1][2], m[2][2], m[3][2]}; |
| 47 | + s.columns[3] = {m[0][3], m[1][3], m[2][3], m[3][3]}; |
| 48 | + mats_simd.push_back(s); |
| 49 | + mats_simd_res.push_back(s); |
| 50 | + } |
| 51 | +#endif |
| 52 | + } |
| 53 | + |
| 54 | +protected: |
| 55 | + static constexpr size_t kDataSize = 1024; |
| 56 | + std::vector<m44> mats; |
| 57 | + std::vector<m44> mats_res; |
| 58 | +#ifdef HAS_SIMD_HEADER |
| 59 | + std::vector<simd_double4x4> mats_simd; |
| 60 | + std::vector<simd_double4x4> mats_simd_res; |
| 61 | +#endif |
| 62 | +}; |
| 63 | + |
| 64 | +BENCHMARK_F(MatrixMult4x4Benchmark, MatrixTypeAB)(benchmark::State &state) { |
| 65 | + while (state.KeepRunning()) { |
| 66 | + size_t N = mats.size(); |
| 67 | + for (size_t i = 0u; i < N; ++i) { |
| 68 | + const m44 a = mats[i]; |
| 69 | + const m44 b = mats[(i + 1) % N]; |
| 70 | + const m44 prod = a * b; |
| 71 | + mats_res[i] = prod; |
| 72 | + } |
| 73 | + benchmark::ClobberMemory(); |
| 74 | + } |
| 75 | +} |
| 76 | + |
| 77 | +#ifdef HAS_SIMD_HEADER |
| 78 | +BENCHMARK_F(MatrixMult4x4Benchmark, SIMDMatrixAB)(benchmark::State &state) { |
| 79 | + while (state.KeepRunning()) { |
| 80 | + size_t N = mats.size(); |
| 81 | + for (size_t i = 0u; i < N; ++i) { |
| 82 | + const simd_double4x4 a = mats_simd[i]; |
| 83 | + const simd_double4x4 b = mats_simd[(i + 1) % N]; |
| 84 | + const simd_double4x4 prod = matrix_multiply(a, b); |
| 85 | + mats_simd_res[i] = prod; |
| 86 | + } |
| 87 | + benchmark::ClobberMemory(); |
| 88 | + } |
| 89 | +} |
| 90 | +#endif |
| 91 | + |
| 92 | +BENCHMARK_F(MatrixMult4x4Benchmark, MatrixTypeAtB)(benchmark::State &state) { |
| 93 | + while (state.KeepRunning()) { |
| 94 | + size_t N = mats.size(); |
| 95 | + for (size_t i = 0u; i < N; ++i) { |
| 96 | + const m44 a = mats[i]; |
| 97 | + const m44 b = mats[(i + 1) % N]; |
| 98 | + const m44 prod = __builtin_matrix_transpose(a) * b; |
| 99 | + benchmark::DoNotOptimize(prod); |
| 100 | + } |
| 101 | + } |
| 102 | +} |
| 103 | + |
| 104 | +#ifdef HAS_SIMD_HEADER |
| 105 | +BENCHMARK_F(MatrixMult4x4Benchmark, SIMDMatrixAtB)(benchmark::State &state) { |
| 106 | + while (state.KeepRunning()) { |
| 107 | + size_t N = mats.size(); |
| 108 | + for (size_t i = 0u; i < N; ++i) { |
| 109 | + const simd_double4x4 a = mats_simd[i]; |
| 110 | + const simd_double4x4 b = mats_simd[(i + 1) % N]; |
| 111 | + const simd_double4x4 prod = matrix_multiply(simd_transpose(a), b); |
| 112 | + benchmark::DoNotOptimize(prod); |
| 113 | + } |
| 114 | + } |
| 115 | +} |
| 116 | +#endif |
| 117 | + |
| 118 | +BENCHMARK_F(MatrixMult4x4Benchmark, |
| 119 | + MatrixTypeAtBStoreRes)(benchmark::State &state) { |
| 120 | + while (state.KeepRunning()) { |
| 121 | + size_t N = mats.size(); |
| 122 | + for (size_t i = 0u; i < N; ++i) { |
| 123 | + const m44 a = mats[i]; |
| 124 | + const m44 b = mats[(i + 1) % N]; |
| 125 | + const m44 prod = __builtin_matrix_transpose(a) * b; |
| 126 | + mats[i] = prod; |
| 127 | + } |
| 128 | + benchmark::ClobberMemory(); |
| 129 | + } |
| 130 | +} |
| 131 | + |
| 132 | +#ifdef HAS_SIMD_HEADER |
| 133 | +BENCHMARK_F(MatrixMult4x4Benchmark, |
| 134 | + SIMDMatrixAtBStoreRes)(benchmark::State &state) { |
| 135 | + while (state.KeepRunning()) { |
| 136 | + size_t N = mats.size(); |
| 137 | + for (size_t i = 0u; i < N; ++i) { |
| 138 | + const simd_double4x4 a = mats_simd[i]; |
| 139 | + const simd_double4x4 b = mats_simd[(i + 1) % N]; |
| 140 | + const simd_double4x4 prod = matrix_multiply(simd_transpose(a), b); |
| 141 | + mats_simd[i] = prod; |
| 142 | + } |
| 143 | + benchmark::ClobberMemory(); |
| 144 | + } |
| 145 | +} |
| 146 | +#endif |
| 147 | +} // namespace |
| 148 | + |
| 149 | +BENCHMARK_MAIN(); |
0 commit comments