diff --git a/docs/sphinx/source/tutorial1/tutorial.rst b/docs/sphinx/source/tutorial1/tutorial.rst index 9cada2d6..8f013db6 100644 --- a/docs/sphinx/source/tutorial1/tutorial.rst +++ b/docs/sphinx/source/tutorial1/tutorial.rst @@ -17,7 +17,7 @@ file **initial.lmp** in it, and open the file in the LAMMPS--GUI Editor window: # 1) Initialization # 2) System definition # 3) Settings - # 4) Visualization + # 4) Monitoring # 5) Run .. admonition:: If you are not using LAMMPS-GUI @@ -31,8 +31,8 @@ file **initial.lmp** in it, and open the file in the LAMMPS--GUI Editor window: Everything that appears after a hash symbol (#) is a comment and ignored by LAMMPS. These five categories are not required in every input script an do not necessarily need to be in that exact order. For instance, the ``Settings`` -and the ``Visualization`` categories could be inverted, or -the ``Visualization`` category could be omitted. However, note that +and the ``Monitoring`` categories could be inverted, or +the ``Monitoring`` category could be omitted. However, note that LAMMPS reads input files from top to bottom and processes each command *immediately*. Therefore, the ``Initialization`` and ``System definition`` categories must appear at the top of the @@ -61,6 +61,15 @@ so that the ``Initialization`` section appears as follows: atom_style atomic boundary p p p +.. admonition:: Note + :class: non-title-info + + Strictly speaking, none of the four commands specified in the + ``Initialization`` section are mandatory, as they correspond to the + default settings for their respective global properties. However, + explicitly specifying these defaults is considered good practice to + avoid confusion when sharing input files with other LAMMPS users. + The first line, ``units lj``, specifies the use of *reduced* units, where all quantities are dimensionless. This unit system is a popular choice for simulations that explore general statistical @@ -86,19 +95,20 @@ slab geometries. .. admonition:: Note :class: non-title-info - Strictly speaking, none of the four commands specified in the - ``Initialization`` section are mandatory, as they correspond to the - default settings for their respective global properties. However, - explicitly specifying these defaults is considered good practice to - avoid confusion when sharing input files with other LAMMPS users. + Each LAMMPS command is accompanied by extensive online |lammpsdocs| + that details the different options for that command. + From the LAMMPS--GUI editor buffer, you can access the documentation by + right-clicking on a line containing a command (e.g., ``units lj``) + and selecting ``View Documentation for `units'``. This action + should prompt your web browser to open the corresponding URL for the + online manual. -Each LAMMPS command is accompanied by extensive online |lammpsdocs| -that details the different options for that command. -From the LAMMPS--GUI editor buffer, you can access the documentation by -right-clicking on a line containing a command (e.g., ``units lj``) -and selecting ``View Documentation for `units'``. This action -should prompt your web browser to open the corresponding URL for the -online manual. +.. admonition:: Note + :class: non-title-info + + Most LAMMPS commands have default settings that are applied if no value + is explicitly specified. The defaults for each command are listed at the + bottom of its documentation page. .. |lammpsdocs| raw:: html @@ -121,6 +131,9 @@ The first line, ``region simbox (...)``, defines a region named from -20 to 20 units along all three spatial dimensions. The second line, ``create_box 2 simbox``, initializes a simulation box based on the region ``simbox`` and reserves space for two types of atoms. +In LAMMPS, an atom *type* represents a group of atoms that +interact using the same set of force field parameters (here, the Lennard-Jones +parameters). .. admonition:: Note :class: non-title-info @@ -132,8 +145,10 @@ on the region ``simbox`` and reserves space for two types of atoms. terminate with an error. The third line, ``create_atoms (...)``, generates 1500 atoms of -type 1 at random positions within the ``simbox`` region. The -integer 34134 is a seed for the internal random number generator, which +type 1 at random positions within the ``simbox`` region. Each atom created in +LAMMPS is automatically assigned a unique atom ID, which serves as a numerical +identifier to distinguish individual atoms throughout the simulation +The integer 34134 is a seed for the internal random number generator, which can be changed to produce different sequences of random numbers and, consequently, different initial atom positions. The fourth line adds 100 atoms of type 2. Both ``create_atoms`` commands use the @@ -142,6 +157,13 @@ distance of 0.3 units between the randomly placed atoms. This constraint helps avoid close contacts between atoms, which can lead to excessively large forces and simulation instability. +.. admonition:: Note + :class: non-title-info + + Another way to define a system in LAMMPS, besides ``create_atoms``, is to + import an existing topology with ``read_data``, as shown + in :ref:`carbon-nanotube-label`. + .. include:: ../shared/needhelp.rst Settings @@ -189,19 +211,20 @@ of type 2, :math:`\epsilon_{22} = 0.5`, and :math:`\sigma_{22} = 3.0`. types using geometric average: :math:`\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}`, :math:`\sigma_{ij} = \sqrt{\sigma_{ii} \sigma_{jj}}`. In the present case, :math:`\epsilon_{12} = \sqrt{1.0 \times 0.5} = 0.707`, and - :math:`\sigma_{12} = \sqrt{1.0 \times 3.0} = 1.732`. + :math:`\sigma_{12} = \sqrt{1.0 \times 3.0} = 1.732`. Other rules + can be selected using the ``pair_modify`` command. Single-point energy ------------------- The system is now fully parameterized, and the input is ready to compute forces. Let us complete the two remaining categories, -``Visualization`` and ``Run``, by adding the following lines +``Monitoring`` and ``Run``, by adding the following lines to **initial.lmp**: .. code-block:: lammps - # 4) Visualization + # 4) Monitoring thermo 10 thermo_style custom step etotal press # 5) Run @@ -216,6 +239,12 @@ The ``run 0 post no`` command instructs LAMMPS to initialize forces and energy without actually running the simulation. The ``post no`` option disables the post-run summary and statistics output. +.. admonition:: Note + :class: non-title-info + + The *thermodynamic information* printed by LAMMPS refers to instantaneous values + of thermodynamic properties at the specified steps, not cumulative averages. + You can now run LAMMPS (basic commands for running LAMMPS are provided in :ref:`running-lammps-label`. The simulation should finish quickly. @@ -274,7 +303,7 @@ initially positive potential energy is expected, as the atoms are created at random positions within the simulation box, with some in very close proximity to each other. This proximity results in a large initial potential energy due to the repulsive branch of the -Lennard-Jones potential [i.e., the term in :math:`1/r^{12}` in +Lennard-Jones potential [i.e., the term :math:`1/r^{12}` in Eq. :eq:`eq_LJ`]. As the energy minimization progresses, the energy decreases - first rapidly - then more gradually, before plateauing at a negative value. This indicates that the atoms have moved to reasonable @@ -297,7 +326,7 @@ following lines immediately after the ``minimize`` command: .. code-block:: lammps # PART B - MOLECULAR DYNAMICS - # 4) Visualization + # 4) Monitoring thermo 50 thermo_style custom step temp etotal pe ke press @@ -311,7 +340,7 @@ command is introduced to specify the thermodynamic information LAMMPS should print during ``PART B``. This adjustment is made because, during molecular dynamics, the system exhibits a non-zero temperature :math:`T` (and consequently a non-zero kinetic energy :math:`K`, keyword ``ke``), which are useful to monitor. -The ``pe`` keyword represents the potential energy of the system, :math:`E`, such that +The ``pe`` keyword represents the potential energy of the system, :math:`U`, such that :math:`U + K = E`. Then, add a second ``Run`` category by including the following @@ -423,7 +452,7 @@ thermodynamic information. To better follow the evolution of the system and visualize the trajectories of the atoms, let us print the positions of the atoms in a file at a regular interval. -Add the following command to the ``Visualization`` section +Add the following command to the ``Monitoring`` section of ``PART B`` of the **initial.lmp** file: .. code-block:: lammps @@ -440,7 +469,7 @@ and adjust the visualization to your liking using the available buttons. Now you can copy the commands used to create this visualization to the clipboard by either using the ``Ctrl-D`` keyboard shortcut or selecting ``Copy dump image command`` from the ``File`` menu. -This text can be pasted into the ``Visualization`` section +This text can be pasted into the ``Monitoring`` section of ``PART B`` of the **initial.lmp** file. This may look like the following: @@ -496,7 +525,7 @@ commands in the ``System definition`` section: pair_style lj/cut 4.0 pair_coeff 1 1 1.0 1.0 pair_coeff 2 2 0.5 3.0 - # 4) Visualization + # 4) Monitoring thermo 10 thermo_style custom step etotal press # 5) Run @@ -591,7 +620,7 @@ and **improved.min.lmp**: boundary p p p # 2) System definition # 3) Settings - # 4) Visualization + # 4) Monitoring # 5) Run Since we read most of the information from the data file, we don't need @@ -696,7 +725,7 @@ Finally, let us complete the script by adding the following lines to .. code-block:: lammps - # 4) Visualization + # 4) Monitoring thermo 1000 thermo_style custom step temp pe ke etotal press v_n1_in v_n2_in c_sumcoor12 dump viz all image 1000 myimage-*.ppm type type shiny 0.1 box no 0.01 view 0 0 zoom 1.8 fsaa yes size 800 800 diff --git a/docs/sphinx/source/tutorial2/tutorial.rst b/docs/sphinx/source/tutorial2/tutorial.rst index 516b33a9..22a369b7 100644 --- a/docs/sphinx/source/tutorial2/tutorial.rst +++ b/docs/sphinx/source/tutorial2/tutorial.rst @@ -357,6 +357,7 @@ from the typical dependency of bond energy with bond distance, The CNT starts deforming at :math:`t = 5\,\text{ps}`, and :math:`L_\text{cnt-0}` is the CNT initial length. b) Evolution of the total energy :math:`E` of the system with time :math:`t`. Here, the potential is OPLS-AA, and the CNT is unbreakable. + The orange line shows the raw data, and the blue line represents a time-averaged curve. Importing YAML log file into Python ----------------------------------- @@ -400,6 +401,7 @@ the **unbreakable.yaml** file can then be used to plot the stress-strain curve. as a function of the strain, :math:`\Delta L_\text{cnt} = (L_\text{cnt}-L_\text{cnt-0})/L_\text{cnt-0}`, where :math:`L_\text{cnt}` is the CNT length and :math:`L_\text{cnt-0}` the CNT initial length. Here, the potential is OPLS-AA, and the CNT is unbreakable. + The orange line shows the raw data, and the blue line represents a time-averaged curve. Breakable bonds =============== @@ -565,7 +567,8 @@ curve reveals a linear (elastic) regime where where :math:`F_\text{cnt}` is the force and :math:`A_\text{cnt}` the CNT surface area, as a function of the strain, :math:`\Delta L_\text{cnt} = (L_\text{cnt}-L_\text{cnt-0}/L_\text{cnt-0})`, where :math:`L_\text{cnt}` is the CNT length and :math:`L_\text{cnt-0}` the CNT initial length. - Here, the potential is AIREBO, and the CNT is breakable. + Here, the potential is AIREBO, and the CNT is breakable. The orange line shows + the raw data, and the blue line represents a time-averaged curve. Tip: bonds representation with AIREBO ------------------------------------- diff --git a/docs/sphinx/source/tutorial3/figures/PEG-density-dm.png b/docs/sphinx/source/tutorial3/figures/PEG-density-dm.png index dd42e7cf..60819093 100644 Binary files a/docs/sphinx/source/tutorial3/figures/PEG-density-dm.png and b/docs/sphinx/source/tutorial3/figures/PEG-density-dm.png differ diff --git a/docs/sphinx/source/tutorial3/figures/PEG-density.png b/docs/sphinx/source/tutorial3/figures/PEG-density.png index 3d2baa4c..ad1ebbfc 100644 Binary files a/docs/sphinx/source/tutorial3/figures/PEG-density.png and b/docs/sphinx/source/tutorial3/figures/PEG-density.png differ diff --git a/docs/sphinx/source/tutorial3/figures/water.ipynb b/docs/sphinx/source/tutorial3/figures/water.ipynb index e81c1ee4..1b442f69 100644 --- a/docs/sphinx/source/tutorial3/figures/water.ipynb +++ b/docs/sphinx/source/tutorial3/figures/water.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 11, "id": "7c8c9669", "metadata": {}, "outputs": [], @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 13, "id": "a28c02aa", "metadata": {}, "outputs": [], @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 14, "id": "2f5b9386", "metadata": {}, "outputs": [], @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 15, "id": "5f6dbb52", "metadata": {}, "outputs": [], @@ -78,13 +78,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 17, "id": "88e6cdea", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAKyCAYAAAAdJqksAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYIElEQVR4nOzdd3xrd33/8bf2trzuzrw3eydkk5BBEgib0sEodEDp+JVCyyo7tKxCKZ20tKWbQumAECAkZBCSkJCE7D1uxk3utC3LlrWOpPP743ula0tHlmRr+/V8PPS4ts7RV1/7Wra+5/P9fD4u27ZtAQAAAAAAAAAAABho7l5PAAAAAAAAAAAAAMDqEfgDAAAAAAAAAAAAhgCBPwAAAAAAAAAAAGAIEPgDAAAAAAAAAAAAhgCBPwAAAAAAAAAAAGAIEPgDAAAAAAAAAAAAhgCBPwAAAAAAAAAAAGAIeHs9AQyeQqGgXC5X+dzj8cjtJoYMAAAAdEOpVFKxWKx8HggE5PWytENnsQ4EAAAAeqPVNSCrQ7Qsl8tpbm6u19MAAAAAIGlkZITAHzqOdSAAAADQHxqtAdmeBwAAAAAAAAAAAAwBAn8AAAAAAAAAAADAEKAeDFrm8XiWfD4yMiKfz9ej2SzPsqwl5Wj6ea4wZmZmZNu2XC6XxsfHez0d1MFra/Dw2hoMvLYGD6+twTBsr63qr6f6/TnQCYOyDhy21/tawN/SwcBra/Dw2hoMvLYGD6+twTBsr61W14AE/tCy6gbuPp9Pfr+/R7NpzSDNda1yuVyVP578Xw0OXlv9j9fWYOK11f94bQ2mYXttVb8/BzphUNeBgzLPtYy/pYOJ11b/47U1mHht9T9eW4Np2F5bjdaArBABAAAAAAAAAACAIUDgDwAAAAAAAAAAABgCBP4AAAAAAAAAAACAIUDgDwAAAAAAAAAAABgC3l5PAAAWi0QilQa5ANqH1xbQGby2AABYHf6WAp3BawvoDF5bGAQE/gD0lWg02uspAEOJ1xbQGby2AABYHf6WAp3BawvoDF5bGASU+gQAAAAAAAAAAACGAIE/AAAAAAAAAAAAYAgQ+AMAAAAAAAAAAACGAIE/AAAAAAAAAAAAYAh4ez0BoJM8Hs+Shqsej6eHswGGB68toDN4bQGdwWsLaL+ZmRm5XK6a+yORyJLXW7fxegc6g9cW0Bm8toDOGNTXViqV0sLCQs39tm23NA6BPww1j8ejWCzW62kAQ4fXFtAZvLaAzuC1BbSfbduOFyBavSjRbrzegc7gtQV0Bq8toDMG9bVl27ZKpdKqxyHwBwAAAAAAWuJyuRwz/pzuAwAAANCYy+WS213boa/eprt6CPwBAAAAAICWjI+Py+/393oaAAAAwNCIRqOOZfPz+bymp6ebHqc2dAgAAAAAAAAAAABg4JDxBwAAAAAA+kKpVFI2m1Umk1E+n9emTZt6PSUAAABgoBD4AwAAAAAAPZHL5ZTL5WRZlizLaql3CQAAAIBaBP4AAAAAAEBPpFIp5fP5Xk8DAAAAGBoE/gAAAAAAQE9MTExUPs7lcpqZmenhbAAAAIDB5+71BAAAAAAAAAKBgFwuV6+nAQAAAAw0An8AAAAAAAAAAADAECDwBwAAAAAAAAAAAAwBAn8AAAAAAAAAAADAEPD2egIYfDMzM459GCKRiKLRaA9mBAAAAAy+VCqlhYWFmvtt2+7BbAAAAAAAg4DAH1bNtm3Hiw9ckAAAAABWzrZtlUqlXk8DAAAAADBACPxh1Vwul2PGn9N9AAAAAJrjcrnkdtd2Z6i38Q4AAAAAAAJ/WLXx8XH5/f5eTwMAAAAYKtFo1LF0fj6f1/T0dA9mBAAAAADodwT+0PdKpZJSqZQsy1KxWFSxWKzsfg4EAgqHw/L5fL2eJgAAAACgwwqFgtLptHK5nIrFomzblsvlks/nUygUUjgc7vUUAQAAgJ4i8Ie+VSgUND8/r2w2W3PMtm0Vi0Wl02ml02kFg0GNjY31YJYAAAAAgG5IJpNKp9M199u2rXw+r3w+r1QqpbGxMTaHAgAAYM0i8Ie+tHhBFwwG5fF4ZNu2CoVCJetvsWw2q7m5OY2MjPRiugAAAACADpqenlY+n294XrFY1NTUlMbHxxUIBLowMwAAAKC/EPhD3ykH/VwulyYnJ+X11v6Y5nI5JZPJJQHAhYUFRaNRud3ubk4XAAAAANAhpVJJiURC+Xxefr+/0urB7XarWCwql8splUrJtu0lj5uZmdG6desc15MAAADAMCNCgr4VjUbrLtICgYAmJyflcrmW3O9UFhQAAAAAMJjKQb94PK6JiQmFQiF5vV653W75fD5Fo1GtX79efr+/5rHJZLIHMwYAAAB6i8Af+lY0Gl32uNvtrintmcvlOjklAAAAAEAX5fN5rVu3TuFwuO45brdbExMT8ng8NY8tFAqdniIAAADQVwj8oe9EIhGNj483dW4wGFzyuWVZnZgSAAAAAKAHYrFY0+U6nTaPUhUGAAAAaw2BP/Qdr9fbdBN2t9u9pNxnqVTq1LQAAAAAAF22XKaf07nV7SDYHAoAAIC1hsAfBpZlWUqn00vuq27oDgAAAAAYXG53a5ctQqHQks8p9QkAAIC1prl6GUCPWZalXC4ny7JkWZaKxWKvpwQAAAAA6DPVff7YHAoAANaie16QbnpKCnilcw+TTtokVRVGwBAj8Ie+ZVmWUqmUcrlczWLN4/HI4/HI5/Mpm80SCAQAAAAA1AT+qj8HAAAYZs8mpL+5Vbr92QP3ff0eaeuE9HMnSpceJYV8vZsfuoPAH/pOqVRSMpmsacIeDAYVDAYVCASWlHvJ5XLdniIAAAAAoA95vUsvc7RaKhQAAGAQzWWlf75T+vaDUrFUe3z7tPSnP5L+7ifS5cdKrztBOni027NEtxD4Q18plUqamppaksEXDAYVj8dZsAEAAAAAllUqLb3S5fOxpR0AAAyvQlG68iHpn++Q5prIj0nlpf++z9zOONhkAZ59qOTp0aX3fFF6cJf00G5TlvScwwhItgOBP/SVRCKxJOjn9/s1NjbWwxkBAAAAAAZFdRuIYDDYo5kAAAB01k+flf76VlPecyXu3GFuG2MmA/CVx0nxDr91sm0z3/Jz3/uClC0cOP7Xt0rHb5AuPVq6+AhpNNTZ+QwrAn/oG4VCQfl8fsl9BP0AAAAAAM2yLKvyscfjqSn9CQAAMOieTUh/fYv00+faM97ueenvbpP+6Q7ppUdKrz9ROmZ9e8aWpGRW+tmOA8G+vanlz39oj7n91S3SWYdIlx0lvfhwkxGI5vCtQt+oDvoFg0HKewIAAAAAmra4B3w0Gu3hTAAAANqr0sfvAaloL3+u1y294SRp67j0rQelR/c2Hj9flK5+1NyOXS/93EnShdtaD7hZRRO4u/M5E+h7bK/UYLqOiiXpJ8+YW8QvXbBNetnR0smbJbdrBQOuIQT+0DeqezE0G/Sz7ZX82gAAAAAADJNMJlMp9enxeBQOh3s8IwAA0IysZbLCJiImYIWlyn38/ukOab6JPn7nHS799rkHeuVdfqz08B7pWw9INz5pAnyNPLJX+vR1JrPwVcdJrz1e2jjifK5tS88n92f0PSfd/YKUsZzPXamFvPT9R8xtfVS69CiTCXj4RHufZ1gQ+EPfqA70FQqFOmcekEwma3o4AAAAAADWnvn5eUmSy+XS+Ph4j2cDAACWU7Klm7dLX79HemSPyQjzuKTJiAkwbYxJm2LShpj5fFPMBHy8nl7PvLta6eN3+Lj0e+dJLzq49thxG8zt/71Y+t4jJmtwT4OSm5IJyH7tbvP/dO5h0s+dKL3oICmVl372/IGsvt3zLX9pK7Y3Zeb0tbulIyely442JUonI92bQ78j8Ie+4fP5lnyez+dVKBQcezKUSiUlk0m53W55PB6CfwAAAAAwBKorumQyGYVCoYaPm5ubU7FYlMvl0sTEBL39AADoU4Wi9MMnpP+8uzaYVbRNMGpPSrrP4bFul8kK3BQzgcFygLB8Wx+T/G0KDBZLJjMuV1j6b74ghXzm+YK+xuOs1DMz0t/c2lwfv3hQesdZ0iuPa5wxORqS3nKa9MZTpNueNVmAd+5o/BwlW7rlaXObCEuJjLlvNdwuU1L0jIOl0w4yPw/XPCY9uLv5MZ6YMre//YkJSL7saJPxGPavbm6DjnfC6BseT+1v5ZmZGY2Pjy9ZtKXTaaVSKUWjUYXDYe3du7RAcalUojcgAAAAAAyB2dlZ5fN5RSKRusG8ZDKpdDotv9+vsbEx1oMAgDVtNmMy6HbMmuDHyZsPlHzspVxB+u7D0jfuaS7TzEnJlvalzO3+XbXHXTJZXxv2BwLXRc1jKoG7gpTbH7wrB/GqA3vlfwul2vGrjYekTXFp84i0acT8W/54MiJ5VvCWZC4r/fMd0rcfbL6P39tOl2KB1p7H4zYBsvMONz8r33rA9PZbyDd+7HS6tedabENUOvMQ6YxDpBdtkWLBA8dO2SK99gTphaT0w8dNEPCFZHPjluz9pUZ3SCGvdP5Wkwl42kFrs3ysy6ZBGlqUz+c1PT1d+XxiYkJ+f3tC6KlUqlKeZbHyAq9QKFR2cJYzBHfv3r1kV6jX61UoFJLb7aanAwAAAIZOJ9+PA/V04+euVCppz549dY97vV75/f7KptFisah02lx5isViikajbZ0PAAD9LpWTHtsrPbpPenSv9Oge56DaMeulS46ULu5BOcRUzgSxvnmfCUquFV63CT5uLgcGY0uDhNWButX28WuHdN4E3L71oLR9uvH5zQh5pVMPMll9Zx4iHRSXXK7mHmvbJoh97ePS9U+YsqOtGg+bn/3LjjZlQZt97n7T6ntxAn9oWacXfNPT08rnnbcWOO3g3LVr6fYO1/5Xr23b2rBhA7s9AQAAMFQI/KEXuvFzVygUtG/fPrlcLkWjUaVSqZrSn9U8Ho/GxsZqWkcAADBsMpb05JT0yP4A32P7TKZWK1ySTt0iXXKUdMHWpdlW7ZZIS/99nwkiNZNFttbEAgcyBDeOSLc+Iz23yj5+7WLb0n27TBbgj7ebsqfNckk6en/5zjMOlo7fKPnaUH61UJTu2GGyAG992mRltur0g6U/e83q59ILBP7Qcd1Y8GUyGaXTaRWLxUqfhnA4rJGRkbY+DwAAADBoCPyhF7rxc2dZlhKJxJJ2D5lMRtlsVoVCQcViUbZty+VyyePxKBKJUOUFADCU8kWTcVXO4nt0n+n5ttqeaov53NLZh5og4LmHSYE2NQXbPSd9415T1rPZ4MymEZOVNZuRds+b2575lQV3hlUrffzaaWpB+s5D5jZTp8Tnuogp3XnGwabP3mjj9syrkspJNz1lMgHveaH5x73xFOl3XtyxaXUUgT90HBcaAAAAgN7h/Th6gZ87AAA6o1iSnkkcyOJ7dK/01JRktZBltVohn/SSrdKlR628J9ozM9LX7paue6L5DLHDx6W3nGZKkFY/Z8k2WYPlQODueRNUXPx5rtD6PAeN1y39/P4+ftEW+/i1k1U02X9XP2oyTQ8ZNcG+Mw+WDh3rXQnNPfOmPOm1j5nX0XL+6ZekIya7M692I/CHjmPBBwAAAPQO78fRC/zcAQDQHrmCKdd5/07p/l3Sg7uktNXrWR0wGpIuPsJkAh6/oXFA55E90n/cLd2yXWo20HDcBumXX2QyDd0rDBjZtskQ3LU/O3D3nPl496LPM/sDgx63FPBIfq/Dv17JX3Wf33Pg/up/fR7Ta27nnLRr/23nXGeCkOcdLv3OudJBo+0fe9jYtvTElAkAXvdEbXbi1gnpX97Ym7m1Q6vvxduUwAsAAAAAAAAAQO/tTUk7EiaIddBo+8pYrsRC3gT37tsf6HtkT2ey+bxuk8109DrpmPXm48f3mSDIvS80H5SbzUj/94C5bYyZEpyXHGUCJ2W2bUos/sfPpLueb36Opx8s/fJpps/gajPEXC5pLGxux22oPW7bJhjn9XS+NKZtm0DTrnlpZ/JAMLD8775U899/yXyv3/XizvbxGzYul3TUOnP7rXOlu583QcAfb5eyBemyo3o9w+4i4w8tY6cnAAAA0Du8H0cv8HMHABgEhaL0Dz+VvnnfgXKTLkkbR0xpwkPHpEP23w4dNYHBdpcoTKSl+3aZjL77dkpPTbe3N59ksuQOHZOOXS8dvd4E+rZNmow0J3tT0g1PmCDg4/tW9pxbJ0wQcPOI+f4+vKf5x75kqynpeaxDgG4tyBdNFmI5ELgzuTQwuJA3502EpV89Q3rVcSZLEauXzku3PG1K2E5Gej2blaPUJzqOBR8AAADQO7wfRy/wcwcA6Hd7U9Inr5Ue2NX8Y2KBA0HASkBwTNoUM5lijdi2KS1Zzua7f6f03OxKv4L6tsRNkO+Y9Qey+cIr/DP8bEK6/nHph09ILyTbO8/FPC7p0qOlN58qHTbeuecZdLYtzeekVE5aH+t8diIGE6U+AQAAAAAAAABrxp07pD+61vRea8V8Tnpot7kt5nVLm+NVAcFR6eBRaWrBBPnu22ky+/al2vRF7Lc+eiDAd8x6U7ozFmzf+IeOSb9+lvRrZ0qP7pWuf8LcptONH9sMv8dkrL3xFJNpieW5XNJI0NyAdiHwBwAAAAAAAAAYOMWS9G93Sf9yZ2s91BoplKTnEuamp9s4cBW/xwT3Tt4sHb/RfDwe7tzzLeZymdKbx26Qfvtc6d6d0nWPSzc9JaXyrY8X8UuvP0H6+ZO79zUAcEbgDwAAAAAAAAAwUGYz0h/9ULprR69n0rywTzpxk3TSJumkzSbQF+iDK/Qet/Sig8zt9y+QfvqsCQLe+ozpT7ec0ZD0iydLrztBiga6Ml0ADfTBrxUAAAAAAAAAAJrzwC7pimukfQv1z9kyIr36eNPH7rlZk72XyHRtipJMUOykTSaj76TN0raJ/u/h5vdI5281t4W8dPN26bonpJ/tkIqL0io3RKU3niq98lgp6OvdfAHUIvAHAAAAAAAAAOh7ti198z7p724zZT7rOX+r9KGLazPQ5rIHgoDP7i/l+dystDO5NKi1UhtjJsh38mYT8Dt41JTUHFQRv/TyY8xtJi3d8rS0c870HTz/cMnr6fUMATgh8AcAAAAAAAAA6GupnPTZG0wGWj0et/Rb55jSk04Bt5GgdMJGc1vMKi7NDFwcFFxYpt/d4eNLM/rWR1fylQ2G8bD0muN7PQsAzSDwBwAAAAAAAADoW0/skz7+A+mFufrnrItIV7zM9NBrlc8jHTZubovZtjSdPhAEfCFpSmEes94E+uLB1p8LADqNwB8AAAAAAAAAoO/YtvS9R6Q//7GUL9Y/7/SDpY9fanrqtZPLJU1GzO20g9o7NgB0CoE/AAAAAAAAAEBfyVjSn90kXfNY/XNckn71DOltp5synwAAAn8AAAAAAAAAgD7yXEL62A+kp2fqnxMPSh+/TDrj4O7NCwAGAYE/AAAAAAAAAEBfuP4J6fM3moy/ek7YaPr5rY92b14AMCgI/AEAAAAAAAAAeipflL58q/R/Dyx/3i+dIv3m2ZLX05VpAcDAIfAHAAAAAAAAAOiZ3XPSx6+RHt1b/5yIX/rDi6ULtnVvXgAwiAj8AQAAAAAAAAB64rZnpE9dJ83n6p9z5KT0yZdJB412a1YAMLgI/AEAAAAAAAAAumohL/3rndI37l3+vFcfJ/3e+VKAK9kA0BR+XQIAAAAAAAAAuiJXkK58UPr3n0nJbP3zAl7pvRdILz+me3MDgGFA4A8AAAAAgEVKpZJyuZyKxaJKpZK8Xq9cLpdCoVCvpwYAwMAqlKRrH5P+6Q5pb2r5cw8Zlf7o5dLWia5MDQCGCoE/AAAAAAAk5XI5zc3NqVAoOB6fnZ1VMBhULBaT17vy5XQul1M2m1U+n1exWJRt23K5XPJ4PAqFQgqHw3K73X07PgAArbBt6Zanpb+/XXo20fj8i4+QPnCRFPZ3fm4AMIwI/AEAAAAA1rxEIqFs1tQb8/v9ikaj8vl8crvdKhQKymazSqVSymazymazisfjCofDLT2HZVlKJBIqFouSJK/XK5/Pp1KppEKhoEKhoPn5ec3Pz/fl+AAAtOqeF6Sv3CY9vKfxuV639LvnSa8/QXK5Oj83ABhWBP4AAAAAAGtWqVTS9PR0JcsvFospGo0uOcfr9SoajSoYDGpqakq2bSuZTEpS08GzdDq95DGxWGxJ1l2pVFIymawEH5PJpAqFgkZGRvpifAAAWvH4PpPhd8dzzZ1/5iHSb58jbZvs7LwAYC0g8AcAAIChMJ+T9sxLu+bMv7sX3fbMm3OO3yj94cXSKG26AOyXSCSWDfot5vV6NTY2ppmZGUkmeOb3+xuW/czlcpWgXCQScQy2ud1ujY2NLck8XFhYkM/na9hbsNPjAwDQrOdnpa/eIV3/RHPnH7te+s1zpNMO6ui0AGBNIfAHAACAvmfbUjK7P7C3P5C3e25pYC+VbzzOT56R3nOl9A+/IPk8HZ82gD6XTqeVz5tfHi6Xa9mgX1kgEJDX660ECxOJhNatW7fsYxKJROU5GmXYxePxSmBOMsHFRoG5To8PAEAjUwvSv94pffcRqVhqfP4hY9I7z5bOP5yyngDQbgT+AAAA0DesonTnDumZmUUZe/sz+DKF9jzH9mnpf++X3nhqe8YDMLjm5uYqHzcT9CuLRCKVDLtCoSDLsuTz+RzPTaVSsm276edwu92KRCJaWFiQJNm2rXQ6XbekaKfHBwBgOfM56T/vlv7nfinXxPv1dVHp18+QXnaM6ekHAGg/An8tKJVKS3okAAAAoH1u3i598SZpJt355/rXu6SXHS2NcZ0bWLMymUwlYCapbuDOSTAYrAT+JJM5GI/HHc9NpVJLHteMUChUCcyV57pc4K+T4wMA4CRrSf/3gPS1u03wr5GRgPTW06XXnSAFuCINAB3Fr9llWJaldDpdsyB0uVzyeDzy+/2KRCIN+zk0ksvllM1mlc/nVSwWZdt25TlCoZDC4fCqAo6dHh8A0L8ylvTj7aahusctHb9BOnWLdPAo5VTQP+Zz0l/eLF3zWPeecyEv/eNPpfdf1L3nBNBfFpe7lCSPp/n6v263Wy6Xq7JOzGQyjoG/xWtJl8vV9NqxOghZLkfa7fEBAKhWKEnff0T6lztNec9Ggl7pF0+R3niKFA10enYAAInAn6NSqaRkMlmzECyzbVuFQkGFQqFSEiUWi7UcPLMsS4lEQsViUZJpFO/z+VQqlSrjz8/Pa35+XvF4vOUdmJ0eH2vbswnpySnTc8ntktxuyeMygQX34n8XfVy+3+Naes7ix3pc0kjQfAxgZWxbun+XdPWj0o1PmuBf2Q8eNf9ORqRTNpsG6qdslrbECQSiN+7aIX32BmlfqvG5KxEPSuuj0hNTtce++7DZcXzk8q25AAwpy7KWfN7qhk6Px1Pp82fbtmOFmMUBtVYyCsvzKY8vmQ2dgcDSK6adHh8AgDLblm56SvqHn0o7Zhuf73VLrzleetvp0jiXHAGgqwj8VSkUCpqZmakEy5qRTqeVy+U0OTnZdPAvnU5XSsM4BQ6rg4/JZFKFQqFho/ZujY+1KWtJNzwpfftB6dG9nXueaEB6/QnSO84iEAG0Ys+89IPHpB88Ir0wt/y5UwvSdU+Ym2T6LJy2xWQDnrJF2syfA3RYxpL+7jbpWw+sbpzxkLQhJm0ckTbGlt42xKSw35x3xTXmb9hitqS/vEX6y9fx9wZYi1pZ8zmpDpxZllUTOMtkMkvOb4Xf718yvtN8Oz0+AACSCfr96Y+kqx5ufK5L0iVHSW8/U9rsXAUbANBhBP6qJJPJJQuecDisYDBY2T1pWZZyudySfgiSWSQlEglNTEw0fI5cLlcJykUiEcdgm9vt1tjYmBKJRCU4t7CwIJ/Pp1Ao1NPxsfY8MyNd+ZB0zaNSqgtVgFI56d9/Zmq+v+30zj8fMMiy+0t5Xv2odPfzJpCxEvtSpsxiudTixtiBIOBpW0wABWiXB3ZJn7leeiG5/HkumezUjSPShqi0aWR/kG9RYK/Z/iC/fa50y9NSvuq69n07zc7lC49Y0ZcCYIhYltVS1lypVGr4eXXLiFZUlx5dHKTrxvgAAJT9613NBf3OOVT6jbOlIyY7PycAQH0E/qqUS6X4/X6NjY3VZPAFAgEFAgGFQiFNT08vWWjl8/mmFouJREKSWZg1yrCLx+NLSo4mk8mGgblOj4+1IV+Ubt4uXfmgdO/O3szhX++UXrJVOmy8N88P9Cvblh7cbYJ9Nzwhpa3Gj2nV7nkz/tX7S4NuHjkQBDx1i8kQBFqVL0r/fIf09Xuk0jJR6ohf+r3zpUuOlHzNt9xa1oaY9KZTzUWLal/+iXTOYc0HEQEMp0Kh0FLgr7pU6OK1oVSbQbeSUqLLPV+nxwcAQDLtI/7pjuXPOWGj9JvnSCdv7s6cAADL4/LGIuWFjtfrbZi55/P5NDY2ppmZmSX353K5ZReLqVSqsiCMRhtfNXW73YpEIpUMQ9u2K30FezE+ht/OpPSdh02j5tlM4/M7ySqZUhJ/+XrTC3DYpfOm39TTMyaT5ZzDpCMnKT+HA/bMS9c+ZoJxzzfIlGq3nXPm9v1HzOcHxU0A8NQt0osOksb4s4EGnpySPnWdtH16+fNOP0j64MWdyTJ982nmZ3jf0sIN2j0vffNe6a1kmQNrisvlqtnI2comyOpAX3XGX3UgrdWMvEZtJDo9PgAAj+01lTrqOXxceufZ0rmHce0CAPoJgb9FcrmcJGl0dLSp8wOBgILB4JKMuUZ9EVKpVOXjYDDY1POEQqElpUUzmcyygb9Ojo/hVChJtz0jfech6Y7nVl4qsBPu3yVd9ZD02hN6PZPO2j4tfeTqpWXvvnqHyao691DzJvq0g9ZGNsrc/l+pI839Cht6ucKBUp4/29H663MkYPorXH6stD5iMnjveUG6+wXpucTK5/V80tyuetiUYzxuo/Tiw8ztsHEWfTigUJK+frf0z3eaj+sJeE05zted0LnNHiGf2Yn8qetqj/3Hz8zrZDLSmecG0H8CgcCStVw6na7pjV7P4nVXWXUGXXUgsFXV82hUWrTd4wMA1rapBenD3zdr0moel/TeC6XLj5E87CMBgL6zBi4hN8+yLLlcrpbKu1QvFpfbZZnJZCq7Ql0uV9OlWKrnUy5H2u3xMXz2pUyG2Xcfrs1+aOTISek1x0tHrjPl2kolqbjo32Jp//37Py4u+rjm/v3/PrDLBDiq/e1PTOBrWEsLXve49PkbpazDm+l9KdNf8cqHpKBXOv1g870451BpYsguTs9mpC/cKN38tFlEXHyk9O7z12YA0Lalh/ZIVz8i3fCktNDir2WPSzrrUOnlx5ifF/+i65AXHWFukjS9YAKBdz9v/t0xu8L5Snpot7n9/e2mLOi5h0kvPlw6eZPkbVOpRqycbUu75syifH20e4HZHbPSp6+THt6z/HnHb5Q+/FLp4NHOz+nSo6RvPWBeY4tlCtJXbpM+cknn5wCgP1Rv4pRMQK9Ru4TyedXaHUirXls2yjBs9/iNtFoa1OPx1ARHAQD9KVcwQb9614re/RLpVcd1d04AMEyKxWLDJLLFWn3vTeBvkUKh0HKmW/XCZblg2+KAWivBxfK4i5ut53I5BQKBro6P4VCypbt2mEDST542Abdm+T3SS4+UXnu8dOyG9l84fs3x0uNfNyXXFktb0pd+LH368uHKIioUTV+p/7m/ufOzBemWp81Nko5dL517uMmw2jYx2N+bmbT0B985UAKwaEs/fFy6f6f0iZeZfgFrgVWU/u8Bk+X63Gzrjz9szGQsXXpUc1lLExHzmn7pkebzfSmTDXjvTume56UX5lqfg2RKgv7P/eYW9Zsg5IsPk846RIqtwUBurz26V/qzm8y/kjQRNhnEp20x/25qfH27ZSXbBNf+7jbnHcJlXrf062ea3nvd2inscknvOl/6rf+pPXbNY9LrT5SO29CduQDorVAopGQyuSTgtbCwIJ/PV7fkZ6lUUiKRcAySVa8Nq89pd2nNTo/fyNxca28UotGoYrEO1HEGALSVbUufu+HA+qHa6080VToAACuXTqcdNxO2C4G/RdatW9fyY6qjssuV18xkDjRMa7Xxut/vXxKYc4oGd3p8DLbZjMke+s5DrV/MP2TMBPtefnRnL9qHfNL7LpTed1XtsVuelm7aLl24rXPP301TC9IV15hSpiv1yF5z++pPpQ1R0xPwvMOlU7YszfDqd1ML0nuudC47uSclvetb0jvPkn7p1OHu9ZjMSu+/qv7iqp5YuZTnMdLR61YXAF4XlS472twk01OwHAS8+4XaoHwzUnnp+ifMzeOSTtpsMgFffJi0Jb7yuaKxrCX90x3SN+8zgbiy6bQJrP/wcfP5ppEDQcBTt6y+1OXuOXOh4O4Xlj9v24T00UukbZOre76VOG6D9LKjTaCv2l/dLH35DYO9maJbcgXzeyJjSYeOScHW9p31xNPT0kzG9CYFJDn2bZ+dnVU+n1ckElmyrspkMpVA4eI+6WWNAm/tztDr9vgAgLXh335m1m9OTj9Ietd53Z0PAKB1BP5WaXGKZSQSqbvYK5VKS3Zktrqoqt49ujhI143xMVhs22RQPZswtwd2STc9JVktXAvwuqWXbDW99U7Z3L0LoGceUv9i7J//WHrRlsHPGLp/p/Txa8z/UbvsSUnfftDcQj7pjINNYOWcw6RR5w3rfWHPvAn6Le5tWK1Ykv72NhOA+vAlUnzA//+dTC1I7/2O9PRM43MlEwA98xAT7Dv3sM71ftwQM6/Hl+0PBO6ak+7d3x/wnhekvS1uTCra5nH3vCD99S0mQ/HFh5uv4bgN7cv4sm0TiJjLmoBqMms2P7hd0tHru1NOstfueUH6/A3NbfTYNSd9b0763iPm80PHDmQEnrql+XK7tm16Uf7lzSZTux63S3rLadKvniH5erhJ4Z1nSz9+ypT4XOyhPSYoWg6Ar2XFkskE3jVvfk4qt/2fTy2KeYwEpN8422Tv92PsIFeQ/u0u6T/vMX9H/v3NZuMEEAgEHIN46XRa6bR5s+ZyuZa0VJicnFSpVFryGI/H0/aMu+rxBm18AMDg+dFTZnOxk4NHpU++zFwvAgD0NwJ/q1AqlSpZdl6vd9leENUZdK1m5FUH5qprunZ6fPSnYskETp5NSM8kDgT6nk1IqdzKxtwYMxftXnGsNN5a5du2+d3zpJ8+Zy7ULzaTNgGgD1zUm3mtlm1L/3u/9Dc/Mf939bz+RLOL7tZnpNufMZkJrchYplfij7dLLknHbTRBwPMOlw4bX/n8223XnAn67WoyA/W2Z6Vf/y/pisukEzd1dm7dtGtO+oMrmwvQHDpmgn2XHb36rKyV2DRibpcfa36ed85Jtz8r3fq0dM/O5X+unTyz/3fX1+42AepzDzXla08/SAr7zTm2bcrcJjMHgnjJbP3Py8G+/DKJ62cdIr31RSb7cNikcqYv6lUPr3yM8t+Rbz1gfoccMXkgEHjy5gP/N4tNL0h/+iPze2s5B8VND73j+6B877qo9JYXSf/ocGHjK7dJ5281GymGmW2bv7WLg3k7FwX49qSaf13P5aQv3iTd+KT0gYtNr89+cdcOM7fyJpOZtPQPt0t/cEFv54X+MTIyIq/Xq2TSeSdSOejn8Xg0Pj4ur9dbCQqWLVf5ZaVWm8HX6fFHRkZaajFBfz8A6G+P75M+c53zsWhA+twrB38jNgD0i3A43FKrNcuyWiq177Jb7eCNikQioWw2K4/Ho8nJyWV3SKbT6SULydHR0bp9I5zkcrklJWj8fr8mJia6Nv5i+Xxe09PTlc8nJibk9ztcBUTb5IvS87NLA3vPzpgeYMtd3G6W2yWdc6jJ7jvj4O71WVrODx+X/viHzsf+4nUmC2WQZCzpCzdK19UplyGZrK33XXggu0oy5fke3WMupv/kGemp6ToPbtK5h0nvv9D0duul52dN0K/VjDHJlIt8x9mmJ9igl/58NmGCfvUapktmgXXJkdLLjzF9Hfsxk0YyAac7ntsfsH5Wml/h5gPJlKrdEjdjNgrircYpm6W3nW5K/vXr97UVtz5tghtTy/w8rZbHbX4Oy4HA4zdKtz1jnjeZXf6xbzhR+s1z+qscZK4gvfU/ncvY/urp0q+f1f05dcp8VrrhSemZmaUZfNkOFHkIeaV3nmM2svTy9/RsxmQXX/t47TGXpL95w+D2kOX9eGeUSiWl02llMhkVi0XZti2PxyOPx6NQKLSkH3x5LVg2OTlZEwSbm5tbkhUYj8db6ilfKBS0b9++yufBYFBjY2NdG78aP3cAMLymFqTf/B9T7aGaxyV94dXS6Qd3f14AAKPV9+IE/lYomUwqnU7L6/VqYmKiYVmUVCql+fkDV5VaDcxZlqWpqanK516vd0lPwk6Pv9ggLvi++tWvtnW8448/Xmefffay59x+++166KGHWhrXtk3JsVxByu//N1c4cNH7rtG3L/t4X2lBJ899o+nn87qlsZA0Fq5fbu3MM8/UiSeeuOw4119/vZ555pmmn7eRcDisN77xTfrAd03mX7WD4tKfXLxH11793bY9pyRddNFF2rp167LnfOc731lygaQZuYK0Y9b8Wy3lWadHY6/R5hHpU5ebzJpq27dv14033ijJ/CzM50xAZCEnreQXuMctXf6KV+nikzcse97Xv/71mt3sq3HYYYfppS99qZ5NSO/5tukzVm1D7gEdYd2hWKBx8CIaMMGhRmVG3vjGNyoSWT7S2YvfEVddd7t+fOdDdbNpfB7TuzEWbP7C+dvfvvzviIWFBX3jG83/jmiG0++IQkl6cJcJAt76tOTfeb3GrWfa9px5d1j3j7xp2XMihT06NtXc74iQT1oXMT9TywUAO/U7Yjnr1q3Ta17zmmXPuf+R7frW929sGHhzyZTtzBacfx8t9kj0VVrwLv874qS5rytQSjf8PeTzmOyvaIONbOXfEct54IEHdMcddzR4xtYcdNYb9emban9H+D3Sf7xZ2jgyOO8j6klkTO/FO+LtfR/RSNgnXXLBmbrwrO6/j4if8iZ9+VaTiVjP4ePSV39R8g5gEtIgvh8fNrt3715S/nPjxtoocvUaLRaLKRqNNv0c1Wu06sd3evxq/NwBwHDKFaR3f1t6eI/z8fe8RPq55d/OAQA6rNX34pT6bKBc/sTtdqtUKimXy2l+fl7FYlEej6epoN/icVaqumdfdby20+Mvp9WyoOVds930/PPPt3W8gw46qOE5yWRy1c/rlhTaf2vqfLuoeKG158znpT3L9Fc77rjjGo4xMzPT1u9xLBaTyyW99wLpV75e23/p+aR05X15Tbf5/7Vcunc5+/btW9HXGtx/c3LOodJHL6lfMiOTydQ8p0fSaqqofenGvJ7KSL92Zv3A2a5du5ZcTFqtkZERbZ+Wfv9KcxHayeZgSsH552VlpXijAQvS7iYym6pLITvp9u+IB3ZJ37s3qU35ZZ63YIK87fsfMN+Ldn+tTr8jvG7plC3m9v9eLP3r12b0zJPte96sO9bwHI+db/73YbmUaIPTOvk7YiVs22RH/8d1GW1LPd/4NSNJqeV/H5V57HzDoWKFXQqWmvgJLUiz+6TZBqctVzK9LJVKtf37+/M/X9TJm6X7di69P1+U/u426YqXDe77iMUav2pW9j5iWQXpn289TnsC0s+fVL+iQLvfRxR9Mf2oQc9Uj0s6+1DTe7QfFkTFYrGpv1dllOXvLcuylqyX6gXLqteJrfwfS7VrvOo1VKfHBwAMP9uW/uSG+kG/151A0A8ABlE/rHP7WjKZXFLCZbFisag9e/bI6/UqFAotuzuyOpDW7sbpnR5/Oa3UlpXMwjgWa+byE9a6jSPSb5wt/eUttcd++Lh0Wven1HbrotIHX9n9Umi2pH//mbnQ/fHLpPXNbw5fsfmc2UVYLyvp6HXS6zZKP76x83Pppbt2SB/+vnRwh8pX9iOnnnBYnT3zprzm7c9K67n+vyoul/Su86Tf+GZtFvUNT5pylVi5Qkn6m1ulHz0l/eHFpldpp1kNfr8eu156/0XOWfa9kk6nlUqtoP41emLx+sfj8dRdB1aX/mx1s2b1+dV93Ds9PgBg+P3Hz+q3JHnRQdLvndfd+QAA2qMPOnn1t1zO1AfyeDzy+/0KBoM1OyELhYLm5+e1e/fuyvmNtDtDr9vjoz8Ner8zJ68/UTrOodpccUiKFK+P9vb/7f5d0tv/y/To6rT7Xqgf9Dt+g/Rnr+2v3l+dcPN26YPf7UxPrbXK45JGQyaYcNIm6fzDpVcdt7RX5jAp2dK3HpDe9nUT9OuUT1wm/f5LpAu2SSPN95oeWEetk15ZJ8H9rxw2n6B1D+02f2++drcJBvZC2Ce9+3zpy2/or6AfBotlWcrnD2RFL7ehsXrd2GqmZnUGX3Wgr9PjAwCG24+3S//wU+djW+LSJ182mCXRAQBk/DUUjUYVDocdM+iqm6nbtq2ZmRmNj48rEGjvVbLq5293Rl+nx0d7+T3SwaPmQnflNi6NuKQv/1WvZ9deHrfZlf+Ob6puLzSsTjIrffB70i+dIr3z7Pr9HlfLqvP/d9Im6fOvGv6ssGsfkz57/fAErXtpLCR97S3SaFCKBJyD5zt2SP/U3lZwDbOIOu25hPT5G03AvtM2xqQzDjabL0q29NSUdPcL0t3PS/fulDJDmGX4jrOkG56Q0lVf2+P7pIN7M6WOGQ9Jm0aqbjEp5pK+3t52hkvki9JXbpNu2p/9t3Wic89V7SVbTdBvXRcy3DHcZmdnKx/7/f5l+6q73W65XK5KdZZWS3EuPt+pf0enxwcADK8n9kmf+qHzsahf+twrTX9wAMBgIvDXwHLlO0dGRhQIBDQzs7SJSCKRcGzuvhqrzeDr5PgjIyMt7Q7tRe+IZnrptCIeb9xJKR6PN/28zyVMGcRqbpcU8B64fe6VJsi3MebcJ2dhwdP2r3W510DZ+Ph4W583HA4v+XzbhPSW06R/u+vAfUWXX0nvQXK5zK59fxt+rJa7cFO2bt26uscSaWnXvKmRX8/o/out5UDFcuMtntdqv7+2Lc2kTXlAW+b7V+2/7pXu3yl94mXS5hFp06ZNTf2sL2chb36+S7aU9ozXHD9ti/TZV0qh/b9CotHosl9roWh6PC40aD+2PipNRkwJv2Z+53T6d8SVD0p/dtPSMoJZT1xJr3nekaDZUdnp7E+PZ3h+Rxw8uvw5fr9/2ecs2eY1O5U2P1fN+NNbQrq8IL3+hPqB6mZe061Yt26dCkXpG/dK/3KnCZxUs1yhJT9LG2OrD+AvvgDsdklHrjO3XzrFfL8e2yd9/1ubNJeKq1AymVTroqt73vHx2t8R1Rr9jliJ8u+I8bD0K2dIf/uT2nMW/AfpiMn6Pepa1e73EZKUtaQds84/I2URv/TBi6QLj3A+3o73EcWStDdl/uZIUt5d+zvi0b1mQ8+vnG7+vrf6O8K2zaaV3fPOm4Ly7gPvI9ZFTfbqeYe3/KV0VTgcbmnjoGVZLZfbx+olk0kVCiZt3+PxaGysce3aQCCwpHWEZVlNr50WZxbW+/no9PgAgOEzvSB96PvOlWg8LtPjuhvl2QEAneOyq5vDoWWJRKKmD+Do6OiSIEJ1dmA8Hq8JbiynUCho3759lc+DweCShWanx18sn89renq68vnExAQ7RFfpF/5V2lPV1uX4jdKXf84ELiDlCqZE2HOztcfOOFj601f37nuVK0h/cbP03Yfrn+N1m0yD1xzf2//TR/dKV1wj7VzmWmHUL33gYunCbat7rrt2mMVErk5Zy7MOkT51uQlqt6JkS1/7mfTVO8zH9Zx+sPTRS8zF/F76+t3S395W//jLj5E+cJH5GUH3WUXpmsdMb4vlXheLxQLSz59kbrEO74J9fJ/0JzdIT0wtf954SHrPBat/3a51VtGUUX0hWXvszadJv3VO9+fUiG1L33nIlCRdLuh3zHrpisukzavbz9G0+3ZKn7vB+Xu52JGT0gcvNuVWm/FC0vS3vGvH8ue5XdIbTpLefuZwZpTzfrz70um0kknzA+3xeDQ5OdlUlZRMJrMkSzAWizW1aUaSdu06kOK9YcMGx+fr9PiL8XMHAIMvV5De823poT3Ox999vnkPBQDoL62+F+cyYxs47dpevHtSqi2d2WqGXXV8tnoXZ6fHR+fM52qDfpK5EEbQ74CA15T8dHLnDunax7s7n7Ldc9K7vrV80G9dRPrr10uvPaH3/6fHrJf+8Reli+pke0hSKi99/AfSl35cP2jXyO3PSn/4vfqPP/cw6dOvaD3oJ5mLuW89Xfrz15msvnru2iH9+n+Z0oS9YNvSP/50+aDf60805e4I+vWOz2N6Av7HW0yguJmdrfM56Z/vlH7h30zZwkS6/fPKFaS/v036zf9uHPR7xTHSv7+ZoF87+DzS/3ux87H/vrdxEKvbFvLSFdeaQNhyQb+fP0n665/rXtBPkk7eLP3zL0m/eLK03J++J6ak3/wf8/tyua+hUDQB+l/5euOg31HrpK/8vPSu84Yz6IfuS6VSlaCfy+XS+Ph4060RqitKpNPN/dHIZDKVj4PBYN3n6/T4AIDhYdvSn/6oftDvNcdLP3diV6cEAOgQSn22QXVvBak28Fa9kGq1/0L1eNWl6zo9Pjpn+7Tz/du62PdmUJy82bwR/c5Dtcf++haTQTbauFpn29y5Q/qja025sXpO3WIyLMZ6nHW2WDRg5nTaluUzRL71gPTgLlPmo1FZxcVueVr6xA/q9/S7YJv08UtXX4rwlM3SP/2S9KnrpDuecz5nJi39wXekXz1DeuuL2lemr5GSbX4m/+f++uf88mnSb5zd+2AwDK9buuxo6ZKjTJP7f7+rccAtbUlfu9vc/B7J7zX/BrxSYP+//v0f+/eXbK4cX3x/1XFbprTxjtnln39jzGyIOGPYGtD12IsPMxnD1cElqyR9+VazaaEfPLZPuuIH0gvLZXAHpA9dLJ2/tXvzWizok373PFNa9HM3mNLPTool8zN/83azGeLYDUuPP7hb+sKN0tMzzo8vC3mlt58l/dxJbKhAe5RKJSWTyUp1F6/Xq7GxMXm9rS2jY7GY5ufnJZl1Wi6Xa1haM5U6sDMwFov1dHwAwHD4z3tMtRMnp26R3nM+61MAGBYE/trE4/FU+j1ItYG46gy6VjPyqs+vXmx2enx0zlN1An9bCfw5+q1zpFuflqarNjMnsyaI9bFLOz+HQslc6P/nBqUm33SqCez048VHl8tkIJ6wUfrENc4lVCUT+HjHN6X3XShdelTjcX/0pPTJHzr3XJKklx4pfeSS9n1PRkPS518l/efd0ld/KhUd/j9KtvRPd5iycx+9RJpYJkuwHYol6Qs/kr7/SP1z3nm29Msv6uw8sDJul8mcu2CryVz9t7vq74hdLF9cPlupnVySfv7k4S1h2Gsul/SuF5uM4erfKTc/Lf1sh/SiHgZbbVv6vwdMELLeBgtJOm6D2eSxcaR7c6vnhI3SV3/R9Kn8+j31/3Y+PSP99v9KbzxV+rUzzGvq728zG34a9SY49zBzsaofvl4Mh0wmo2QyWdncGQ6HV9z7OBqNKp1OVzZnJpPJZUuFptPpytoyHo83XJt1enwAwOC75WnzvsrJlhHpj14ueckBAIChQY+/Npmenl5S3rO6t0KpVNKePQeuHHo8Hq1fv77p8VOpVGUXpyRt2rRpyfFOj78YvR3a6ws3Slc5lIm8+jekCN9WRzdvlz5ytfOxz79KOvvQzj33w7tNaYwn6wRsJSnkkz700sEpu5fOm7Ke9Xb+lb3yWFPvP1inEvAPH5c+c51z8E0yvew+eFHnsu7u3yl98lpp30L9c2IBkxl6xsEmo2ddcy1wmmYVpU/9ULrxqfrn/P5LTIlPDAbblu5+wQQA73mh17ORDhszPThP2NjrmQy/L/3YZD5XO3xc+uov9WZTx3zO9Hz88fblz/ulU8wGg9VmVnfCo3ulz17fOHvv4FFTynSmQdXCibD07peYYP1a2qHO+/HOSafTSqVSlSCa3+9vS3CsVCpp7969lUCix+PR2NhYzQbOxeuySCSikZHmotmdHl/i5w4ABtVTU9Lv/K+UcWjFEfFLf/sG6bDx7s8LANC8Vt+LE/jbL5PJ1PRHaMW+ffuWZPxNTk7WLLJ27969pBzocsG1aslkstKvwe/3a2KiNh2s0+OXseBrr9/+n9pskk0j0n+9tTfzGRQf+4F0k0NwZUNU+tc3tT8LJpWT/v526coHl886OGRM+vTlzfUJ6zdXPyp96SYpu0xfv8PGpE++TDq86lfE1Y+YMm71vjevPk5674Umm6qTZjPSZ643mVrNOHRMOv0gEwQ8dcvqfm5yBemjV0s/rVN21O0yJexefszKnwO99cAuEwCs93/cSR639NbTpF8+3ZQDRecls9Kb/8ME26r9wQXS607o7nwe2WP6+e1aprTnSED68CUm+62f5YvSf9wl/fvd9TPEG3HJZK6/82xT0nSt4f14e2UyGWWz2UpJT8lk+EUikbZmw1WXDpVMgM7n86lUKsmyrMp6bnR0tOX1aafH5+cOAAZPIi2987+lPanaY26X9CevlM7q4OZpAEB7tPpenJoekgqFgmZnZyXVNkdv1uKeel6vtyboJ0mBQGDJIsyyLMfznCzOJqzXr6HT46P9SrZzjz/6+zX27vNNubVUfun9e1LSV++Q3nVee57HtqUbnjRlRBtlHVy4zQR2BrX03uXHSMeuNxeW6/WefCYhvfN/zPf/lcea7IrvPGSyIOt5/Ynm/E4H/SRT+vNzr5S+cY/0D7fXzz4sezZhbv/7gAmsHL/BBAFPP1g6Zn3zGT0LeelD35Pu3el83OuWPnGZ6W+IwXXiJukLr5Ye2yv9+88aZ121yzHrTbbstsnuPB+MeFD69TOlv7i59thXfyq99AgpFuz8PGxb+u/7pb/7iSk1Xc+Jm0z/1A0D0KrL75F+/SzTe/BzNzTup1lt64T0/gul48l8RZtYlqVcLqdgMKhgMLiqDaHLcbvdGhsbk2VZSqfTyuVyKpVKymazlQBdKBRSOLyy5tCdHh8AMFjyRemjP3AO+knS/3sxQT8AGFZk/O23b98+SdK6detafqxlWZqaOnDFwinbTzI7ScsBRqm2HOhydu3aVfl4w4YNjv0aOj1+GTs92+eFpPSm/6i9/1dOl95+VvfnM2iuesj0UqvmkilVcdwqLwjuTJpSb42ye9wu6TfPkd54ynCUGcsVTKDzOw8tf94lR0pHrpP+9if1z/nFk81iohfflwd2mdKfe+sschqJ+k0WYDkQeFDc+etIZqX3X2XK1zkJeE0W6JmHrGwe6F/PzEi3PStNLZjXTb5o/s0VpHzV57miua/8bzP9AENe6dfONP38+rFX6FpQKEq/9l9mg0C1Xzi5fZtM6pnLmrKYtz6z/HlvOc30fBzEviyFovS1e6R/vXP5wKZkfp/+6hnSL508mF9rO/F+HL3Azx0ADA7blj57g/SDR52Pv/o46X0XDsc1DABYC8j4W6FAIKCFhYUVlfxcHGyLRCJ1s+xCodCSc9PpdFOBuUwmU/k4GAzWDcp1eny035N1driT8decVx5n+spVZ1nZkj7/I+kffmFl/Y0KRekb90r/cmfji/OHjUnvv8hkWgyLgNcsAE7dYnpQpi3n8657wtzq+eXTpN84u3cLiRM3mT5cn71e+skzrT8+lZduftrcJFNGthwEfNFBJrtwakF673fq96qK+E3plJM2r/jLQB87bHzlvTBKtukJWQkUVgUJJfO3IEYSfk95PSa4976rao/93wPSa47vXGnnB3dLn7ym/g5tyWQlfvSSwd6p7fWYDU/nH26y/+ptojjjYOm9F0ib492dHwAAwCD6xj31g36nbJbe8xKCfgAwzAj87RcKhbSwsKDZ2Vn5fL6mezmk0+lKb79wONywOXosFqs0Uy8Wi8rlcg1La6ZSB674xGLL12/q9Phor6fqlFOknFtz3C4TdPu1b9QG6LZPS1+/R3rb6a2N+cAuU7ayXiCnzO/Zn3VwysqCi4PgpUeaEoNXXCM9tq+1x/76meZCbq8XEvGg9NlXmODwTU9Jd+2Qnptd2Vh7UtL3HjE3l0y241xW2j1f/7n/9DXS0a0nkmMNcLtMkD3AO7G+d+Yh0jmHmuzOxYol6a9vMeVf22k2Y37P/ONPl+9/d/JmU9pzXXPFHfre1gnpy2+Qvnmv9E93HPi7PhYywdeXHtn7vykAAACD4HsPS393m/OxzSPSH18+vNcxAAAGl5v2W5ylNzU1pXg83jDzL5VKVYJskUikYdBPkqLRqNLpdKUnYDKZ1OTkZN0su8WBxXg83jAg2enx0V5Ogb+g17wRQ3MOHjUBpn/4ae2xf7vL9N07pIlsjLms9JXbpKsebnzumYdIf/CStZF1sCUu/c0bzPfmv+9r7jHvPFv65Rd1dl6tcLlM9uKpW8zne+ZNAPCu582/yezyj3diS3p8mWDoZET6s9esPBsMQH/53fOkO3bUBuJ++px02zPSOYetbNxCSXp6Wnpoj/TgLumh3dILc8s/xiXpraebzSfDVgLW65befJr0imPN9zUWlE7bMri9cwEAALrJtk0v8n90uD4imYo0n3ul2aQKABhuRHkWcblcsm1btm1rdnZWqVRKIyMj8vl8SwJnuVxOc3NzKhQK8ng8isfjDbPqFpucnNTevXtl27aKxaKmpqY0NjZWUyK0OrDYbBP2To+P9tnuUOrz8HHJM2QX8jrtTadK1z9psvwWyxdND8C/eJ3JrnFi26Zc6F/farIsljMeNlkHFx+xtrIO/PtL3Z2y2ZRhm8/VP/d3Xyz94ildm9qKbIiZMrGvPM6UW3xySvrZDunO56X7dzbXe205G2PSn792bQSGgbXi4FHpDSdK33TYAPE3t5oylM30nJvNSA/vMQG+B3dLj+6RMoXm5zEWkj52qSk5PMxGQ9Llx/Z6FgAAAIOjWJL+6hZTjt6J2yV94jI2pwLAWkHgb5FAIKBs9kDqR6FQ0MyMc70/l8ulWCzWVA+9am63W+vXr1cymVQ2m60E5zwej3w+n0qlkizLkm3bkqTR0dGW+g52eny0RzrvvKufMp+t83qkD1wk/c7/mkDOYvftlL77sOnDVG3HrPRnN0k/e3758V2SXnuC6Ve3lvttnb9VOmqddMW15qJ1td9/ifT6E7s/r9Vwu8zXdNQ66U2nmf5qD+yS7txhsgGfqNOHs55DxqQvvWZ4Su8BOOBXzpCueaw2S/i5Wen/HpR+8eSl9xdLpmx0Ocj30G7p+eTKn//ULSboNxlZ+RgAAAAYPvmi9OkfSjc+Vf+c3zlXOnuA+0IDAFpD4G+RsbExlUol5XI5ZbNZFQoFFYtF2bYtl8slj8cjv9+vYDDYUoafE7fbrbGxMVmWpXQ6rVwup1KppGw2WwnQhUKhFWfhdXp8rF69HnLbJro7j2Fx3Abp509yzsb4259I5x524GJpvih9/W5TAqNRdte2Cen9F0rHbWz3jAfThpj0V68z/Ze+eZ/5/kX8pjH4y47u9exWL+A1mTTlbJrZjAkMlwOBe1P1H3vkpPTF15hMFQDDJxaQ3nGW9MWbao/9yx3S2YdILyQPBPke2StlrNU/r0umrOfbTqciAAAAAJZK5aSPXC3d80L9c37tDOkXTq5/HAAwfFx2Oe0LaFI+n9f09IGaihMTE/L7ab7Squ88JP3pj2rv/8vXSads6fZshkM6L/3qN6Td87XHzt8qffpy82b4iz8yGRrLCXqlXztT+oWTmivfthbNZqSdSemgUWlkDfQIsG2TrVMOAt7zgrSQN8cu3Ca9/6K1nREKrAXFkvSObzr36O2Ew8eld58vnXZQd54Pg4P34+gFfu4AoL9MLUgfuEp6ss57U7fLVOZ57QndnRcAoP1afS9Oxh/QI/UuGm4l42/Fwn7pvRdI7/9u7bGbt0t/cKV0V4OynpLJDnzP+dLGkbZPcaiMhtZWdpvLZfp8HTwq/dyJUqEk7ZqTfG5+VoC1wuOWfu986d3f7sz4h4xJJ2yQjt9oboePr62esgAAAGjOjlnpvd9x3vgsSX6P6el3/tauTgsA0CcI/AE98pRD77B10bWROdVJZx0qXXaUdO3jtccaBf3WRaR3v0Q6/3AutKIxr9sEAQGsLadukV6yVfrx9tWNE/aZMtXlIN9xG3gPAAAAgMYe2SN94Lu1vafLogHps6+QTt7c3XkBAPoHgT+gB2xb2u6Q8XcE2X5t8bvnST99rv6b4Gpul8ngesdZJmsQAIDl/M650m3PSFap+cccMnogyHf8RumwMXr2AQAAoDV3PCd97GopU3A+vi4ifeHVVJMCgLWOwB/QA3vmpVS+9v5tvDFri9GQ9K7zpE9d1/jco9ZJ779QOnp9x6cFABgSm+PS206XvnqH8/HQ4my+/f+SzQcAAIDVuPYx6bM3mL7TTg4Zk774amlDrLvzAgD0HwJ/QA/U6++3bbK78xhml+4v93nHc87HQz6T4ff6E03JRgAAWvG20yWvx1yAcbnMRpLjN0gnbJQOGyebDwAAAO3z9Xukv/1J/ePHb5A+9yopzmYzAIAI/AE9UTfwR8Zf27hc0nsvkH7tG1LaWnrsJVul3ztfWh/tzdwAAIPP5ZLecpq5AQAAAJ1QsqUv3yp9877655xzqPTJl0lBX/fmBQDobwT+gB5wCvz53NJBo12fylDbNCJ96bXSZ6+Xnk2Ycp6/crr04sN7PTMAAAAAAID6rKL0uRukHz5e/5xXHCO970JTiQIAgDICf0APOAX+Dhun5GQnHLtB+rc3S/mi5OeNMAAAAAAA6HPpvPSxH0h37qh/zltfZFqYuFzdmxcAYDAQ+AO6LFeQnp+tvZ/+fp1F0A8AAAAAAPS7RFr6wHelx/Y5H3fJtC95w0ldnRYAYIAQ+AO67JkZU6O9Gv39AAAAAAAA1q6dSem9V0kvJJ2P+9zSRy6RLj6yu/MCAAwWAn9Alz055Xz/EQT+AAAAAAAA1qTH90kfuEqayTgfD/ukT79CetFB3Z0XAGDwEPgDusypv59EqU8AAAAAAIC16Gc7pI9cLaUt5+PjIenzr5aOWtfdeQEABhOBP6DLnAJ/42FpNNT9uQAAAAAAAKB3rn9C+vR1UqHkfHxLXPriq6XN8e7OCwAwuAj8AV1k29J2h8Af/f0AAAAAAADWlm89IP35jyW7zvFj1kt/8kppLNzVaQEABhyBP6CLptNSMlt7P4E/AAAAAACAtePKB6Uv/bj+8TMOlv745VLY3705AQCGA4E/oIuemnK+n/5+AAAAAAAAa8P3Hpa+eFP945ceJf3hxZLP0705AQCGB4E/oIuc+vtJZPwBAAAAAACsBdc8Jn3+xvrHf/Fk6XdeLLld3ZsTAGC4EPgDusgp8OdxS4eMdX8uAAAAAAAA6J7rn5A+e339nn6/dY705tO6OiUAwBBy93oCwFriFPg7dEzyU7oBAAAAAABgaN30lPSpH0qlOlG/3yToBwBoEwJ/QJfki9Kzidr7KfMJAAAAAAAwvG59WrriWqlYJ+j39jOltxD0AwC0CYE/oEueS0jFUu39BP4AAAAAAACG00+flT7+A+drQpL0ttOlXzmju3MCAAw3An9AlziV+ZQI/AEAAAAAAAyju3ZIH7lasuoE/d50qsn2AwCgnQj8AV3y1JTz/dsmuzsPAAAAAAAAdNa9L0gf+r5p/eLk50+SfuscyeXq7rwAAMOPwB/QJU4Zf/GgNBHu/lwAAAAAAADQGQ/skj74XSlXcD7+uhOkd51H0A8A0BkE/oAucQr8bZ3gTR4AAAAAAMCweHiP9P6rpEydoN+rjpPe8xKuBwEAOofAH9AFibQ0k669n/5+AAAAAAAAw+GxfdL7viOlLefjLztaet+FkpugHwCggwj8AV2w3SHbTyLwBwAAAAAAMAyenJLee6WUyjsfv+RI6Q8vJugHAOg8An9AFzxZJ/B3xGR35wEAAAAAAID2enpa+v0rpbmc8/ELtkkfvkTycCUWANAF/LkBusCpv5/bJR023v25AAAAAAAAoD2eS5igXzLrfPzFh0mfuFTychUWANAl/MkBuuCpqdr7DhqVAt6uTwUAAAAAAABt8Pys9J4rpZmM8/GzDpE++XLJ6+nqtAAAaxyBP6DDCiXpmZna++nvBwAAAAAAMJh2zZmg39SC8/HTD5Y+dbnkJ+gHAOgyAn9Ahz0/K1ml2vsJ/AEAAAAAAAyePfPSu78t7U05Hz91i/SZy6n0BADoDQJ/QIc59feTCPwBAAAAAAAMmqkF6T3flnbPOx8/cZP02VdIQV9XpwUAQAWBP6DDnPr7SQT+AAAAAAAABslM2gT9XphzPn7cBunzr5LC/q5OCwCAJQj8AR3mlPEX9UsbYt2fCwAAAAAAAFo3m5F+/0rpuVnn40evk77wailC0A8A0GME/oAOcwr8bZ2QXK7uzwUAAAAAAACtmc9Jf3Cl9PSM8/EjJqQvvkaKBbo7LwAAnBD4AzpoLuvc6HnbZPfnAgAAAAAAgNbYtvS566UnHTZ2S9Lh49KfvVYaCXZ3XgAA1EPgD+ig7XXeFNLfDwAAAAAAoP9960Hp5qedjx0yKn3ptdJoqKtTAgBgWQT+gA5yKvMpEfgDAAAAAADod0/sk/7mFudjW+LSn79OGg93dUoAADRE4A/ooHqBv8PHuzsPAAAAAAAANC+dlz55rWSVao+NhqQ/f600Gen+vAAAaITAH9BBT03V3rdlRAr7uz8XAAAAAAAANOcvbpaem3U+9pGXShtiXZ0OAABNI/AHdEixJD09U3v/1snuzwUAAAAAAADNufYx6epHnY+96VTprEO7Ox8AAFpB4A/okJ1zUrZQez/9/QAAAAAAAPrT87PSF29yPnbseukdZ3V1OgAAtIzAH9Ah9fr7HUHGHwAAAAAAQN/JF6UrrpUyVu2xiF/6xGWSz9P9eQEA0AoCf0CHOPX3k8j4AwAAAAAA6Ed/f5v0+D7nY++7UNoc7+p0AABYEQJ/QIc4ZfyFvNKmke7PBQAAAAAAAPXd9oz0zfucj73qOOmlR3Z1OgAArBiBP6BDnAJ/Wyckt6v7cwEAAAAAAICzfSnpM9c7Hzt0TPq987o7HwAAVoPAH9ABC3lp11zt/Vsp8wkAAAAAANA3iiXpU9dJyWztMb9HuuJlUtDX/XkBALBSBP6ADtjukO0nSdsmuzsPAAAAAAAA1PcfP5PuecH52LvOk7axiRsAMGAI/AEdUDfwx5tFAAAAAACAvnDfTumf73Q+duE26TXHd3c+AAC0A4E/oAOc+vtJlPoEAAAAAADoB8ms9Ec/lEp27bGNMen9F0kuV/fnBQDAanl7PQFgGDkF/jbGpFig+3MBAAAAgHabmZmRy+GKeCQSUTQa7cGMAKB5ti39yQ3SvlTtMY9L+vhlXMMBAHRfKpXSwsJCzf227bBLZRkE/rBqLPiWsm3pqana+8n2AwAAQCvategDOsG2bcefRX4+AQyC/3tAuuVp52NvP0s6YWN35wMAgGTeS5dKpVWPQ+APq8aCb6ld81Laqr2f/n4AAABoRbsWfUAnuFwuxw2gTvcBQD95Yp/05Vudj51+kPTm07o7HwAAylwul9zu2g599WIw9RD4w6qx4FvKKdtPIvAHAACA1rRr0ddPSqWSSqWS3G6349eGwTE+Pi6/39/raQBAS9J56YprJcthX81YSPrIJZJ7bV7OAgD0gWg06lhFMZ/Pa3raob9YHQT+sGos+JbaXuf1t22yu/MAAADAYGvXoq/bcrmccrmcisWiisWiCoXCsoFKl8slr9crj8cjj8ejQCCgQIDGSgCA9vvzm6Uds87HPnKJNBHp6nQAAOgIAn9Amz3lcA3G75G2xLs/FwAAAKDTCoWC0um08vm8LMuh5n0Dtm3LsqzKY8t9DX0+n/x+v8LhsLxelq4AgNW59jHpB486H3vzadKZh3R3PgAAdAqrJ6DNnAJ/h49LXioZAQAAYIik02ml0+mGwT6PxyNJcrvdlXYA5f6FpVKpbjZgORi4sLAgn8+ncDisYDBIiVAAQMt2zEpfvMn52HEbpHec2dXpAADQUQT+gDbKWtLzs7X3098PAAAAw2Jubq6SlbeYy+WqlOn0+XzyeDwtBelKpVKlNGg56JfP5yWZIGAymVQymVQkElE0GiUACABoSr4offJaKeOwTyXilz5+meT1dH9eAAB0CoE/oI2enpGc9itvpb8fAAAABlwmk1Eymaxk6LlcLoVCIfn9fgUCgVUH4txut9xut3w+n0KhUOX+XC6nbDarTCYj27a1sLCgdDqtkZERhcPhVT0nAGD4feU26fF9zsc+cJG0eaS78wEAoNMI/AFt5FTmU5KOIOMPAAAAA6pUKimRSFSy78p99xYH5zqpnEUYj8eVy+WUSqWUz+eVTCaVzWY1OjpK9h8AwNFPnpH++z7nY68+TrroiK5OBwCAriDwB7TRU1PO928l8AcAAIABZFmWpqenZdu2/H6/RkZG5PP5ejafchDQsizNzc0pl8tp7969mpiY6Om8AAD9Z19K+uz1zscOH5fedV535wMAQLewLRJoI6eMv8mINNqdzdAAAABA2+RyOU1NmZ1t4+PjfRVc8/l8mpiY0OjoqCRpampK2Wy2t5MCAPSNYkn64x9KSYc/DQGvdMVlUrA//qQBANB2ZPwBbWLbzoG/bWT7AQAAYMDkcjnNzMwoGAwqHo/3bSnNUCikQCCgZDKpRCKhsbExBYPBXk8LANBj//4z6d6dzsfedZ50ONdqAABDrD9Xb8AA2rcgzedq76fMJwAAAAaJZVmamZlRJBLR2NhY3wb9ytxut8bGxhSJRJRIJGRZVq+nBADooXt3Sv9yp/Oxi7aZ3n4AAAyz/l7BAQOkXn8/Mv4AAAAwSJLJpGKxmEZGRno9lZaMjIwoHo8rkUj0eioAgB6ZSUt/fK1UsmuPbYxJ77tIcrm6Py8AALqJUp9AmziV+ZSkbZPdnQcAAACwGuPj432f5VdPOBym1CcArFFWUfr4D0xFpmoet/SJy6RYoPvzAgCg2wZzNQf0oe0OgT+vWzpktOtTAQAAAFZsUIN+ZYM+fwDAyvzVLdL9u5yP/cZZ0vEbuzsfAAB6hRUR0CZOGX+HjUk+T/fnAgAAAAAAsFZ892Hp2w86HzvzEOmNp3Z3PgAA9BKBP6AN8kXpOYdWIpT5BAAAAAAA6JyHdktfusn52OYR6eOXSm76+gEA1hACf0AbPDMjFR0aR2+d6P5cAAAAAAAA1oKpBemjV0tWqfZY0Ct9+hXSCK1fAQBrjLfXEwCGgVOZT0naRuAPAAAAQ6JQKCifz0uSfD6ffD5fj2cEAFjL8kXpYz+QptPOxz/0Uq7LAADWJgJ/QBs8NeV8P28wAQAAMAwSiYSy2WzN/ZFIRCMjIz2YEQBgrfuLH5syn07ecpp00RHdnQ8AAP2CwB/QBtsdMv5GQ9J4uPtzAQAAAJphWZbS6bRyuZwkKRAIKBKJyOtdukycmpqSZVmOYywsLCidTmtiYoIMQABA11z5oHTVw87HzjpEesdZ3Z0PAAD9hB5/QBs4lfrcNiG5aB4NAACAPpROpzU1NaV0Oq1isahisah0Oq19+/YpnT5QMy2VSjkG/VyL3ujatq3p6WkVCoWuzB0AsLY9sEv6i5udj20ZkT5+qeThiicAYA0j4w9YpZm0lMjU3k+ZTwAAAPQjy7KUTCbrHk8mkyqVSopGo0uCgOFwuCYjsFAoKJ1Oa2FhQTMzM1q/fn1H5w4AWNumFkxfv0Kp9ljIK33mFVIs2P15AQDQTwj8AavklO0nSdsmuzsPAAAAoBlzc3NLPo/H4/L7/XK73bIsS6lUSvPz85KkYrEoSRofH1cgEKgZy+v1amRkROFwWFNTU5qbm6PnHwCgI/JF6aNXmw3YTj58iXQ4m7ABACDwB6zWU1PO95PxBwAAgH5TKpWUz+crn69bt25JBl8gEFAgEFA6na5kBQaDQceg32Jer1djY2OamZlRNBqV202NNQBA+9i29KWbpIf3OB9/64ukC7Z1d04AAPQrVmPAKjll/Hlc0qFj3Z8LAAAAsJxyBp9kMv0WB/0WC4fDCgZNrbRGQb+yQCAgn8+nbDa7+okCALDIlQ9J33vE+dg5h0q/fmZ35wMAQD8j8AesklPG38GjUoB8WgAAAPSZQqFQ+djv9y97bjQalSR5PJ6mx/f5fMpkHBpgAwCwQvftlP7iZudjB8Wlj14qebjCCQBABX8WgVUoFKVnErX3098PAAAA/WhxCc562X5lPp9PkmTbdtPju1wuWZa1sskBAFBlb0r6+A+kYqn2WNgnfeYVUqy5xHQAANYMAn/AKjw3KxUc3nzS3w8AAAD9aHHgr9kAXSsZfMVisaVAIQAA9eQK0kevlhJ1/gx95BLpsPHuzgkAgEFA4A9YBaf+fhKBPwAAAPQnn88nl8slqbmAXiwWa2l8y7Iq4wMAsFK2Lf3ZTdKje52P/+rp0vlbuzsnAAAGBYE/YBXqBf62EvgDAABAnyr37ltYWFjS86/euWNjY02Nm06nVSwWG5YQBQCgkf97QLr6Uedj5x4m/eqZXZ0OAAADhcAfsApPTdXeFwtI66PdnwsAAADQjGg0WgnOzczMKJfLrXrMQqGgubk5SZLf71/1eACAteveF6S/vsX52CGj0sculdwklwMAUBdbMYFV2O6Q8bdtQqK6EQAAAPrZxMSEUqmU8vm8ZmZm5HK5NDY2pkAg0PJY6XRayWSy8vlKxgAAQJL2zEsfv0YqOrSLjfilz7zC/AsAAOoj8AesUDIr7VuovZ/+fgAAAOh3brdbIyMjlc9zuZw8Hk9LY+RyOSUSCdm2rWAwKJ/PJ4/HQ+APALAiuYL0kaul2TotaD96iXRIc9WnAQBY0wj8ASvkVOZTkrZNdnceAAAAwGqtJFjn8XhWnCUIAMBiti396Y+kx/c5H//1M6UXH97VKQEAMLAI/AEr9JRDmU9J2krGHwAAANYAr9db6RUIAMBq/M/90jWPOR87/3Dpbad3dz4AAAwyd68nAAwqp8CfS9Lh412fCgAAADCUMpmM9u7d2+tpAAA66O7npS/f6nzs0DHpI5dIbld35wQAwCAj8Aes0HaHwN+WuBTydX8uAAAAwDAqFosqFou9ngYAoEN2zUmfuEYq2rXHon7pM6+Qwv7uzwsAgEFG4A9YgWLJOfBHfz8AAACgfYrFolwu0jwAYBhlLOmjV0vJbO0xl6SPXSodPNrtWQEAMPgI/AEr8EJSyjtsPN5Gfz8AAACgLUqlknK5XK+nAQDogIW89P6rpCemnI+//SzpnMO6OiUAAIYGndiBFXDq7ycR+AMAAAAWy2QyyufzKhQKKhaLKpVKTT/Wth3qvgEABt5cVnrfVdKjdVq4XrBNeuuLujsnAACGCYE/YAXqBv4o9QkAAAAol8spmUzSnw8AsEQiLf3Bd+pfVzl8XPrQxRJVngEAWDkCf8AKPOlQiiLskzbGuj8XAAAAoJ/kcjnNzMz0ehoAgD6zLyX9/nek5xLOx0dD0qcvl8L+7s4LAIBhQ+APWIHtDjvTtk5IbnakAQAAYA0rlUpKJOpc0QUArFm75qTfv1LaOed8fDIifem10kGjXZ0WAABDicAf0KJUTto9X3s//f0AAACw1qVSqZrefD6fT+FwWD6fTx6PR263u0ezAwD0wo5ZE/Tbm3I+vjFmgn5b4l2dFgAAQ4vAH9Aip2w/if5+AAAAQDabXfL56OioQqFQj2YDAOi1p6dNec+ZtPPxg+Im6LeB1ikAALQNgT+gRfUaUJPxBwAAgLWuWCxWPo7FYgT9AGANe2yf9L7vSMms8/HDx6U/e400EenuvAAAGHYE/oAW1Qv8bSXwBwAAAFSEw+FeTwEA0CMP7pY+cJWUyjsfP2qd9KevlkbZHwIAQNvRXAFo0dMztfdtGpEi/u7PBQAAAOgnPp9PkuRyuejlBwBr1D0vSO+9sn7Q7/iNprwnQT8AADqDlRjQIqe69AePdn0aAAAAQN8pB/5s21apVOrxbAAA3fbTZ6X3XyVlCs7HT90iffHVUizQ3XkBALCWEPgDWjTvUJt+hDesAAAAgGKxWOXjfL5OqkcLcrmcEonEqscBAHTej7dLH/q+lC86Hz/rEOnzr5LCVEwCAKCjCPwBLSjZ0nyu9v6RYPfnAgAAAPQbt9uteDwuSZqbm1v1eJZlKZt12HkHAOgrP3xc+sQPpEKdZO/zt0qffoUU8HZ3XgAArEUE/oAWLOQk2+F+Mv4AAAAAIxwOKxaLqVgsKpVKrWosyoUCQP/77sPSp34oFZ0umEi65Ejpky+T/J7uzgsAgLWKfTZAC+Ycsv0kKUbGHwAAAFARjUZVLBY1Pz9f+Xwl8vm8XC5XO6cGAGij/71f+oub6x9/1XHSey+QPKQeAADQNQT+GrAsS5ZlqVAoyLZtuVwuud1u+Xw+BQKkea01c3WqDFHqEwAAAFgqHo8rk8lofn5eqVRKPp+v6cfatr1kDQYA6D9fu1v6ym31j7/hROld50tufo0DANBVPQ38lUollUolud1uud39tfUnlUoplUrJtuvUKdgvHA4rEonI6135tzKXyymbzSqfz6tYLFYWtx6PR6FQSOFweFXfn06Pv5Y49feTKPUJAAAALGZZlhKJRGU9Zdu28vl8j2cFAGgH25b++Q7pX+6qf85bTpPeebbE3g0AALqv44G/XC6nXC6nYrGoYrFY2bVZj8vlktfrlcfjkcfjUSAQ6GpmXaFQ0MzMjIrFYlPnp9NppdNpjY6OKhQKtfRc5cVw+bm8Xq98Pp9KpZIKhYIKhYLm5+c1Pz+veDyucDjcV+OvRfUy/ij1CQAAABi5XE4zMzNtG6/RZkwAQPfYtvTln0j/dW/9c95+lvS2FxH0AwCgV9oe+CsUCkqn08rn87Isq+XH27ZdKa8pSQsLC5Ikn88nv9+vcDi8quy65ViWpenp6RUtLGdnZyWp6eBfOp1WMpmUZLIGY7HYkqy7UqmkZDKpbNZEmpLJpAqFgkZGRvpi/LWqXo8/Mv4AAAAAs85oZ9APANA/Srb05z+Wvv1g/XP+34ulXzqla1MCAAAO2hZBK2e+NQr2eTweSZLb7a70arBtu1L2s17QrRwMXFhYkM/nUzgcVjAYbGuJylwut+T5w+GwwuGwPB6P3G53pddfObBZbXZ2VoFAoOGccrlcJSgXiUQcg21ut1tjY2NKJBKV4Fz5a28UXOz0+GvZPD3+AAAAgLpSqVTNfS6XS+FwWD6fr6VNnJZlVdY1AIDeKpakz98oXf1o/XP+4ALpdSd0b04AAMDZqgN/c3Nzlay8xVwuV6VMp8/nqwTPmlUqlSqlQctBv3KwrbwATCaTikQiikajbQkALi7vOTk5WdN83ufzVQJjmUxGyWSyJlCZSqUaZs0lEglJ5nvU6Nx4PF4JzEkmM69RYK7T469l9TL+omT8AQAAADUbJGOxmKLR6IrG8vl8sixL6XS6HVNbotyCwuVyVdaSra5XF/9r23bLa14AGBS2LX3uBumax5yPu13SBy+WLj+mu/MCAADOVhz4qw58uVwuhUIh+f3+prLeGnG73XK73TUZaLlcTtlsVplMRrZta2FhQel0WiMjI6vuUVcoFCSZYFh10K9aeU7lEp9l2Wx22WBbKpWqfM+aWQC73W5FIpFKcNW2baXT6bpfa6fHX+ucevxF/JKX9T0AAABQWVNJqmzSXA1XhxpETU1Ntb13YDN938vr2Xw+r2KxWAk+ejwehUIhhcPhVa2lOz0+gLXpG/fUD/p53NLHLpEuPrK7cwIAAPW1HPgrlUpKJBKVnZzlvnvdyhIrZxHG43HlcjmlUinl8/lKv7rR0dEVL2SKxWKlDE0zQqGQstnskoy5YrGoUqlUdw6LS98Eg83VhwyFQkuyKjOZzLKBv06Ov9bNO2T8xcj2AwAAACRpSTBttUE/qbUsvF5bbvOoZVlKJBKVKjNer1c+n0+lUkmFQkGFQkHz8/Oan59XPB5veT3W6fEBrF137pC+crvzMZ9b+qOXSy8+vLtzAgAAy2sp8GdZlqanp2Xbtvx+v0ZGRhpmxnVSOQhoWZbm5uaUy+W0d+9eTUxMrGhexWKx6WBZWTAYXBL4K4/jtEAtZylKZudqs/0tqr8Wp/6C3Rgfzhl/9PcDAAAADI/HU9lQ2Y6gXTQa7UiQyu12L2n1sFrhcLju+iudTld6FYbDYcVisSXfm1KpVNnIKpn2C4VCoWHbhm6ND2Dt2pmUrrhGKjkkSAe80mdeIZ1xcPfnBQAAltf0SiyXy2lqakqSND4+vuLgWif4fD5NTExodHRUkinbUh2Ma6Tcm6HVwF8r34PFAbVWv3fVi8hcrjb1rNPjw7nH3wgZfwAAAICkA+sQ27Yra6zV6nTWX7kUptfrbem2WCwWcxw7l8tVgnKRSETxeLzm63G73RobG1uyFl1YWFAmk2k4906PD2DtyljSR652rnzkdkmfejlBPwAA+lVTKWG5XE4zMzMKBoOOC4l+EQqFFAgElEwmlUgkahY3y3G73dqwYUPLX5vTrk6Px+N47uKFVbPZeGV+v39Jvwyn3amdHh/SvEM8OUbGHwAAACDJBMDKmzAty1IgsLpdcoVCQcVicdXjVCv3DgyHw4rH4yua1759+ySpJsNusUQiUXm+Rhl28Xh8yQbWZDLZsKVGp8cHsDbZtvQnN0hPTTsf/42zpbMO7e6cAABA8xpGuSzL0szMjCKRiMbGxvo26FdW3s0YiUSUSCRkWVZLj22V0y5Wp3FKpdKSfhetNqmvDiYuDtJ1Y3yYN75k/AEAAAD1eb1eRSIRSVrSR3ylstmsZmZmVj1OPfUy9RqZn5+XZNZd9XoZplKpyhqtmX6Hbre78r2TTNZkOp2ue36nxwewdn3jHumGJ52PXXSE9OZTuzsfAADQmoaRrmQyqVgsNnD1/0dGRhSPxys7IDulOrBYL8OwOoOu1Yy86sBc9fN2enyYMhdFh2pF9PgDAAAADhgZGVE4HFYul2u5BUO1dpULrWbb9or7EBYKhcrXtVy2YCqVqnzcbCWa6gy85cpxdnp8AGvTnTukr9zufGzrhPSHF0st7jUHAABd1jA6ND4+3vdZfvWEw+GWe/a1qjpAVm+nZfV5rWbkNfo/6PT4kObqXLOIkfEHAAAALBGPx1UqlVpuwVDNsqyW1zbNWmnP+nK2n9frrVsqM5PJVLLxXC5X0xszq+e0uI97N8cHsDbtTEpXXCOV7NpjsYD0mcul0Mp+dQIAgC5quDoY9IBQp+e/eJel3++vu3hc7U7V6q+jerxOjw/nMp8SGX8AAABA2dzcXCUgVV5jJBIJ+Xy+lgJtpVJJxWKxY4G/Uqm0or6BlmVVsv1GR0frnrc4oNZqgNHr9S5pvZDL5Wrm2unxAaw9GUv68NXSvMO1D7dL+sRl0ubWW6ICAIAeaK0eJJZYvMtSksbGxuqeu9pAWvVid/HzdmP85bRaFtTj8dSUFh0E82T8AQAAoAOKxWJN6f7l9HNZ/nw+7zg/y7JWPO9W1ibNCoVC8vv9LT9udnZWkimtuVzAbXEJzVbbMPj9/iWBOaefjU6PD2BtsW3pT26Qtk87H3/n2dKZh3R3TgAAYOUI/K1CucSLZErZLJddWL1YbXcmYqfHX87c3FxL50ejUcVisQ7NpnPI+AMAAEAnpNPpJZVEBlk4HFYymez1NBparjdfPZlMphIwW249UyqVlqzPWs1YrN4kuThI143xAaw937hHuuFJ52MXHSG96dTuzgcAAKzOQNXxzGQympqa6vU0JJlgV3lnZDgcVjgcbunx7c7Q6/b4a1G9Hn8jZPwBAAAAktTxHuu9VA5oRiKRZbPsqjPoWs3Iqw7MVWdKdnp8AGvLnTukr9zufGzrhPSHF0tcIgIAYLC0nPE3NzenUCi04kboq5HNZvtiN6JlWVpYWJBkyqSsZLdoq6oz+Nqd0dfp8YeBU517SYoN77UNAAAAoCVut1s+n0+WZcnj8SgcDsvtdre8sdC2bVmWpXQ63aGZtqbcu9DlcikajS57bnUgrdWvvdFarNPjA1g7dialK66RSg4VlWMB6TOXS6HuX/4DAACr1HLgb2FhobKY66ZCoaBsNtvzTLRSqaTpaVP03Ov1amJiomvP26/jj4yMtPTzMIj9/aRlAn9k/AEAAGAVwuGwAoHm31RaltVyuf1uKgf+xsfHW85Gq1YqlZTN1im90SWFQqGy8TMajTYMnK127VY9fvV4nR4fwNqQsaQPX+18rcPtkj5xmbS58/vcAQBAB7S8CnO5XD1ZGMzMzEjqTGP3VkxPT8u2bXk8npaCftUBy9V+HdWLtU6Pvxyfzye/37+q5xsETqU+g14pQKdMAAAArILH4xnYzXFO/H6/0ul0WzLL+uH7Ui7x6fF4Gmb7Se1vu1C9tuv0+M1qtUTosP2cA4PMtqU/uUHaPu18/J1nS2ce0t05AQCwlhSLxZoS/stp9b13yyELt9utfD7f6sNWZWpqqqVvQqckEgkVCgW5XC5NTk62tJBd7a7K6sVYdYZdp8eHNOewC44ynwAAAMBS5bVEOwJ/vS5LmU6nK+vfWCzW1GOq11bt/ho6PX6zWs06jUajTX8PAXTWN+6RbnjS+djFR0hvOrW78wEAYK1Jp9NKpVIdG39FuUqWZcmyrK4Eh6anp/ui2XgymayUGm016CfVLsZaDWRWB/Kqd0p2enxI8w4ZfyOU+QQAAACW8Hq9WrduXVvGarUMajuVSqVKcMvr9SoUCq14nNVo1O6i0+MDGC537pC+crvzsa0T0gcvlvi1AADAYGt5a2B5UZFIJNo+mWrT09Ndzy50Mjc3p3Q6XQn6raRPRXWQtNXFWfX51XPo9PhwzvgbIeMPAAAAqNGu9UQv+suXJZPJSnbd6Oho1563elNnuzP6Oj0+gP61MyldcY1UcqjwGwtIn7lcClEACgCAgbfi1VixWFQikdDY2Fg751ORSCQcg36RSKQjz1dPOp2uNHKfmJhY8QK2OoOu1SzG6gy+6sVvp8eHc8ZfjIw/AAAAYOjkcjlls2YBEAwGu7o+Wm0GX7fGHxkZaen7QlUZoLcylvThq6V5h03Nbpf0icukzfHuzwsAgLWo1comlmW1VGq/5SjW4n4C2WxWyWRS8Xh73xkkEonKImuxcDiskZGRtj7XctLpdKWR+/j4+KoWe263Wy6Xq/L9a7UU5+Lz/X5/18cHGX8AAADAWlFeB0rN9/Yrqy6dWd2Tr1XVGXmdHr9ZPp+PtSMwIGxb+twN0vZp5+PvPFs685DuzgkAgLXM4/F0dGNcy+/w4/G4wuFw5fN2NyEs99KrFg6H2x5gXE4mk1kS9GtHX4nqMVrJyluc/VhvLp0efy3LFcytGhl/AAAAwHCZm5urbIwMh8MtV32pDqS1mmFXHcir3oDa6fEBDJ9v3CPd+KTzsYuPkN50anfnAwAAOqvlwF85ADc+Pl65b35+Xul0etWTKffSqxYMBrsa9MvlcpqdnZVkejm0KxAWDC5ND8vlHFLI6igUDkSdFgdeuzn+WuZUCkMi8AcAAIDhtnidsBYUCoVKqwep9Ww/qTYw12o1lupAXvVO4E6PD2C43LlD+srtzse2TUgfvFiqSiQGAAADbsVdvAOBgCYnJyuf18vUa9bc3NySBVZZMBjsWB9BJ5ZlaWZmRpLJbgyFQk0/tlQqqVAoqFAoOGbbVY/VbLA0k8lUPg4Gg3VLsXR6/LVsrs6PNqU+AQAAMKxKpZL27dunRCLRcg/xQZVIJCofh8PhFa2NqjPoWs3Iqz6/OuOw0+MDGB47k9IV10glh4rAsYD06culEEm/AAAMnVW9w/f5fJqcnNTU1JQks0ianJxsuVRIKpVyDPr5/f6uBv0KhYKmpw8UPF9YWNDCwsKSUiiLF0nL9VJwuVzauHFjzf2xWEzz8/OSzM7MXC7XMKNwcSnVRjtOOz3+WuXU30+SRsj4AwAAwJDLZrPKZrPy+XyKRqM1lUaGRTqdXpLhuNK1UXUGXatB0+oMvur1dafHBzAcMpb04audKxi5XdIVL5M2d6+4FgAA6KJVp3b5fL4lZT+npqZaWnik0+lKoGoxv9+viYmJ1U6vaYVCQVNTU0uCeeXsvWKxWLnZtl25rUQ0Gl2yUEsmk8vu0Fy8+IzH4w13Y3Z6/LVqvk7GX2w4r3kAAAAAcrvd8vv9lc8ty1IikdDu3buVSqVazjTrZ6VSqdLjXVp5tp9kvm+uRXXzWi3Fufj8xd//bo0PYPDZtvS5G6Tt087H33m2dMbB3Z0TAADonrbUdAwEAkuCf9PT0031gkin00sWV2U+n6+rQb9SqVQT9OukycnJykKtWCzWDZamUqnK9ycSiTTde6/T469FdUt9kvEHAACAITYxMaF169YtWSvYtq35+Xnt2bNHyWRyKPoAVq9LI5HIqsarrrrSyubYfD5fd5xujQ9gsH3jHunGJ52PXXyE9KZTuzsfAADQXW1L7yoH/2ZmZmTbtmZmZjQ5OVl3l2Qmk6kb9FvcO7Abypl8zXLV6Xq8eIzlxnO73Vq/fn2lL2I5OOfxeOTz+VQqlWRZVmWM0dHRlnoNdnr8tahuqU8y/gAAADDkvF6v4vG4YrGY0um0UqlUZS2RTqeVTqcVCAQUiUQGMpCUy+WW9Kv3+/2rroQSDAaXjJnL5Zouqbk4kFpvc2anxwcwuG57RvrK7c7Htk1IH7xYqnNZCwAADIm21nVcHPwrFouV4F+1XC6n2dnZmvs9Hs+SzMFu8fl82rRpU1ef0+12a2xsTJZlKZ1OK5fLqVQqKZvNVgJ0oVBoxQuxTo+/1tQt9Tl41zUAAACAFXG73YpGo4pGo8pkMlpYWKhkmuVyOeVyOXk8HkWj0YFaZyQSiSWfR6PRVY8ZCoWWrHnT6XRT42YymcrHwWCw7kbaTo8PYDA9vEf6xDVSyWEveiwgffpyKURbTwAAhl7bG7otDv5ZlqWZmZklwbxcLqeZmZmax3k8nmUzBIeVz+dTPN65bsqdHn+tcMr487p5wwwAAIC1KRQKKRQKybIspVKpSvZZsVhUMpnU3NycwuGwotFoX6/x5ubmllRr8Xg8bctajMVilX72xWJRuVyu4dipVGrJ43s5PoDBsmNW+uB3paxD9WW3S7riZdJmLg8BALAmdGQFtrjnXy6Xq+ygLAcCq63VoB8Gh1PG30iA8hgAAABY23w+n8bGxrRhw4YlffFs29bCwoL27NmjRCLRUg+6brEsSwsLC0vua2emYjQalcfjqXyeTCZVKpXqnp9OpytlOOPxeMNyo50eH8DgmElL77tKStapVvSbZ0tnHNzdOQEAgN5pOdI2NTW1pDxIPYFAQKOjo5KkbDar6elpTU1N1Zzncrk0Pj7eVNAvk8k4jgF0mlPGX4z+fgAAAIAkUwZ0ZGREmzZtUjweXxKQymazmpqa0tTUlHK5Os2ze8Cp/US7S5ROTk5WesSXe687BUFTqZSSyaQkKRKJND2PTo8PoP+l89IHvivtmnM+/qrjpDee2t05AQCA3mp5i59lWbIsS6FQqOG55XNmZ2eVz+drjrtcLk1OTja907BYLPblTlEMvzmnjD8CfwAAAECNcDiscDhc0wewXAGmH/oAWpZVyX4rC4fDba9C43a7tX79eiWTSWWz2Upwrtx3vVQqybKsSrnR0dHRptba3RofQH8rFKWP/UB6fJ/z8XMPk/7gAqoVAQCw1rQc+HO5XEt6IDSyOPhXPU4rQT9JKpVKld2MQDfNO2X8taf1BwAAADCUGvUBTCaTleyzbped9Pl82rRpU1eey+12a2xsTJZlKZ1OK5fLqVQqKZvNVgJ0oVBoxYHQTo8PoD/ZtvQnN0p37nA+ftwG6ROXSV666gAAsOa0vLpyu901OyMbqQ7+uVwuTUxMtLy4I9sPvULGHwAAALAy5T6ApVJJqVRK6XS6spl0YWFBCwsLCgaDikaj8vl8PZ5t5/h8PsXj8YEdH0B/+fvbpWsecz528Kj0uVdKoeH9lQoAAJaxom2V+Xxec3NzCgQCS3o3LMfn8ykSiWhhYUHhcFgul6vpAKJt28pkMsrn82T8oesKRSntEHMeIeMPAAAAaFq5D+DIyIjS6bRSqZSKxaIk0wcwm83K5/MpGo0qGGSXHQDU87/3S1+72/nYeEj6wqulUar6AgCwZq24nkp5Z2a3H9tKmVGgHZzKfEpSjGsRAAAAwIqU+wDmcjmlUqlKT3jLspRIJORyuSp9ANvddw8ABtmPnpL+8mbnYyGf9PlXS5tHujsnAADQX7rbSAEYQHN1An9k/AEAAACrEwgEFAgEVCgUtLCwoHQ6Lcls+Jyfn9f8/LzC4bAikUjX+wACQL+5b6f0qR9KTlviPW7pU5dLR63r+rQAAECfYeUENODU30+ixx8AAADQLl6vV/F4XLFYrFIGtFztJZ1OK51OKxAIKBKJKBBgBx6AtefpaelD35fyRefjH7pYOuPg7s4JAAD0JwJ/QAN1S31yvQEAAABoK7fbrWg0qmg0qkwmo4WFBVmWabidy+WUy+Xk8XgqZUABYC3YMy+977tSqs71id8+R7rs6O7OCQAA9K8VB/78fr8CgYA8Hk875+OoWCwql8tV+j4A3UTGHwAAANB9oVBIoVBIlmUplUopmzVvzIvFopLJpCzLUjwe7/EsAaCz5rPSB74r7Us5H3/DSdIbT+3unAAAQH9rOfBXKpXk8/k0MTHRifnUFY1GtW/fPhUKha4+L0CPPwAAAKB3fD6fxsbGVCgUlE6ntbCw0OspAUBX5ArSh6+Wnp5xPn7RNuld50kuV3fnBQAA+tuKMv58Pl+759EUv99P4A9dN18n4y9Gxh8AAADQNV6vVyMjIxoZGVEqVSf1BQCGRLEkffo66b6dzsdP2Sx9+BLJTdAPAABUaTnwZ9u2XD3aStSNsqJANaeMP7dLivi7PxcAAAAApiIMAAwr25b++hbpR085Hz98XPr0K6TAihv4AACAYeZe0YPcK3rYqvXqebG2OWX8xQLsqgMAAAAAAO33n/dI//uA87F1UekLrzbXJQAAAJy0vDdo06ZNnZhHU8LhsMLhcM+eH2vTvEPGH2+wAQAAAABAu13zmPSV25yPRQPSn75KWk/SMwAAWAYpdEADcw4ZfyP09wMAAAAAAG10x3PS525wPub3SJ97hXT4RHfnBAAABg+BP6ABpx5/ZPwBAAAAAIB2eWyf9LEfSMVS7TGXpI9dKp20uevTAgAAA6hh4K9UcnjHMUAGff7oPacef2T8AQAAAPWl02nWYgDQpJ1J6QNXSRnL+fi7XyJdsK27cwIAAIOrYeBvampK6XS6G3Npu3Q6rb179/Z6GhhgJdu5x98IGX8AAABAXel0Wnv27FE267CLbhUKhYJyuZwsq87VcQAYMLMZ6b1XSYmM8/FfPk36uRO7OycAADDYvI1OGBsb09TUlAqFgkZGRroxp7aYm5vTwsKCxsfHez0VDLCFnGQ73B8j4w8AAABoKJfLKRhc/Zvn8vquWjAYVDQalc/nW/VzAEC3ZSzpg9+VXkg6H3/5MdJvnN3dOQEAgMHXMPDn8/k0Ojqq2dlZFQoFjY6Oyu3u79aAiURC2WxW8XhcgQCpWVg5p/5+Ej3+AAAAgOW4XK62jbV3714Vi0XHY9lsVtlsVuFwWPF4vG3PCQCdZtvSH/9QeqROoaqzDpE+cKHUxl+nAABgjWgY+JOkUCgkt9utmZkZ7d27V6Ojo23ZtdluuVxOiURCtm1rdHRUoVCo11PCgJurU5mIHn8AAABA583NzdUN+i2WTqdVLBap+AJgYFz5kHTL087Hjl4nffJlktfT3TkBAIDh0FTgT5ICgYAmJyc1PT2tRCKhQCCgWCzWFyVVCoWC5ufnlc1m5XK5ND4+TqYf2sKpv59Ejz8AAABgOeUqMaVSSZlMptKTz+v1KhgMNl1Fxqm8p9/vVyAQkNvtlmVZymQysm27shF0bGysfV8IAHTAjlnpy7c6H9syIv3Jq6Swv6tTAgAAQ6TpwJ9kyn6uX79eiURCuVxOuVxOgUBAkUikJ4G2XC6nVCqlfD5fmd/4+HjflyLF4KiX8UePPwAAAKCxcinOxZLJZFOlOQuFQs198Xhc4XC45r5UKlXZDFpepwJAPyqUpE9fJ2Vrf8VpNCR94dXSeLj2GAAAQLNaCvxJZufmxMSEMpmMkslkJQDocrkUDocVCoU6mgVY3tGZTqdl23blfqcFILBa9Xr8kfEHAAAA1NeoPGc6nZZlWZqcnGx6jGAwWHfNF41G5fF4NDs7q0QioY0bN7Y+aQDogq/dLT28x/nYRy+RDhrt6nQAAMAQajnwVxYKhRQIBJRKpbSwsCDbtrWwsFApxVIuv+LxeOTz+eT1tv5UhUJBlmVVbuXMvsXC4bBisRhZfuiIeXr8AQAAAC0pB/UasSyrpdKcjfrMh0KhSoZhNpvty770ANa2x/ZK/3Kn87HXnSCdeUh35wMAAIbTigN/ksn+GxkZUTQaVTab1cLCQqUcSz6fdwzUuVwuud1uud3uyselUkm2batUKlU+Xo7H41E4HFY4HCbgh46ql/EXJeMPAAAAcDQ3N7fkc5fLVdkU6vV6l2zuzGazsiyrqaoxzZwTi8WUzWaVTqcJ/AHoK7mC9KnrpGKp9thBcem3z+3+nAAAwHBaVeCvzO12VwJxlmUpnU4rl8s5lnexbVvFYrFh6ZdqHo9HgUBA4XC4o6VEgcWcevxF/JKXeDMAAABQw7KsJRs5Y7GYotGo47npdFrJZFLJZHLZkp9lzWz69Hq9CofDSqfTzU8aALrg72+Xnk3U3u9xmRKfIS51AQCANmlL4G8xn89XadJeKpVkWVYlCFgsFlUoFBpm9Pl8Pnk8nkqZ0EAgQGYfemLeIeMvRrYfAAAA4KhcAUaSxsfHFQjUf/McDodVKpU0Pz+vXC637LlSc4E/yZQELZcbZdMogH7ws+el/77P+dgvv0g6jrakAACgjdoe+FvM7XYrEAg4LuBKpVLl3/ICjuAe+o1Txh/9/QAAAABn5d5+kUikYSBPkqLRqFKplLLZbFPnN6Mc7CsUCgT+APTcfE767PXOx45eJ/3K6d2dDwAAGH4dDfwth2AfBoFTj78RMv4AAACAZbUSxPP5fMrl6jTXXoHyGrNRpRkA6Ia/vFnam6q93++RPnKJ5PV0f04AAGC4EXUDljHvkPEXI+MPAAAAcOT1mr2lrWTaud3ulnvAL2dxdRkA6KUfPSVd85jzsd88RzpsvLvzAQAAawOBP6AO2ybjDwAAAGhFOeDXStCtXB60WvUYzY5ZDiJSXQZAL00tSF/8kfOxFx0kveGkrk4HAACsIayEgDoyllR0uLZAjz8AAADA2eL+es0oFAqVQF11uc/qLMBmA3/l53a5XE2dDwDtZtvS52+Ukg5VhKJ+6Q8vltz8igIAAB1C4A+oY87hDbokxcj4AwAAAOoKh8Oam5tr6tzZ2dnKxzMzM0uCf+l0esm5zQYTFxYWJLVWbhQA2umqh6Xbn3U+9p6XSBti3Z0PAABYW7y9ngDQr5zKfEpk/AEAAADLCYfDSqfTmpqaUjwedwzAWZalZDJZKfMZiURULBY1MzMjn8+nQqEg27aXPGZubk7B4PJvxjOZjCzLksvlqvQbBIBueiEp/c0tzscu3CZdelR35wMAANYeVkJAHfNk/AEAAAAt8/l88vv9yufzmpqaksfjkc/nk9vtVqlUkmVZNWU8A4GAAoGA9u7d69jzLxgMKpvNKpFIaGxszPF5c7mcksmkJCkUCrX/CwOABool6dPXSRmHBOXxsPTeCyWqEAMAgE4j8AfUQcYfAAAAsDJjY2Pau3evbNtWsVisCfQt5vP5FAiY3XXj4+OampqqyfaLx+Nyu91Kp9Pau3evotGo/H6/3G63isWi0un0ktKgkUikM18YACzj6/dID+52PvaHF0txricAAIAuIPAH1FGvx98IGX8AAADAstxutyYmJjQ9PV0TxKs2Ojpa+djr9WpiYkKJRKISLCwH/WKxmNLptIrFYiWzz0kkEqHMJ4Cue2Kf9E93OB97zfHS2Yd2dz4AAGDtYjUE1DFfJ+Mvxg49AAAAoCGfz6fJyUnNz88rm63dVef3+xWPx2uCdD6fT+vXr1ehUJDb7Zbb7ZZkgomRSEQLCwt1n9Pv92tkZKS9XwgANJArSJ+6TiqUao9tGZF+59zuzwkAAKxdBP6AOupl/NHjDwAAAGiO1+vV2NjYkt5+i3v+NXpstZGREVmWpXw+X3MsEokQ9APQE//4U+npmdr73S7pI5dKYX/35wQAANYuAn9AHU49/oJeKcCrBgAAAGiJ2+2u9PFbrYmJCRUKhSWBxEAg0DCQCACdcO8L0jfvdT72ltOkEzZ2dToAAAAE/oB65h0y/ijzCQAAAPSe1+uljx+AnlvIS5+5XnLqZHrkpPSrZ3R9SgAAAGJLJFCHU8bfCGU+AQAAgK5Jp9NKJpO9ngYAOPrLm6Xd87X3+z3SRy+RfJ7uzwkAAIDAH1CHU4+/ETL+AAAAgK5Jp9NKp9O9ngYA1Lh5u3T1o87HfuNs6fCJ7s4HAACgjMAfUEfKIeMvRsYfAAAAUFepVNKuXbuUyWRWPVYul5NlWZKkbNZhVx4A9MhMWvr8jc7HTt0i/cLJ3Z0PAADAYgT+gDocS32S8QcAAAA0VCwWV/X4QqGgRCJR+bwdgUQAaAfbNkG/pMN+hIhf+tDFktvV/XkBAACUtdwNfXp6Wl6vVz6fTx6PRz6fT2438UMMl1zB3KqR8QcAAAA0lk6nFY1GV/TYUqmkmZkZ2bZduS+Xc9iVBwA98L1HpJ8843zs986XNo50dToAAAA1Wg785fN55fP5Jfe5XC55vV4Fg8EVL+6AfjJf57oCGX8AAABAY8ViUel0WuFwuKXHlUolTU1N1WQMjo2NtXN6ALAiO5PSX93ifOz8rdLLj+7ufAAAAJy0HPhbLBgMVrL9SqXSqsu5AP1irk4LkREy/gAAAICmJJNJ+f1+eb3NLTvrBf3Gx8cVCPBGHEBvFUvSZ66XMlbtsfGQ9P4LJRclPgEAQB9YceAvEoloZIT6BRhOTv39JClGxh8AAABQl9vt1ujoqGZnZyVJs7OzmpycbPg4gn4A+t1/3Svdv8v52AculkZDXZ0OAABAXS0H/lwul2zbls/n68R8MIBmZmbkctjWFolEBrb063ydjD96/AEAAKBbUqmUFhYWau5f3PuuH4VC5ur37OysLMtSMplUPB6vez5BPwD97uE90ld/6nzsVcdJ5x7W1ekAAAAsa8UZf+USn4Bt244XH/r9gsRyKPUJAACAXrNtW6VSqdfTWJFQKCTbtpVMJpVOp+Xz+Rz7/RH0A9DvnpyS3n+VZDn8Ot40Iv3ui7s/JwAAgOUQ+MOquVwux4w/p/sGRb1SnyOU+gQAAECXuFwux3VXvY13/aYc6Esmk0omk/L5fEsqxxD0A9DvnpmRfv9Kad7hGoFL0kdeKoX9XZ8WAADAslYc+APKxsfH5fcP1ztdSn0CAACg16LRqGPp/Hw+r+np6R7MqHXhcFiFQkELCwuanp7W+vXr5Xa7CfoB6Hs7ZqX3XCkl61wfeNNp0kmbuzolAACAppC2BzhwyvjzuqUQrS0BAACAloyMjCgYDMq2bc3OzqpQKGjv3r0E/QD0rZ1zJug3k3Y+fs6h0jvO7O6cAAAAmtVy4K9camaQyzgCjThl/I0EJH7sAQAAgNaNjY3J6/Uql8tp3759NaVK6wX9crmcEolEt6YJANozL73n29K+lPPx0w+W/ujlktfT1WkBAAA0jYw/wIFTxl+M/n4AAADAik1MTDhuIF0u08+yLGWzdersAUCbTS2YTL/d887HT9ksfeZyKUDjHAAA0MdWHPjL5/MqlUrtnEtTevGc/7+9P4+OfU3rw95vTSqpNO3pnG6wwY0xNCFMMTQmDA4YDLjpbpzrOMny9Voekuus6wmb2QQ74AEMbgie4jhxFtz4Jl5xnNzQQEPbEMANBtxgG2Mmt81iMNB9zj5bpzSUVPP9Yx9VS6WftlRbVSVV1eez1lmtql/VW+9W759ePft5n+dl9ewXVfxJ/AEAwHMrl8t5+PDhueeuau/Z7/d1mwHmYq+V/OlvT361WXz9Y16f/OUvSNYdAQIA3HHPvUep2Wym2Xz621CtVhv9V6lUUqvVRi1Bp+n4+DivvvpqPuiDPmjqY8NZB0UVf44bAQCAG6nVarl3715effXVa53p124X/GIOMGX7J8kXvyP5pUs6C3/Ui8k3viVprM13XgAAz2MqzQm63W663e6550qlUqrV6lQTgqfnQAwGg5kkFuGUij8AAEgODw/TarWmPm6pVBptJL1Mv98fvRZgVg7byZe8I/m3rxRf//CHydvfmmzZDAwALIiZdSUfDofXSgieJgWvk8jT5pN56PWTVvfi8zt+yQcAYMWUy+VRAm7arjvu6QZQgGlrdZIv+87k518uvv6G+8l/+4U2AgMAi+W5E3/r6+sZDAbpdrsTBWLPSgjWarULVYJnE4Lj74FZKGrzmSTbftEHAGDFrK+vX1mZx2p68uRJYTXm5uZmtra2bmFGMJmTbvIV35X89PuKr//G3eSbvzC5tzHfeQEAq+vw8DBHR0cXnp90M+RzJ/62t7dTrT59+2AwSL/fHyX0er3ecyUEO51OOp3OuedPKwRPPyOJNp/M1P4liT8VfwAArJpyuZxarWYTJhcMh8PCmF+FJoug3Uu+6ruTn/y14usftJN8y+9OHm3OdVoAwIobDodT6Xw5ceKv6EPL5fIoIBw3ngzs9/sTtYo5rRCEeSk63y/R2gMAgNW0traWbrebe/fu3fjc9us4jTm73W6azaZE0h1VKpUKK/6cychd1+0nf+57kh//leLrL24l3/KFT/8XAGCeSqVSYbx12aa7y8zsjL9Tp207x51NBj5PQhBm5dJWnyr+AABYQafHMGxszKff3WmgW61W0+l00mq15vK5TObBgwdZW1u77WnARHr95Gv+YfIjv1R8/WHj6Zl+H7Qz33kBACTJ1tZWYdv8TqeTV1555drjzDzxd5nThOB48DieDDz9X5gXFX8AAPAB86jyu4zqMWBa+oPkL31f8u5fKL5+b+Np0u9D7s11WgAAU/fcib9ZtVupVqupVqvnEoKDwSAnJycOlWcunPEHAAAfUK1Wby0Bd3quPMBNDIbJN3x/8n3vLb6+U0/+27clb3gw33kBAMzCQkRR5XI5jUYj3W5Xmxdm7uCSir9tFX8AAKyohw8f3srnNhqNNBqNW/lsYDkMh8k3/2DyPT9XfH1zLfmmtyUf/mi+8wIAmJWJ+7WcVvr1er2pT+YqlUpl7p/J6imq+CuXngYDAAAAwGIYDpO//kPJO366+PpGLfkrb03e+OJ85wUAMEvPfVDDrFp9PsttnSvBaimq+NuuP03+AQAAAHffcJj89z+S/IN/WXy9Xk2+4S3Jx7x+vvMCAJi1586ktVqtDAaDac7lSrVaTdUfM1dU8bftfD8AAFbEvOO8aVv0+QPT8a3vSf7ePy++tlZJvv7NySd88HznBAAwD8+d+Ot2u3n/+9+fvb29tFqtubT+rNVqefFF/ReYrf2Cir8d5/sBALAiHj9+vLBnq7darbz00ku3PQ3glv1/fyL5tvcUX6uWk7/w+cknfch85wQAMC/VSd+wtraWfr+ffr+fJDk5OcnJycno2m0d+g7TclmrTwAAWAX379/P48eP0+v1srOzc9vTubb9/f0cHR3lwYMHtz0V4Bb9/Z9M/ocfLb5WKSVf83nJf/iGuU4JAGCuJk78jSf2er3eKBFYKjkEjcVX1OpTxR8AAKuiVqvl3r17efXVV9Pr9XLv3r07f9763t5eTk5Osru7m3rdrj1YVd/x08nf+KHia+VS8tW/M/ntv3m+cwIAmLeJE38XBqhWU63eeBi4E/qD5LAo8effDgAAWCEbGxspl8t58uRJXnrppdy7dy/r63dvN1y73c7e3l6Gw2Hu3buXjY2N254ScEv+0b9O3v4Dl1//it+RfPZHzG06AAC35m5v24Q5O+okw4Lnt+/ev3EAAMBM1ev1PHr0KMnTironT56k2+3e8qye6vV6ozklyYMHDyT9YIW9+xeSr/ve4ng+Sb70M5Pf9VHznBEAwO1RqgdnHBRU+yUq/gAAWE21Wi0vvvhi9vb20m630263U6/Xs7m5eSstNdvtdg4PD9PpdEbze/DgwZ1vRQrMzj/95eRr3pX0L8n6/YlPT9727893TgAAt0niD87YPyl+3hl/AACsqnK5nIcPH+b4+DjNZnOUACyVSmk0GtnY2EitVpvZ53e73RwfH6fVamU4/MC/7O/u7qbRaMzsc4G771/8WvJff3fSHRRf/yOfkvzej5/vnAAAbpvEH5xxWcXftoo/AABW3MbGRur1eg4PD3N0dJThcJijo6McHR0lSdbW1lKv11OpVFKr1Z7rLPher5dutzv677Sy76xGo5Ht7W1VfrDifvb9yVd+Z9LuFV///b81+f2fON85AQDcBRJ/cIaKPwAAuFy5XM7Ozk62trZycnKSo6Oj9HpP/9W90+kUJupKpVLK5XLK5fLo68FgkOFwmMFgMPr6WSqVShqNRhqNhoQfkH/7OPnS70halxw7+ns+Nvl/fcp85wQAcFdI/MEZ+yr+AADgSuVyeZSI63a7abVaabfb6ff7F147HA7T7/cLrz1LpVJJvV5Po9GYaStRYLH8yqvJF7/j8o49b/73kj/xGUmpNNdpAQDcGRJ/cMaBij8AAJhIrVbL7u5ukmQwGKTb7Y6SgP1+P71e78qKvlqtlkqlMmoTWq/XVfYBF/z6fvKnvj3ZOy6+/jt+S/Jln5mUJf0AgBUm8QdnXFbxt6XiDwAArlQul1Ov11OvX/wFejAYjP73NKknuQdc1+Oj5E9/e/LyYfH1T31D8tWfk1T8WAEAVpzEH5xRdMbf5lpSFTgAAMCNSPYBz+vV4+SLvz35tf3i65/0G5Ov/bykWpnvvAAA7iIRF5xRdEaA8/0AAADgdhy0ky95R/KLe8XXP/aDkr/05qRuazsAQBKJPzinqOLP+X4AAAAwf61O8uXfmbz3cfH1N76QfMMXJBu1+c4LAOAuk/iDM4rO+NtR8QcAAABz1e4lf+adyU+/r/j6hz1I/spbky0xOwDAORJ/cMZBQcXftoo/AAAAmJtuP/lz35P8818tvv4bdpNveltyb2O+8wIAWAQSf/Ca4VDFHwAAANym/iD5i/8o+ZFfKr7+uq3kW74webQ533kBACwKiT94zXH3aYAxzhl/AAAAMHuDYfKN3598/78tvv6gkXzzFyav257vvAAAFonEH7xmv6DNZ5Jsq/gDAACAmRoOk7/67uS7f674+u568s1vSz7k3lynBQCwcCT+4DVFbT4TFX8AAAAwS8Nh8rd/NPn//VTx9c215O1vTX7zw/nOCwBgEUn8wWsOVPwBAADA3P3dn0j+139WfG29mnzDFyRvfHG+cwIAWFQSf/AaFX8AAAAwX3//J5O/82PF12rl5OvenHzcB893TgAAi0ziD15z2Rl/Oyr+AAAAYOq+46eTv/FDxdcq5eTPf37ySR8y3zkBACw6iT94zcElFX/bKv4AAABgqr7vvcnbf6D4WinJV39O8mkfNs8ZAQAsB4k/eM1lFX/O+AMAAIDp+ZFfTP7i9ybDS65/+Wcln/0R85wRAMDykPiD1xSd8bdeTerV+c8FAAAAltG//LXkz70r6Q+Kr3/RZyRf8NHznRMAwDKR+IPXHBRU/GnzCQAAANPx3peTr/yupN0rvv5HPiX5PR833zkBACwbiT94TVHF3442nwAAAHBjv/Jq8iXfkRx2iq//vt+a/P5PnOuUAACWksQfvKbojL8dFX8AAABwIy8dJl/87cmrx8XX3/rRyX/1KfOdEwDAspL4g9ccFFT8bav4AwAAgOf26nHyxe9I3n9YfP2zfkvyxf9RUirNd14AAMuqetsTgLtCxR8AAExHr9dLq9VKv99Pt9vNYDBIuVxOpVJJtVpNpVLJ+vp6qlUhKSyzo07y5d+Z/PJe8fXf9qHJV39OUrEtHQBgakRZkKcHi3f6F59X8QcAAJNpNptptVoXnu/3++n3++l0nh7wdXBwkFKplI2NjTQajdRqtXlPFZihdi/5qncmP/dS8fWPeX3y5z8/qVXmOy8AgGUn8QcprvZLVPwBAMAk9vb2cnJyyS/XBYbDYVqtVlqtVur1era3tyUAYQn0+snXvCv5579afP3DHybf8AXJhtsdAGDqJP6uaTAY5PDwMK1WKy+++GLKZX0olsl+wfl+SbKj4g8AAK7l+Pj4QtKvVCqNWnsmT+Oq4XCYXq+X4XB47rXtdjvtdjvr6+u5f//+3OYNTNdgmHzD9yc//IvF13/DTvL2tybbNtoCAMyExN8Ver1ejo6OzrWqOT2f4qba7XZOTk7S6XTS7/czHA5TKpVSqVRG7W5u8jmzHn+ZHFyyKVkgAgAA13M26be2tpatra3U65fvpBsMBul2u+l2u2m326MWoCcnJ3nppZfy4MEDZwDCghkOk7/+7uRdP198/dFm8k1fmDzcnO+8AABWiSjqEt1uN4eHhxO1qZlk7L29vfT7Tw+Vq1arqdVqGQwG6fV66fV6OTg4yMHBQXZ3d9NoNO7U+MvoQMUfAADcSLfbTfI06ffw4cMrX18ul1Ov11Ov17O1tZXBYDBq+9nv9/P48eM8evRI8g8WyLe9J/k/fqr42k49+aa3Jh+8M985AQCsGhHUGeOB5iy0Wq00m80kSaPRyPb29rmqu8FgkGazOUo4NpvN9Hq97Oxc7zfjWY+/rJzxBwAAN3MaQ+3u7j7X+8vlcra2trK1tZXDw8McHBzkyZMnefHFF6c5TWBG/sFPJt/6nuJrG7XkG9+afNjVewIAALghfR7zNBn2yiuv5P3vf38ODg5GAWuj0cgLL7yQUqk0lc9pt9ujpNzm5mZ2d3cvtNosl8u5f/9+1tc/kHE6OjrK8fHxrY+/zC47429bxR8AAFxLqVQanel3U1tbW3nhhRfS7/ezv78/hdkBs/Q9P5f8tR8qvlYrJ1/35uSjXzffOQEArCqJvzxNhp2eJ1EqlbK9vZ3Xve512d3dTbVando5eHt7e6PPuKrCbnyX7GlC7zbHX2aXnfGn4g8AAK6nXq9P9QzxarWae/fu5ejoKIPBYGrjAtP17l9IvuH/Lr5WLiVf83nJJ/7G+c4JAGCVSfy9Zn19Pbu7u3n961+fra2tcwHrNCr+Dg8PMxwOkzzdvXqVcrmczc0PnHY9HA7TarVubfxlV1TxVy0n65rhAgDAtayvr0/9yISNjY0kmcnZ68DN/bN/l3ztP0z6w+LrX/FZyWf85vnOCQBg1Un8veb+/ftpNBozG//w8HD09dk2m89yGuSeelY7zlmPv+yKKv526smUurwCAMDS29jYSKlUmvqGwkqlstKxCtxVP/dS8mfemXQuyff/8U9Pfte/N985AQCQqGeag+Pj41E13iRnXtRqtXOPT9uRznv8VVBU8betzScAAExkZ2cnzWYz5XL52hsSr9Lv97X6hDvmF58kX/YdyXG3+Pof+KTkP/34+c4JAICnVPzNwdmE2niy7SrjSbx2+2KGatbjr4L9ooo/iT8AAJhIo9HI2tpa9vb28uTJk3S7l2QFruk0Pjnd6AjcvvftJ1/yjqR5SQfe//hjkz/8yfOdEwAAHyDxNwdn29Jctxrv1Nra2rnHRWdmzHr8VXBQVPFXn/88AABg0T18+DDVajXtdjuPHz/OSy+9lFarNXHVXq/Xy97eXpLpnLsO3NyTVvKn35G8fFR8/XM+Ivmiz3BsBgDAbdLqc8YGg8G53amTBqyVSuXc416vN9fxV4WKPwAAmJ6HDx/m8ePH6ff76ff7aTabaTabqVQqqdVqqdfrqVQqKZfLo/9NnsYj/X4/Jycn584KnLSzCTB9B+3kS9+R/Gqz+PqnviH5qs9OypJ+AAC3SuJvxsYr6CatyBtPzI23ypn1+Kug109aBX/sHRV/AADwXMrlcl588cU0m81zCbzTRODJySU9Ai+xtbU17SkCEzjpJl/5Xcm/eaX4+sd/cPK1n5dUK8XXAQCYH60+Z2w8kTZpRd7pztfbGn8VFLX5TJJtFX8AAHAju7u7efDgwcQbFM9qNBqp1+3Kg9vS7Sd/9nuSn/r14usf+ULy9W9O6raWAwDcCbI+MzbpORbjxhNz4+PNevxVsH9J4k/FHwAA3Fy9Xs8LL7zwXAnAzc3N7O7uzmhmwFX6g+Trvi/5sV8uvv6h95K3vzXZEj8DANwZ9mPN2E0TaeMVfGfP85vH+NcxaXvQSqVyocXobSo63y9xxh8AAPNx2v7yuha1Pf9pArDb7eb4+DgnJydX/rmPjo5ydHQ0OgfwNH45u4Hx9OvT2GgwGKRWq2VnZ2dGfxJYDcNh8lffnXzfe4uvv7iVfNPbknsb850XAADPJvE3Y+OJtGm31pz1+Nexv78/0eu3trayvb09o9lM7tJWn3YsAgAwB61WK4eHh7c9jbmp1WqjxFyv18vJyUm63W7a7falGxGfJzkq8Qc383d+LPm//lXxtd315Jvflrzu7oT2AAC8RuJvzqZdoTfv8ZeRij8AALgd1Wo1W1tbo8eDwSDdbjfdbjf9fj+9Xi/dbnfiziTD4TC9Xu9arUUHg0FOTk5SKpVSLpcvbKY8GyOdncdgMBjFX7Va7UbnGMJd87/9i+Tv/kTxtUYtefvbkg+9P9cpAQBwTSKTO2486Jx2Rd+sx18EzvgDAIC7oVwup16vp16/+Mv4YDAYJQP7/f7o8dmvz+p0OtdKxnW73TSbzRvNe3t7+1wC8yrtdjsnJyfpdDrp9/sZDocplUqpVCrZ2NhIo9G4UWw26/FZbu/82eRv/nDxtbVK8pe/IHnjC/OdEwAA1yfxd8fdtIJvHuPv7OykVqtd+/V36Xy/JDm4pOJvW8UfAABz0Gg0ChNdl+l2uxO3218Gp9V4z4o9Tqvw+v3+RDHKvHS73ezt7Y2SlNVqNbVaLYPBIL1eL71eLwcHBzk4OMju7m4ajcadGp/l949/IfnG7y++ViklX/t5ySf8hvnOCQCAyUj8zdh468xJW9SMe1bbmVmMfx21Wi1ra2s3+tzbVFTxVy4lm4v7RwIAYIFUKpU7tzluUZ0mB+9i281WqzWqLGw0Gtne3j4Xfw0GgzSbzZycPN2Z2Gw20+v1rn1W4azHZ/n9xK8kX/uuZHDJPyv8mc9OPu3D5jsnAAAmd/eioSUznkibtMJuPJE3vmt11uOvgqKKv+360+QfAACw3M7GVJubm6MY6WxsNR5njT++KnHbbrdHSbnNzc3CZFu5XM79+/ezt7c3Ss4dHR2lVqtlY2PjVsdn+f3M+5OvemfSveSfFL7oM5LPfeN85wQAwPOR+Jux8cTc+LkTV7kqoJz1+KugqOJv2/l+AACwUkql0syq3/b29q79Gbu7u6PEXPK0Mu+qxNysx2e5/eKT5Mu/IznuFV//Q29Kfs/HzXdOAAA8P6d5z9h4Bd2kFXnjrx9vWTPr8VfBfkHF347z/QAAYKU8z7EH13F4eDiqItza2rrWPDY3N0ePh8NhWq3WrY3Pcvv1/eSL31G8ITZ5mvD7g2+a75wAALgZib8ZG6+g63a7E71/vIJvPNE36/FXwWWtPgEAAG7q8PBw9PX6+vV2GI5X4B0fH9/a+CyvJ62nSb/HR8XXP/cjkz/x6UnJMRgAAAtF4m/GyuVySmd+S560FefZ16+trc19/FVQtLNRxR8AAKyW0gyyG8fHx6NqvFKpdO0OK+MbMjudzq2Mz/I6aCdf+o7kV5vF1z/1DclX/o6kLOkHALBwJP7moF4/Xz42SVXe2QBsfJx5jb/M+oPksCjxt3rfCgAAWGmzaPV5Nt6atLvKeBKv3b4YuMx6fJbTSTf5yu9K/s0rxdc/4YOTr/28pFopvg4AwN0m8TcH4+1WJgmoer0PnK7daDRuZfxldtRJhgXPb6v4AwCAlTDpOemTONtCc9Lz1Mc7shR1d5n1+Cyfbj/5s9+T/NSvF1//yBeSr/+CpD7ZXycAAO4Qib9rOG2d8rzGz0+47sHpZ4O49fX1S3egznr8ZbZfcL5fouIPAABWzbTjocFgcC6WnLSV6Ph57mc3bc5jfJZPf5B83fclP/bLxdc/9F7y9rcmm6t5CggAwNKwh+saxneAPk8icHt7OwcHB0me7qRst9tXttY8e0j79vb2rY6/rIrO90uc8QcAAKvmbOKv1+ul1Wql3W6n3+9nOBymVCqlUqlkY2Mj6+vrV1bYjVfQTVqRN56YGz/SYdbjs1yGw+Svvjv5vvcWX39xK/mmtyX3NoqvAwCwOFavxGtC7Xb7QqLvuhV1Z21tbZ0LrJrN5jNbyrRardGOy93d3SuDuFmPv6wOLqn421bxBwAAK6fX6+WVV17Jyy+/nKOjo/R6vVE8OBwO0+v1cnBwkJdffjnNZvOZY40n0iatyLuqAnHW47Nc/qd/mvxf/6r42u568s1vS163mvuBAQCWzmpmey7R7XbTbrdHLVN6vd65w9JPne78rNVqqVQqKZfLqdVqV1bYPXr0KC+99FKGw2H6/X4eP36c+/fvXziE/fDwcFS9t7m5ee2z92Y9/jJS8QcAAKvtdMPk8fHxRJs8W61WOp1OHj58WJhEu+nZgeNjjo836/FZHv/bv0j+5x8vvtaoPW3v+aH35zolAABmSOLvjHa7PUqIXaXf759rrbK+vn5l4q9cLufFF19Ms9nMycnJKDlXqVRSq9UyGAzS7XZHO0rv3bt34fy+2xx/GV16xp/EHwAArJTTOKlarWZjY2O0yXMwGKTT6eT4+PhCN5her5e9vb08fPjwwng3TaSNV/CNf/asx7/KpK1BK5XKhfaizN47fzb5mz9cfG2tkvzlL0je+OJ85wQAsOrG80tXmfR3b4m/M7a2trK1tTXTzyiXy7l//3663e6ocnAwGOTk5GSUoNvY2HjuKrxZj79sDi6p+NPqEwAAVsPZhNfu7m5hrLSxsZHd3d3s7+/n6Ojo3LVOp5NWq3XhfeOJtGm31pz1+FfZ39+f6PVbW1sre7b8bXn3LyTf+P3F1yql5Gs/L/mE3zDfOQEA8LR7yOHh4czGl/i7JbVaLbu7uws7/rK4LPG3JfEHAAAro1Qq5eHDhxeOSRi3s7OTcrl8oVPM/v7+lZsrp12hN+/xWSw/8SvJ17wrGVxSyPlnPjv5tA+b75wAAJgPiT9WWlGrz621pOqcewAAWAmNRmOijihbW1tptVrnWvOcnhFfrU4vxB6v4Jt2Rd+sx+f2/Oz7k6/67qR7SS74T3568rlvnO+cAACYH4k/VlpRxZ9qPwAA4Fl2d3fz5MmTc891Op2pJv5uWsE36/F3dnaurJA8y/l+8/FLe8mXf2dyfMkxMH/oTcl/8vHznRMAAOc1Go3U69dPRHS73Yla7Uv8sdKKKv521uc/DwAAYHHU6/VUKpVzVX+9Xu/ca8ZbZ46fyTep8Yq8WY9/lVqtlrW1tRt9JtP1ylHyZd+RNAvi3CT5PR+b/ME3zXdOAABcVKlUZroxTi8PVtp+QcXfjoo/AADgCldVu40n0iatsBtP5I1/3qzHZ7G0OslXfFfyvoPi65/7kcmf+IzEUY4AAMtP4o+VdlCwE3JbxR8AAHCF8R26420+xxNzZ6sDr2M8kTf+ebMen8XR6yf/zbuSf/1y8fVPfUPylb8jKUv6AQCsBIk/VtZwqOIPAAB4PuOJt/HE2XgF3aQVeeOvH08sznp8FsNwmLz9B5Mf++Xi6x/7QcnXfl5SldcFAFgZEn+srONu0i+IjZ3xBwAAXGU8cVavn99BOJ4I7Ha7E40/XsE3nuib9fgshm97T/LOny2+9qH3kq97c1KX0wUAWCkSf6ys/UsOPN9W8QcAAFzh7Bl56+sXdw+Wy+WUzhyoNmkrzrOvX1tbm/v43H3f9TPJt76n+NqDjeQb35rs2tgKALByJP5YWUVtPhMVfwAAsOx6vV5eeumlidtjntVufyCg2NraKnzNeBXgJFV5nU7n0nHmNT5314/9UvL2Hyi+tlFNvuEtyQfvzHVKAADcERJ/rKwDFX8AALCSyuVy+v1+Dg4Onuv9vV5vVDHXaDQubZM5Xgl4Nll4nc841Wg0bmV87qaffzn5c9+T9IcXr1VKydd+fvLGF+c/LwAA7gaJP1aWij8AAFhN5XI56+vrabVa5xJg19VsNpM8PWdve3v70tdtbGyce9xqta41/vHx8ejr9fX1lMvFofusx+fu+fX95Cu+Izm+5K/tl3xm8im/aa5TAgDgjvHbPSvrsjP+dlT8AQDA0jutcjtN4l3X4eFhOp1OSqVSHj16dGXS7GxisN/vX6sq7/DwsPD9tzE+d8f+SfJl35k8OS6+/gfflLzlo+c7JwAA7h6JP1bWwSXx8LaKPwAAWHr1ej2lUimdTif7+/vXes/+/n4ODg5SqVSulfRLnp7/V6lURo+bzeYzzxY8W4W4u7ubarV6q+NzN7R7yVe9M/nlveLrb/6o5A+9ab5zAgDgbpL4Y2VdVvHnjD8AAFgNp60yj46O8r73vS/7+/tpt9vp9Xrp9Xrpdrs5Pj5Os9nM+973vhwdHaXRaOTFF1+cKGH26NGjlEqlJE+r8h4/fpxut3vhdYeHh6MKxM3NzWufvTfr8bldg2Hyl743+Ze/Xnz9TR+SfOlnJq/9FQAAYMXZ2sfKKjrjb72a1N0VAACwEhqNxuhcvOFwmKOjoxwdHRW+dm1tLTs7O6nVahN/Trlczosvvphms5mTk5NRcq5SqaRWq2UwGKTb7WY4HCZJ7t27d+H8vtscn9v13/1w8gP/tvjaRzxK/sLnJ9VK8XUAAFaPFAcr66Cg4k+bTwAAWB21Wi2ve93r0mq10m630+/3MxgMMhwOU6lUUqlUUq/Xs76+fuOWmOVyOffv30+32x193mAwyMnJyShBt7Gx8dxVeLMen9vx9/9F8vd/svja67aSb3hL0lib65QAALjjJP5YWUUVfzvafAIAwEopl8vZ2trK1tbWXD6vVqtld3d3Ycdnfr7/3yR/84eLr23Vk7/y1uTR5nznBADA3eeMP1ZW0Rl/Oyr+AAAAuGU/+WtPz/UbFlyrlZOvf3PyhgdznxYAAAtA4o+VdVBQ8bet4g8AAIBb9ItPkq96Z9LpF1//6t+ZfPwHz3dOAAAsDok/VpaKPwAAAO6Sx0fJl39n8UbVJPnjn5Z81m+Z75wAAFgsEn+spHavePekij8AAABuQ6uTfMV3Ju87KL7+ez8++U8/Ya5TAgBgAUn8sZKKqv0SFX8AAADMX6+f/Ll3Je99XHz9Mz88+WOfNt85AQCwmCT+WEn7l7RN2VHxBwAAwBwNh8nbfyD5p79cfP3jPij5rz8nKZfmOi0AABaUxB8r6eCSir9tFX8AAADM0be+J3nnzxVf+9D7yde9OalX5zsnAAAWl8QfK0nFHwAAALftO38m+bb3FF970Ej+ylscSQEAwGQk/lhJzvgDAADgNv3oLyXf9APF1zaqyTe8JfmgnblOCQCAJSDxx0q6tNWnij8AAABm7Md+Kfnq7076w4vXKqXkz39+8sYX5j8vAAAWn8QfK+nSVp8q/gAAAJihf/KLyVe9M+n0i69/yWcmv+03zXNGAAAsE4k/VlJRq89aOVl3YDoAAAAz8u5feFrp1x0UX/+Db0re8tHznRMAAMtFmoOVdFBQ8be9npRK858LAAAAy+8H/k3ytf8o6V+S9HvLRyd/6E3znRMAAMtH4o+VVJT423G+HwAAADPwfe9N/uI/Kj7TL3ma9PvSz7QZFQCAm5P4YyUVtfp0vh8AAADT9q6fT77++5LBJUm/3/0xyZ/67UlZ0g8AgCmQ+GMlFVX8ban4AwAAYIq+62eSb/z+5JKcX37PxyV/8tNV+gEAMD0Sf6wkFX8AAADM0jt+Onn7D1x+/T/7hOSPfqqkHwAA0yXxx8rp9ZNW9+LzzvgDAABgGv7Pn0q+5R9ffv3/+VuTP/Ipkn4AAEyfxB8rp6jNZ5Jsq/gDAADghv7+TyZ/44cuv/4HPin5w58s6QcAwGxI/LFy9i9J/Kn4AwAA4Cb+3j9L/taPXH79v/jk5A+8aX7zAQBg9Uj8sXKKzvdLnPEHAADA8/u7P578jz92+fU/8inJ7//E+c0HAIDVJPHHyrm01aeKPwAAACY0HCbf9p7kW99z+Wv+6Kcm//l/ML85AQCwuiT+WDkq/gAAAJiG4TD5Oz+W/N2fuPw1f/LTk//k4+c3JwAAVpvEHyvHGX8AAADc1HCY/Pc/kvy9f375a774P0p+98fMb04AACDxx8o5uKTib1vFHwAAANcwHCZ/44eT//0ni6+XknzZZyVv+ei5TgsAACT+WD1FFX/lUrK5Nv+5AAAAsFiGw+Svvjv5P3+q+HopyVd+dvK7Pmqu0wIAgCQSf6ygooq/7frT5B8AAABcZjBMvvkHk3f8dPH1cin5qs9OPveN850XAACckvhj5RRV/G073w8AAIBn6A+Sv/IDyTt/tvh6pZT82d+Z/I6PmOu0AADgHIk/Vs5+QcXfjvP9AAAAuER/kPzl/zt5188XX6+Uk//mc5PP/PD5zgsAAMZJ/LFyLmv1CQAAAOP6g+QvfW/yve8tvl4tJ3/+85NP/7D5zgsAAIpI/LFyilp9qvgDAACgyP/6zy5P+q1Vkr/w+cl/+Ia5TgkAAC4l8cdK6Q+Sw6LEn4o/AAAAxrxvP/n//HjxtbVK8nVvTj75Q+c7JwAAeBaJP1bKUScZFjy/reIPAACAMX/znySd/sXn16vJ139B8om/cf5zAgCAZynf9gRgnvYLzvdLVPwBAABw3o//SvKD//bi86VI+gEAcHdJ/LFSis73S5zxBwAAwAd0+8m3vLv42hd8tKQfAAB3l1af3NiTJ09SKpUuPL+5uZmtra1bmNHlDi6p+NtW8QcAwB1zeHiYo6OjC88Ph0XN64Fp+j/+ZfLLexef36onf+RT5j8fAAC4Lok/bmw4HBb+48Nd/AcJFX8AACyK4XCYwWBw29OAlfP4KPm29xRf+y8+Obm3Md/5AADAJCT+uLFSqVRY8Vf03G279Iw/iT8AAO6YUqmUcvni6QyXbbwDpuNv/0jS6l58/sMfJl/4MfOfDwAATELijxt78OBB1tbWbnsa13JwScWfVp8AANw1W1tbha3zO51OXnnllVuYESy/n/r15F0/X3zti357Ur2YiwcAgDvFr6yslMsq/rYk/gAAAFZaf5B8yz8uvvY5H5F8wgfPdz4AAPA8JP5YKUUVf1trdm0CAACsuu/8meS9jy8+v1FN/t+fOv/5AADA85DuYKUUVfxtO98PAABgpTVPkv/xR4uv/YE3JS9c7LoLAAB3ksQfK2W/oOJvR5tPAACAlfZ3frQ4XvyQe8nv/fi5TwcAAJ6bxB8r5UDFHwAAAGf8/MvJO366+NoXfUZSq8x3PgAAcBMSf6wUFX8AAACcGg6Tv/qPk2HBtU//sOSTP3TuUwIAgBuR+GNlDIfJQVHiT8UfAADASvqH/zr5V++7+PxaJfnjnz7/+QAAwE1J/LEyjrtJf3Dx+W0VfwAAACvnqJP8rR8uvvb7/oPkg3fmOx8AAJgGiT9Wxn7B+X6JxB8AAMAq+rb3JE+OLz7/+u3k9/3W+c8HAACmQeKPlVF0vl+i1ScAAMCq+cUnyT/4l8XX/tinJeu1+c4HAACmReKPlXGg4g8AAGDlDYfJX3t38VEQn/QhyW//zfOfEwAATIvEHytDxR8AAAA/+AvJj/+7i89XyskXfUZSKs1/TgAAMC0Sf6yMy87421HxBwAAsBJOusnf/KHia7/345LfdH++8wEAgGmT+GNlHFxS8bet4g8AAGAl/C//LHn/4cXnHzSSP/Cm+c8HAACmTeKPlXFZxZ8z/gAAAJbfrzWTv/fPi6/90U9NNtfmOx8AAJgFiT9WRtEZf+vVpF6d/1wAAACYr7/+Q0mnf/H5j/2g5Hd+5PznAwAAsyDxx8o4KKj40+YTAABg+f3oLyU//IsXny+Xkj/1GUmpNPcpAQDATEj8sTKKKv52tPkEAABYap1+8tfeXXztbf9+8hEvzHc+AAAwSxJ/rIyiM/52VPwBAAAstf/9J5N/17z4/O568l/+tvnPBwAAZsnpZqyMg4KKv20VfwAAABN78uRJSgX9MTc3N7O1tXULMyr28mHyP7+n+Np/+dtsBgUA4O44PDzM0dHRheeHw+FE40j8sTJU/AEAAEzHcDgs/AeISf9RYtb+1j9JjnsXn//IF5K3fPT85wMAAJcZDocZDAY3Hkfij5XQ7j0912Gcij8AAIDJlUqlwoq/ouduy7/41eR731t87U/99qTi8BMAAO6QUqmUcvniL6mXbbq7jMQfK6Go2i9R8QcAAPA8Hjx4kLW1tduexqV6g+Rb3l187fM/KvmY1893PgAAcJWtra3CtvmdTievvPLKtcexv42VsF9wvl+S7Kj4AwAAWDrf/q+SXyj4t5FGLfmvPmX+8wEAgHmR+GMlHFxS8bet4g8AAGCpvHqc/E//tPjaH/7k5OHmfOcDAADzJPHHSlDxBwAAsBr+hx9NDgtiwDfcT/4fHzv/+QAAwDxJ/LESnPEHAACw/H72/cl3/UzxtS/6jKRame98AABg3iT+WAmXtvpU8QcAALAUBsPkW/5xMiy49pkfnnzih8x9SgAAMHcSf6yES1t9qvgDAABYCt/9s8nPvnTx+Xo1+WOfNv/5AADAbZD4YyUUtfqslZP16vznAgAAwHQdtJO//aPF137/Jyav257vfAAA4LZI/LESDgoq/rbXk1Jp/nMBAABguiql5PPemFTG/pXjg3eS//wTbmVKAABwKyT+WAlFFX87zvcDAABYCo21p+08v/U/Sz7pN37g+T/x6U9bfQIAwKrw6y8roajiz/l+AAAAy+UND5Jvelvyg7+QvOeXk099w23PCAAA5kvij5VQVPG3reIPAABg6ZRKyWd++NP/AABg1Wj1yUrYV/EHAAAAAAAsOYk/ll63nxx3Lz6v4g8AAAAAAFgmEn8svaLz/RIVfwAAAAAAwHKR+GPpFZ3vl6j4AwAAAAAAlovEH0tPxR8AAAAAALAKJP5Yepcl/lT8AQAAAAAAy0Tij6V3WatPFX8AAAAAAMAykfhj6e1f1upTxR8AAAAAALBEJP5YegeXVPxtq/gDAAAAAACWiMQfS6+o4q9cSjbX5j8XAAAAAACAWZH4Y+kVVfxt158m/wAAAAAAAJaFxB9Lr6jib9v5fgAAAAAAwJKR+GPp7RdU/O043w8AAAAAAFgyEn8svctafQIAAAAAACwTiT+WXlGrTxV/AAAAAADAspH4Y6n1B8lhUeJPxR8AAAAAALBkJP5YakedZFjw/LaKPwAAAAAAYMlI/LHU9gvO90tU/AEAAAAAAMunetsTYHba7XZOTk7S6XTS7/czHA5TKpVSqVSysbGRRqORcnm5c79F5/slzvgDAAAAAACWj8TfEup2u9nb20u/30+SVKvV1Gq1DAaD9Hq99Hq9HBwc5ODgILu7u2k0Grc849k5uKTib1vFHwAAAAAAsGQk/pZMq9VKs9lMkjQajWxvb5+r6hsMBmk2mzk5eZoRazab6fV62dnZuZX5zpqKPwAAAAAAYFUsd5/HFdNut0dJv83Nzezu7l5o5Vkul3P//v2sr38g83V0dJTj4+O5znVeLj3jT+IPAAAAAABYMhJ/S2Rvby9JUiqVrqzg293dPff4NGG4bA4uqfjT6hMAAAAAAFg2En9L4vDwMMPhMEmytbV15evL5XI2NzdHj4fDYVqt1szmd1suq/jbkvgDAAAAAACWjMTfkjg8PBx9fbaN57NsbGyce7yM7T6LKv621pKqv/kAAAAAAMCSkf5YAsfHx6Nqv1KplGq1eq331Wq1c487nc7U53bbiir+tp3vBwAAAAAALCGJvyVwNmE3nsy7yniSsN2+5FC8BbVf8MfZ0eYTAAAAAABYQhJ/S+Bsi87rVvudWltbO/e43+9PZU53xYGKPwAAAAAAYEVI/C24wWAwavOZPG31OYlKpXLuca/Xm8q87goVfwAAAAAAwKqQ+Ftw4xV6k1b8jSf+ut3ujed0VwyHxRV/Oyr+AAAAAACAJSTxt+DGE3WTVvyVy8v7V6DVTfrDi89vq/gDAAAAAACW0PJmfVbEYDC40fvHE383He8u2S+o9ktU/AEAAAAAAMtpsr6Q3Dk3TdSNVwiePS/wuiZtD1qpVC60GJ2FovP9Emf8AQBwt/T7/Qst/J9lmdrzAwAAMF0SfwtuPFF3G6079/f3J3r91tZWtre3ZzSbDyg63y9JtlX8AQBwh7RarRweHt72NAAAAFgCWn0umWlXAC6yy1p9OuMPAAAAAABYRhJ/K268QvA2KgZn5UCrTwAAAAAAYIVo9bniblohmCQ7Ozup1WrXfv08zvdLkrVq8iH3nlb+HbSTwWtdUbX6BADgLmk0GqnXr787rdvtTtxuHwAAgNUg8bfgxltzjp/5N6nnqfir1WpZW1u70efOwu/6qKf/JU+Tfkedp+f+3d+43XkBAMBZlUplbpvjAAAAWG4SfwtuPFE3aQXfeKJwksq9RVIuPT3bz/l+AAAAAADAslqeA91W1Hjir9/vT/T+8UShncYAAAAAAACLSeJvwY1X6E1a8Tf++mpVESgAAAAAAMAikvhbcOMVet1ud6L3j1cILmurTwAAAAAAgGUn8bfgyuVySqXS6PGkrT7Pvn5tbW1q8wIAAAAAAGC+JP6WQL1eP/d4kqq/Tqdz6TgAAAAAAAAsDom/JbC+vn7ucbvdvvZ7e73e6OtGozG1OQEAAAAAADBfEn9LYGNj49zjVqt1rfcdHx+Pvl5fX0+57K8DAAAAAADAopLpWRLb29ujr/v9/rWq/g4PDwvfDwAAQDIYDG57CgAAABOp3vYEmI6tra20Wq30+/0kSbPZzKNHjy6t4mu1WqM2n7u7u6lW/VUAAABWW7fbTavVyvHxcYbD4ej5UqmUSqWStbW1bG5u3jh+arfbOTk5SafTSb/fz3A4HH3GxsZGGo3GjTqyzHp8AADg7pLtWSKPHj3KSy+9lOFwmH6/n8ePH+f+/fup1WrnXnd4eJiDg4MkyebmprP9AACAlTYYDNJsNnNyclJ4fTgcptfrpdfrpdVqpdFoZHt7e+LkWbfbzd7e3mjDZrVaTa1Wy2AwGI1/cHCQg4OD7O7uThyrzXp8AADg7pP4WyLlcjkvvvjiKGA9Tf5VKpVRsNftdkc7V+/du3fhfMBl0+/3z5152Gg0UqlUbnFGsBzcWzAb7i2YDfcWz9Lr9fLkyZNRsuw6Wq1W2u32M7usFL2n2WwmSWHicDz52Gw20+v1srOzcyfGXxTud5gN9xbMhnsLZmPV7y2JvyVTLpdz//79UYuadrudwWCQk5OTUQLwtLXLKuj3++fOMqzX6yt1g8OsuLdgNtxbMBvuLZ6l2WyeS/o1Go2sr6+POqd0u9202+0cHR2de1+/38/e3l4ePnx45We02+1RUm5zc7Mw2XYay+3t7Y2Sc0dHR6MY7jbHXyTud5gN9xbMhnsLZmPV7y2JvyVVq9Wyu7t729MAAAC40zqdTpJkbW0t9+/fv1DBV6/XU6/Xs7GxkVdeeeXc2X+dTifdbvfC8Qrj9vb2kjw9K/CqCrvd3d1zLUebzeaViblZjw8AACwOp3kDAACwkrrdbpKnZ+E9fPjwmW07a7Va7t+/f+H5drv9zM84PDwcJQu3traunFO5XM7m5ubo8XA4PNemaN7jAwAAi0XiDwAAgJV0mrS7d+/etV5fr9ezvr5+7rmrzgY822Jo/L2XGa/AOz4+vrXxAQCAxSLxBwAAwErqdrsplUpXtuo8q16vn3tcKpUufe3x8fGoGq9UKqVavd5pG+PzOW1HOu/xAQCAxeOMP+BOOW1VVCqVrtWqCLge9xbMhnsLFluv10uj0ZjoPZVK5dzjZyXbzibUJkkuno7b6/VGj9vt9oWk46zHh3mwlsJsuLdgNtxbLAKJP+BOOTo6ymAwSLlctnjCFLm3YDbcW7DYXnjhhYnfM97a81ntNc+20LxuNd6ptbW1c4m5opaisx4f5sFaCrPh3oLZcG+xCLT6BAAAgGvqdrujrzc3N1MuF4fVg8Fg1IYzeXZL0CLjlYVnk3TzGB8AAFhMEn8AAABwDYPBYFRlV61Ws7Ozc+lrxyvoJq3IG0/MnU04zmN8AABgMUn8AQAAwDU0m80Mh8NUKpU8fPjwma8dT6RNWpF3WSXhvMYHAAAWkzP+AAAA4ArNZjMnJyepVqt5+PDhlYmzwWBwo88bH398vFmPDwAALCaJPyY2HhDe5ZYw43O7y3PlqdNzSobDYTqdzi3Phsu4txaPe2sxuLcWj3trMSzbvTU+fwmb6Tr9fpbL5QwGg7Tb7RwcHKTf748q/a5TLXfT/1/GK/jOnuc3j/HHjX/e8fHxRPdSuVy+0F50Fpbtfl8F1tLF4N5aPO6txeDeWjzurcVw1++tfr8/0e/zRed9P4vEHxMbP0tif3//lmYyuUWa66obDod55ZVXbnsaXJN7a3G4txaLe2txuLcWy7LdW+O/n3Mzp5V9Rfr9ft7//venWq1mY2MjW1tbl44znkibdmvNWY8/bvzvWavVmunnTcuy3e/LzFq6WNxbi8O9tVjcW4vDvbVYlu3euioG1NQfAAAAXtNut5MklUola2trWV9fv1Cp1uv1cnBwkPe9732j119l2hV68x4fAABYDCr+AAAA4DVbW1tpNBqFFXT7+/s5OjoaPR4Oh3ny5EkePHiQer0+1XmMf/60K/pmPT4AAHA7JP6YWL1ez87OzuhxpVIRJAIAwJwMBoNzrV2mnXBadc9q37mzs5N6vZ4nT56ce35vby+vf/3rpzqPWZ/dOOn4p3HgYDDIYDBIpVKZqEpwXmf8AQDAXTfpGX/D4TD9fj/lcjnlcvnKGFDij4lVq9VUq/7qAAAAq6der2d9ff3cOYDD4TDHx8fZ2NgYPTeeFBs/k29S45stZz3+OHEgAAAsBmVaAAAAMIHd3d0Lz3U6nXOPxxNpk1bYjSfyarXaXMcHAAAWk8QfAAAATKBcLl+ouBtPvI0n5s62Z72O8fHG22TOenwAAGAxSfwBAADAhK5KxI1X0E1akTf++vE2m7MeHwAAWEwSfwAAADCh8UTfeCJw/HG3251o/PEKvvFE36zHBwAAFpPEHwAAACvn+Pj4Ru8fr5ir1+vnHo+3A520FefZ16+trV24PuvxAQCAxSTxBwAAwErp9Xp59dVXb5T8O5s4q1arhRVz48nASaryOp3OpePMa3wAAGDxSPwBAACwUqrVaqrVag4PD5/r/d1uN8PhcPT43r17ha9bX18/97jdbl/7M3q93ujrRqNxK+MDAACLR+IPAACAlVOv19Pr9Z6r6u/VV18dfb25uXnp+XgbGxvnHrdarWuNf3ZO6+vrF84TnNf4AADA4vHbPQAAACvnNGn26quvnqt+u0qr1Rq9vtFoZGdn55mv397eHn3d7/evVZV3thLx7PtvY3wAAGCxVG97AgDcXYPBICcnJymVSimXyxd2g5dKpdHXZ9tdDQaDDAaDJEmtVku1arlhNQ0GgxweHqbVauXFF19UUQFTctN7y/pGknNVeo8fP87u7u6FCrpxh4eHOTg4SPK00u+qpF+SbG1tpdVqjc4EbDabefTo0aV/b88mFnd3d6/8ezbr8YHVYo2EmxEDwmyIASezGLOECbXb7ZycnKTT6aTf72c4HKZUKqVSqWRjYyONRsPCC9fQ7XbTbDZvNMb29na2tramNCNYDL1eL0dHR+darg0Gg6msPdY4Vtm07i3rG6dKpVKGw2GGw2FeffXVHB4eZmdnJ7Va7dzfq3a7nf39/fR6vVQqlezu7qZer1/7cx49epSXXnopw+Ew/X4/jx8/zv379y+0CB1PLF737L1Zj78IrI8wHdZIeD5iQJgNMeDzkfhjqXS73ezt7Y12u1ar1dRqtQwGg/R6vfR6vRwcHOTg4CC7u7tLFegCcPu63W4ODw9zcnIyk7GtcayqWd5brLZ6vX7u71Wv18uTJ08KX1sqlZ472C+Xy3nxxRfTbDZzcnIySs5VKpXRz/JutzvaXXzv3r0rqw/nOf5dZn0E4DaJAWE2xIA3I/HH0mi1WqOsfaPRyPb29rnM/2AwGAXCydMWOL1e71rteQDgMoPBIK1W61ybtWmzxrGK5nFvwf379zMYDEY76Xu93oWd9Gtra1lfX5+owq9IuVzO/fv30+1202q10m63Ry2HThN0p7v27+L4d5H1EYDbIAaE2RADTo/EH0uh3W6PFsPLzto4DYT39vZGi+LR0dEoAAYuOvtL5ebm5miX+Glv6/Gvix5XKpUZzhBuz2AwyN7eXjqdzrnnG41GNjc38/jx43N94Z+XNY5VM497y/rGWeVyORsbG3P7eVmr1bK7u7uw498V1keYDWskXE4MCLMhBpw+iT+Wwt7eXpKn7Xeu2tmyu7t7rkS42WxaEOEK17m3YNWUy+XRL6WlUilbW1vnzlYol8tT2aFmjWPVzOveOh3f+gaLyfoIs2WNhIvEgDAbYsDpk/hj4R0eHo4y9Nc5b6NcLmdzczNHR0dJkuFwmFartVQtb2DaHBINxU5bvxWtIaVS6cbjW+NYVbO+t05Z32AxWR9h9qyRUEwMCLMhBpyu1fhTstQODw9HX6+vr1/rPeM7X46Pj6c6JwBWw/3792caUFnjWFWzvreAxWZ9BOC2iAFhNsSA0yXxx0I7Pj4e7YIplUqpVq9XxFqr1c49Hu8fDJw3zZ01wPVY42D2rG+weKyPMB/WSJg/axzM3qqsbxJ/LLSzC9n4IneV8cWz3W5PZU6wjFalDB7uEmsczJ71DRaP9RHmwxoJ82eNg9lblfVtNf6ULK2zpevX3QVzam1t7dzjaR0QCstkMBjc9hRgZVnjYHasb7C4rI8wW9ZIuD3WOJidVVvfJP5YWIPBYFT+nkxeplupVM497vV6U5kXLKNV2Q0Dd4U1DubD+gaLxfoI82ONhPmyxsF8rMr6NtnWAbhDxneuTLoTZnxB7Ha7N54TLKuzi2Kv10ur1Uq73U6/389wOEypVEqlUsnGxkbW19cnvh+B86xxMB/WN1gs1keYH2skzJc1DuZjVda3xZw15OICNulOmFXJ7sO09Hq9NJvNwkOih8Nher1eDg4OcnBwkEajkd3d3VuYJSwHaxzMj/UNFof1EebLGgnzY42D+VmF9U3ij4V107684wviqvX5hes4vS+Oj4/TarWu/b5Wq5VOp5OHDx/65ROegzUOZsv6BovJ+gizZ42E22GNg9latfVN4o+FddMFbHznzNk+2sB5p/dHtVrNxsZGKpVKyuVyBoNBOp1Ojo+PL9xDvV4ve3t7efjw4W1MGRaaNQ7mw/oGi8X6CPNjjYT5ssbBfKzK+ibxx8IavwEXKeMOi+Lsfba7u5tGo3HhNRsbG9nd3c3+/n6Ojo7OXet0Omm1WoXvAy5njYPZsr7BYrI+wuxZI+F2WONgtlZtffMThKUx7Z0xwFOlUimPHj26cmHb2dnJ9vb2hef39/dnNTVYGdY4mD7rGyw+6yPMhjUSbp81DqZvldY3FX+srPGdM3bSwEWNRmOinSxbW1tptVrp9/uj504Pxa1WLTkwL9Y4eDbrG6wm6yNczRoJi8kaB8+2auubnwCsLIfcwmzs7u5eeK7T6dzCTGB1WeNg+qxvsPisjzAb1ki4fdY4mL5FXt8k/lhY0z601k4YmI56vZ5KpXLuuV6vd0uzgcVkjYO7x/oGt8/6CHeTNRJuzhoHd88ir29+ArCwxhewSXe2jC+gtVrtxnMCnnI/wc1Y4+Buci/B7bI+wt3lfoKbscbB3bSo95LEHwtrfEE822/3OsYX0PHsPfD8xu+nReh9DXeJNQ7uJusb3C7rI9xd1ki4GWsc3E2Lur5J/LGwxrPtk+6EGX/9oty0sAjGf2H1CydMxhoHd5P1DW6X9RHuLmsk3Iw1Du6mRV3fJP5YWOM3Wbfbnej94ztnFrVsF+6i8V846/X6Lc0EFpM1Du4m6xvcLusj3F3WSLgZaxzcTYu6vkn8sbDK5fK5g28nLYE/+/q1tbWpzQs431t+fX39FmcCi8kaB3eT9Q1ul/UR7i5rJNyMNQ7upkVd3yT+WGjjGfZJdsN0Op1Lx4FV1uv18tJLL03cVuKsdrs9+npra2sa04KVY42D6bK+wXKwPsL0WSPhbrDGwXSt8vom8cdCG8+yn70Rr9Lr9UZfNxqNqc0JFl25XE6/38/BwcFzvb/X6412mjUaDe0l4DlZ42C6rG+wHKyPMH3WSLgbrHEwXau8vkn8sdA2NjbOPW61Wtd63/Hx8ejr9fX1C4d0wiorl8tZX19Pq9U694vjdTWbzSRP+9Nvb29Pe3qwMM62g3ge1jgo9rz3lvUNloP1EabPGgnTIQaE2RADTs5PARbe2Zuu3+9fazfM4eFh4fuBp053h50ucNd1eHiYTqeTUqmUR48e+WWTlTbeSuJ5flG1xsFFN7m3rG+wHKyPMH3WSLg5MSDMhhhwcos1WyiwtbWVSqUyetxsNp/Zt/dshn93dzfVanXmc4RFU6/XUyqV0ul0sr+/f6337O/v5+DgIJVKZSEXRJimdrt94RfR6+7WPMsaB+fd9N6yvsFysD7C9Fkj4WbEgDAbYsDnUxretAYZ7oDBYJCXXnpp9EOgUqnk/v37F/ruHh4ejnr6bm5uZmdnZ+5zhUXRbDZHC2mpVEqj0Ui9Xh/9AjocDtPr9dLpdHJ8fJzhcJhGo5Hd3d3bnDbMXbfbTbvdzmAwOHdfFKlUKqnVaqlUKimXy6nValcevG6NY1XN6t6yvsFysD7C9Fkj4XrEgDAbYsDpkfhjaQwGgzSbzZycnIyeO/0BMBgM0u12RwvmvXv3LvTNBs7rdrt5/PjxtV67traWnZ2dhTrkFqblbLA1qfX19dy/f//K11njWEWzuresb7A8rI8wXdZIuB4xIMyGGHB6JP5YOt1uN61W69zugEqlkkqlko2NjVFfX+Bqg8FgdD/1+/0L91S9Xs/6+rpWEjAn1jiYDusbLBfrI0yPNRLuFmscTMeqrW8SfwAAAAAAALAEFu9UQgAAAAAAAOACiT8AAAAAAABYAhJ/AAAAAAAAsAQk/gAAAAAAAGAJSPwBAAAAAADAEpD4AwAAAAAAgCUg8QcAAAAAAABLQOIPAAAAAAAAloDEHwAAAAAAACwBiT8AAAAAAABYAhJ/AAAAAAAAsAQk/gAAAAAAAGAJSPwBAAAAAADAEpD4AwAAAAAAgCUg8QcAAAAAAABLQOIPAAAAAAAAloDEHwAAAAAAACwBiT8AWFDdbjcvvfRSBoPBbU9lJgaDQV5++eV0u93bngoAAMCtEwMCcB0SfwCwgI6Pj/P48eNsbW2lXF7O5bxcLmdjYyOPHz9Ou92+7ekAAADcGjEgANe1nKsEACyxdrudV199NZubm2k0Grc9nZna2trK5uZmnjx5IvADAABWkhgQgElI/AHAAul2u3ny5EnW1tays7Nz29OZi52dnayvr+fJkydavgAAACtFDCgGBJiUxB8ALIjBYJBXXnklpVIp9+/fv+3pzNXu7m5KpVJeeeWVpT3PAgAA4CwxoBgQ4HlI/AHAgtjb28twOMzu7u7SnulwmXK5nPv372c4HGZvb++2pwMAADBzYkAxIMDzWK0VAwAW1PHxcTqdTtbW1rKxsXHb07kV9Xo9a2tr6XQ6OT4+vu3pAAAAzIwYUAwI8Lwk/gBgQoPBIPv7+3M7a2AwGKTZbCbJypzpcJnTP//p9wMAAGDWxIC3RwwIMLnqbU8AABZFr9fL0dFRWq1WkqRWq6VWq838cw8PDzMcDrO2tjaXz7vLarXaaMfn/v7+ygfBAADA7IgBb58YEGByKv4A4Jr29vZGAV/ytO3IrA0GgxwdHSVJtra2Zv55i6DRaCTJ6PsCAAAwC2LAu0EMCDAZiT8AuKZ+vz/6ulqtzuVw9ZOTkyRJqVSaS5C5CDY2NlIqlZLkXBAOAAAwTWLAu0EMCDAZiT8AuKbhcDj6el4B2OmOxtMdjjx1eri9HZ8AAMCsiAHvDjEgwPVJ/AHANYwf4j6PoK/b7abX6yX5QJDDU2tra0menrlx+j0CAACYFjHg3SIGBLg+iT8AuIbxwGIeB6yfbWGy6ge6jzsbdGv1AgAATJsY8G4RAwJcn8QfAFzD2bMdKpXKXM52aLfbST6ws5EPKJfLozMeTr9PAAAA0yIGvFvEgADXV73tCQDAIjjb5qVSqcz88waDwSjQvGlLmV6vl5OTk7RarTx48CDVavXctVarlXa7nX6/n+FwmFKplFqtlo2Njayvrz9XgHt8fJxOp5Ner5d+v59+v59SqZRKpZJqtZp6vZ61tbVzc5lUvV7PycmJNi8AAMDUiQEnIwYEuDsk/gDgGs4GFvNouXKTILPb7Y7+Ow3mTp09nL7dbufJkycX3j8cDtPpdNLpdNJsNrO5uZmdnZ1rfXar1crh4eEoyKvVaqnX66Pg7/Q8hpOTkySZaOxxp0Hf6Z9lHmduAAAAq0EMKAYEWFQSfwDwDMfHxzk8PDwX9LVarZycnGQwGIyCqN3d3TQajal97tnWJZMEmfv7+zk6OrrydcfHx3n11VevNebR0VHa7XYePnz4zJ2fzWZzdNbCZd+Pbreb/f39dDqda332s5z9vgj6AACAaRADigEBFp3EHwAU2N/fT6vVOrc78tRwODy3gzKZ/g7Qs+NP0gql0WhkY2Mjg8Eg7Xa7MABstVppNpupVqvZ3NzM2tpayuXyqLXMaUuYs3q9Xl555ZW88MILhZ97fHw8es/29valAXCtVsvDhw/zyiuvpNPp3OicjLO7YMf//wAAAJiEGFAMCLAsJP4AoMDGxkY2NjaSPN2h2Gw2R9cePHhwIViZdtD3vGcWnA0Q6/X6hcD1dKdl0W7Mcrk8Onthe3s7r7zyyrl59Hq9NJvN7O7uXvjcg4OD0dfr6+tXznN3dzcvv/zyjYK+s+91xgMAAHATYkAxIMCyeP6ftACwxGq12ui/s06DorPXZ3Hew+nuxVKpdKNxxs+G6HQ6uXfv3pUtacrlcl544YUL72+1WhcCrLOH0J++9yo3OdD9rNP52e0JAADchBhQDAiwLCT+AOAKZw9Zn9cZAqc7NG+yG7Lo/adtYK5re3v7wnPjLWDGA66z36+rxp5WwFzUjgcAAOB5iAHPEwMCLBaJPwC4wtlDyGexs3PcYDAYfX3T3Z7jrtOC5ayNjY0LOzPPHjqfXJzj3t7etdqubG1t3fj7Oe3vDwAAgBhQDAiwyCT+AOAKZwOYeQR9Z910t+c0xtvc3Dz3eHx353hQOBwO8/LLL2dvby/Hx8fngthpO/vnmeXnAAAAq0MMKAYEWGTTaa4MAEtqfNfitM4leJazwcu0g77nMR7oFrVUaTQaF9q/nJyc5OTkJMnTcxhOz8VYW1ubyfdxMBjcie8XAACwuMSAYkCARSfxBwDPcPasgrW1tbl85l3bwTh+uPv44yTZ3d1Nr9c71xLnrH6/fy4orFQq2drauvKA+avctQAZAABYbGJAMSDAovPTEQCeYd5nO4y7C0HfuKKgL0kePnyY3d3da5250O/302w28/LLL9/oz3h256mgDwAAuCkx4EViQIDFouIPAJ7hNoK+s8FLUUuVeRsPyur1+qWvbTQaaTQaabfbOTk5SbvdvnAexFm9Xi8HBwfZ3d2dytwAAABuQgwoBgRYdBJ/APAMt3moe3I3gprxoG19ff3K99Tr9VFwOBgM0m630+l0cnx8fCGQbbVa2d7efq7dmqdjXWeHKQAAwFXEgGJAgEWnHhoALnEbh7qPf9Zd2O3ZbrdHX1er1Ym/D+VyORsbG9nd3c3rX//63Lt378Jrzp6j8Twuaz0DAABwXWLAp8SAAItN4g8ALnE2EJl3UDHPAPMqJycno693dnYKX7O3t3ftwG1jYyPb29vnnnueXa1n33OXvl8AAMBiEgM+JQYEWGwSfwBwibNBzLxbvJwNMsd3nc5Tq9UatXlZW1srPNthMBjk5ORkonmOt4p5nqDtbPsZuz0BAICbEgOKAQGWgcQfAFzibHuToqCi2WzeuD3JZc4GmbP6jOvY398ffX3V4euTtKQ5+9pSqfRcQfXZIPNZh80DAABchxhQDAiwDCT+AOASZ4OKs7sRu91uXnrppfR6vZntAj0bxEwz6Nvb27v2rsy9vb0Mh8OUSqU8ePDg0h2Zp+1WzgbJVzk+Ph59fVnrmKuc/b4I+gAAgJsSA4oBAZaBZsgAUGA8MOp2u+l2u2m1Wmm1Wtne3s7W1tbMPr9cLqdSqaTf70816Ov3+3n8+HF2dnbSaDQKX9Pr9UbB4fr6enZ3d1MuX75X6LTdysnJSY6Pj7OxsfHMOXS73RwdHSV52jrmsnlc5fT74mwHAADgpsSAYkCAZeGnJAAUGA+0ToO9052P89hdWK/X02q10ul0pjrucDhMs9nM/v5+6vV6arVayuVyBoNB2u12Op1OSqVS7t27d2UAl5w/Z+HVV19Np9PJ5ubmhWBsMBjk8PBwFPCtr6/n/v37z/3nOP2+2OkJAADclBhQDAiwLCT+AKBA0e7G6+x8nKZGo5FWq5XkaRA67ZYyw+EwJycnOTk5Off8pH/O8Z2xpwFy8vRcjFKplH6/PzrToVKpZHt7+1oB5WXOtpR53t2iAAAAp8SAYkCAZSHxBwAF6vV61tbWRsHW1tbW3HcV1mq1UauX4+PjqQR9jx49Sq/XS6vVSr/fz2AwyHA4TKVSSa1WS6PRmPjPedoyptPppN1up9frjYK8fr+fUqmUSqWSer0++u+mTgPVarWqzQsAAHBjYsDrEwMC3G1+SgLAJR4+fHjbU0ij0cjBwUFardZzH4A+bmNj40Y7LYucBl/z2nl5ejD85ubmXD4PAABYfmLA6xMDAtxd86lTBwCey2kQNRwOz7U2WWXtdnvUMmZ9ff2WZwMAADA9YsCLxIAAk5H4A4A7rFwujwK/w8PDW57N3XD6fdjc3JzbWRsAAADzIAa8SAwIMBk/KQHgjtve3k6SdDqdC4eor5put5tOp5NSqZStra3bng4AAMDUiQE/QAwIMDmJPwC448rlcnZ3d5MkBwcHtzyb27W/v5/k6WHydnoCAADLSAz4AWJAgMn5aQkAC6DRaKRarebk5GRlz3k4Pj5Op9PJ2tra3A6QBwAAuA1iQDEgwPOS+AOABfHw4cOUSqXs7e3d9lTmbjAYpNlsplQq5f79+7c9HQAAgJkTA4oBAZ6HxB8ALIhyuZz79+9nOByuXODXbDYzHA7z8OFD7V0AAICVIAYUAwI8Dz81AWCB1Ov13Lt3LycnJ6OzDp5lMBjMYVaztb+/n5OTk9y7dy+1Wu22pwMAADA3YkAxIMCkqrc9AQBgMhsbGxkOh2k2m6lWq88862A4HJ573Ov1FipwarVaOTo6yr1797KxsXHb0wEAAJg7MSAAk5D4A4AF1Gg0UqlUsre3l/X19XOtTwaDQQaDQTqdTvr9/rn3tVqtVKvVVCqVO98uZTAY5PDwMI8ePVqoQBUAAGDaxIAAXFdpOL4NBABYWM1mM61W69qvf93rXnfngz8AAACKiQEBGKfiDwCWyPr6emq1WkqlUpJcCOhOz3s43fcj4AMAAFhcYkAAxqn4AwAAAAAAgCVgiwcAAAAAAAAsAYk/AAAAAAAAWAISfwAAAAAAALAEJP4AAAAAAABgCUj8AQAAAAAAwBKQ+AMAAAAAAIAlIPEHAAAAAAAAS0DiDwAAAAAAAJaAxB8AAAAAAAAsgf8/hjJJ51xBUFUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAKyCAYAAAAdJqksAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA15JJREFUeJzs3Xd8ZGd1//Hv9CqN2u56XddeN1xxxTY2tnEDg2kJCYQU8iMhJCEkIYQaOiGEQBIISUghJCEJhITQjW1sbGNjG3fcey9bJI1Gmn5n7v398ezMSjN3mjRV+rxfr3mtNHd050irGc0z5znneBzHcQQAAAAAAAAAAABgpHkHHQAAAAAAAAAAAACAtSPxBwAAAAAAAAAAAKwDJP4AAAAAAAAAAACAdYDEHwAAAAAAAAAAALAOkPgDAAAAAAAAAAAA1gESfwAAAAAAAAAAAMA6QOIPAAAAAAAAAAAAWAf8gw4Ao6dUKqlQKFQ/9/l88nrJIQMAAACDZNu2yuVy9fNQKCS/nyUfOsN6DwAAABguna71WAWiY4VCQYuLi4MOAwAAAEAT4+PjJP7QMdZ7AAAAwHBrtdZj2x4AAAAAAAAAAACwDpD4AwAAAAAAAAAAANYB+r6gYz6fb8Xn4+PjCgQCA4qmNcuyVrSqGfZ4Ic3Pz8txHHk8Hk1NTQ06HDTB42s08RgbHTzGRhOPsdGx3h5jtd9P7et2oB2jtN5bb4/hjYC/kaOFx9jo4TE2Onh8jSYeY6NjvT3GOl3rkfhDx2oHuwcCAQWDwQFF07lRi3cj8ng81T+i/F+NFh5fo4HH2OjiMTYaeIyNrvX2GKt93Q60Y5TXe6MU60bF38jRxmNs+PEYG108vkYDj7HRtd4eY63WeqwEAQAAAAAAAAAAgHWAxB8AAAAAAAAAAACwDpD4AwAAAAAAAAAAANYBEn8AAAAAAAAAAADAOuAfdAAAUCsWi1UH5QLoPh5jQG/xGAMAwB1/I4He4jEG9BaPMYwKEn8Ahk48Hh90CMC6xmMM6C0eYwAAuONvJNBbPMaA3uIxhlFBq08AAAAAAAAAAABgHSDxBwAAAAAAAAAAAKwDJP4AAAAAAAAAAACAdYDEHwAAAAAAAAAAALAO+AcdANBrPp9vxeBVn883wGiA9YXHF9BbPMaA3uIxBrQ2Pz8vj8dTd30sFlvx+BkEHsNAb/EYA3qHxxfQW6P6GEun08pkMnXXO47T0XlI/GHd8/l8GhsbG3QYwLrE4wvoLR5jQG/xGANacxzH9Y2GTt986AUew0Bv8RgDeofHF9Bbo/oYcxxHtm2v+Twk/gAAAAAAgCuPx+Na8ed2HQAAAIDV83g88nrrJ/Q12ozXCIk/AAAAAADgampqSsFgcNBhAAAAAOtePB53badfLBY1NzfX9nnqU4cAAAAAAAAAAAAARg4VfwAAAAAAoK9s21Y+n1cul1OxWNTWrVsHHRIAAACwLpD4AwAAAAAAPVUoFFQoFGRZlizL6mhGCQAAAID2kfgDAAAAAAA9lU6nVSwWBx0GAAAAsO6R+AMAAAAAAD01PT1d/bhQKGh+fn6A0QAAAADrl3fQAQAAAAAAgI0jFArJ4/EMOgwAAABgXSLxBwAAAAAAAAAAAKwDJP4AAAAAAAAAAACAdYDEHwAAAAAAAAAAALAO+AcdAEbf/Py863yGWCymeDw+gIgAAACA9SudTiuTydRd7zjOAKIBAAAAAAwTEn9YM8dxXN9k4I0HAAAAoPscx5Ft24MOAwAAAAAwhEj8Yc08Ho9rxZ/bdQAAAADWxuPxyOutn9rQaEMeAAAAAGDjIPGHNZuamlIwGBx0GAAAAMCGEI/HXVvqF4tFzc3NDSAiAAAAAMCwIPGHoWfbttLptCzLUrlcVrlcru5yDoVCikajCgQCgw4TAAAAANAlpVJJ2WxWhUJB5XJZjuPI4/EoEAgoEokoGo0OOkQAAABgKJH4w9AqlUpaWlpSPp+vO+Y4jsrlsrLZrLLZrMLhsCYnJwcQJQAAAACgm1KplLLZbN31juOoWCyqWCwqnU5rcnKSTaAAAABADRJ/GErLF3rhcFg+n0+O46hUKlWr/pbL5/NaXFzU+Pj4IMIFAAAAAHTB3NycisViy9uVy2XNzs5qampKoVCoD5EBAAAAo4HEH4ZOJenn8Xg0MzMjv7/+17RQKCiVSq1IAGYyGcXjcXm93n6GCwAAAABYI9u2lUwmVSwWFQwGqyMdvF6vyuWyCoWC0um0HMdZ8XXz8/PatGmT67oRAAAA2IjIkGBoxePxhou3UCikmZkZeTyeFde7tQUFAAAAAAy3StIvkUhoenpakUhEfr9fXq9XgUBA8XhcmzdvVjAYrPvaVCo1gIgBAACA4UTiD0MrHo83Pe71eutaexYKhV6GBAAAAADogWKxqE2bNikajTa8jdfr1fT0tHw+X93XlkqlXocIAAAAjAQSfxg6sVhMU1NTbd02HA6v+NyyrF6EBAAAAADoobGxsbbbdbptEqX7CwAAAGCQ+MPQ8fv9bQ9n93q9K9p92rbdq7AAAAAAAD3SrNLP7ba1Yx/YBAoAAAAYJP4wsizLUjabXXFd7aB3AAAAAMDw83o7e3siEoms+JxWnwAAAIDRXh8NYMAsy1KhUJBlWbIsS+VyedAhAQAAAAAGpHbOH5tAAQAAjHt3SD96RPJ6pFMPlE7a33yMjYPEH4aWZVlKp9MqFAp1izifzyefz6dAIKB8Pk8iEAAAAAA2kNrEX+3nAAAAG81zKenvb5SufXTvdf99p3TAhPTqY6SXHymNtTdhCyOOxB+Gjm3bSqVSdcPZw+GwwuGwQqHQijYwhUKh3yECAAAAAAbI71/5dkanrUIBAADWi3RB+spt0v/+TLLs+uNPL0hfuF7655ukCw6XXnOMdNimvoeJPiLxh6Fi27ZmZ2dXVPCFw2ElEgkWcgAAAAAASWbtuFwgEBhQJAAAAINRsqXv3yd96WZpIdf69vmS9N37zOXofaTXHiOdc6gUHFDjBMeRnklJtz8jzWelIzdLpxwg+WnksGYk/jBUksnkiqRfMBjU5OTkACMCAAAAAAyb2nEP4XB4QJEAAAD0381PSX/7E+nx+dV9/b07zOULP5Fe+QLpVUdL+4x3N0Y3i3mT6LvlaXPZsbTyeCIsnXeYdOHh0gu2SB5mE64KiT8MjVKppGKxuOI6kn4AAAAAgFqWZVU/9vl8da0/AQAA1qMnkybhd9OT3TnfQk76j9ul/7pDOv0g6bXHSicfIHm7lHCzytK9O6VbnpJufVp6YJfkNLl9Ki/9393mst+4dMERpj3pARPdiWej4JUxhkZt0i8cDtPeEwAAAABQZ/ms93g8PsBIAAAAei+Vl758s/Tte6Rys8yZTNLuVUdLx26VvnuvdOdzrc9vO9JPnjCX/RJmDuDFR0pjHTZVcBzpqQWT5LvlaemOZ6RcqbNzVDy7KP3rLeZy1BaTAHzpodJkdHXn20hI/GFo1M5oaDfp5zgtnukAAAAAAOtGLpertvr0+XyKRnn3BwCAUWQ70u60NBaSosFBRzOcrLL0zXtM8itdaH37Uw+UfvcM6eBp8/kFh0uPz5lzXP6glLOaf70kPZsyVYX//FPTdvO1x0pHbGp8+4WcdNsze5N9u9LtfW+duG+nuXzheumUA00r0DMPlsKMeXZF4g9DozbRVyq13gqQSqXqZjsAAAAAANavpSUzDMbj8WhqamrA0QAAgE49vSD91+3SVQ9L+T1vAY+FpH3G9lzGpS1j0taxvf/GQxtr3puzpwLv734iPZNqffuDJqW3v1h60UH1xw6elt55tvS2003y75t3S08kW5+zUJIuvd9cjtpiEoDnbDf/D/c8vzfR99Du5u07u6nsmDanNz0pRQLSSw4xyc0T95f8NA+sIvGHoREIrEzPF4tFlUol11kNtm0rlUrJ6/XK5/OR/AMAAACAEVLbuSWXyykSibT8usXFRZXLZXk8Hk1PTzPbDwCAEfLgLuk/b5eufbQ+UbRUMJeHZ92/NhowCcFKcnBFYnBcSoS7kxh0HKlkS8WyVCyZ5FexbP61bHM/W+KS37f2+2rkkVlT2Xb7s61vmwhLv36qae3ZKvEVDZrk3WuOkX72nEkA/vhxqWw3/zppb8Xd31xnfh75VbbvXG5TXDrlAHNJhE0i+JpHpUyx9ddKpnrx8gfNZSoqnX+YmQl4+MzGShK78Tj0SUSHisWi5ubmqp9PT08rGFx7LbZt29q5c+eK63w+n6amplYs5rLZrNLptOLxuKLRqHbt2rUi8bdlyxZmAwIAAGDD6dXrdGws/fo9ev755+uui0ajisViDZN5qVRK2WxWwWBQk5OTrPsAAFhmIWcSa08mTSXUsVulbUNQGO84JoH1n7ebCrFeCftNErCSGIyH9ibsqv+WpMKehN7yY7Wf223M0NscNwnHymXfysdjJgm1msTTXEb60s3S9+9rXUHn90qvO1b6tZM7n8O33GzGzAH87n3m416K+KUX7rcn2XegdOBE/c+pUJJufEL64UPSjU+aJGynDpw0rUDPP9z8v6wHnb5GJ/GHjvVyIZhOp6ttW5arLPxKpVJ1Z2elQnDHjh0rdov6/X5FIhF5vV5mPQAAAGDDIPGHbujH75Hbps/l/H6/gsGgfD6zlb5cLiubzUqSxsbGFI/HuxoPAACjZqkgPbRLemC3SfY9sEvaUf+Wqg6dls47XDrvUFMt10+2I13/uPSft0n37+rvfQ9a2G+Sj/smTCJw655/K5/XzjMslKT/+Zn0ldvam8F31sHS286QDpjoXsylsvn/+uY90h1tVBq2wyPpiM17q/qO3kcKdFApuZiXrn7EJAHvqt8z1pbjtppWoOccaqoKRxWJP/RcrxeCc3NzKhbd63nddnbW7hT17Nkm4DgO1X8AAADYMEj8oRv68XtUKpW0e/dueTwexeNxpdPputaftXw+nyYnJ+tGRAAAsN5li6b95QO79ib52pn5VuvYrdJ5h0nnbpcme1grYZWlKx+S/vMO6ak25shtRBORvYnATTHT3tItcVvrsBnpd19s5tn10hPz0rfukS57QMq2kYhcbkvcVPOdcoCJs1vJtucXze/V5Q+t7vfK75U+cL55DIwiEn/ouX4sBHO5nLLZrMrlcnV+QzQa1fj4OqnNBQAAALqMxB+6oR+/R5ZlKZlMrhjrkMvllM/nVSqVVC6X5TiOPB6PfD6fYrEY3VwAABtCoWTmuz2wS3pwt/TATtO6s5tv4Ps8JiFz/mHSWYeYlpjdkLOk790n/fed0q50e18T9EkXHmHm9+1MSzuXTIInle9OTOvFVET6jdOklx8p+fpY45Itmmq7/7tbenze/TaRgHTiftLJB0inHijtn+jtfD3HkR6alX74oHTlw9J8tv2v/dovm2TrKCLxh57jDQUAAABg+PA6Hd3A7xEAAP1hlaXH5vYm+R7cJT02L5VXMdNstYI+6bSDTBLw9G1SyH3MblOLeZMY+sZd7SfsogHpNcdKrz9Omo7VH89ZJgm4Y/llcU9icKmzZM8oC/qkX3yh9KYT69uD9pPjmFab37lXuneHmWF40v4m2Xf0FsnfQfvObirbZn7kFQ9KP35UypUa3/bofaS//7n+xdZtnb5GX8VDGQAAAAAAAAAAtCtblO7ZYRIodz0n3bdTKpYHG1OxLP34MXOJBkwF4PmHmaROq2TO7rSp7vvuvc0TLstNRqTXHy+9+hhprEmlYSQgbZsyFzeFkqkqrCQEK8nBSmJwNr23SjLok4J+KbTn36DPJDib/bvi9ss+9nmk3RnpuZS5n+dT0o50b5K15x0m/dZp/Z/N6MbjkY7f11yGic+7d37gO8+WfvK4dMVD0i1PSeWacrcLDx9MjINC4g8AAAAAAAAAMNJsR7p/TzJtvz2z03rZcrCV+ezeJN9dz5sWnnYPeu/5vNL2aenIzeZy6Iz0+Jxpg3jbM+3fZ9aSLn/QXBJh6dxDTfLp2K2Sd9nP8ekF6b9uN7crtZnw2mdMeuMJ0sUvWF1VYa2QXzpgwlzclGyTjAv6ev87ULJNovH5pb0JweWJwflcZ+c7aov09jOlY/bpTbzrVSQgnX+4uSSz0o8eMW1K79tpHiPnHjroCPuLVp/oGK1fAAAAgOHD63R0A79HAIBR9Mis9PEfrpxDFvFLB0xKB05IB+7596BJaf+J7iSflnMc6blFk+T72fPS3c+bBFm3eT2mCu7ITdKRW6QjNkmHTDf+fuaz0tWPSFc9bKoNV2NzXHrpodIL95Mue0C69tH2Zw4ePGXaVL70MMnfx9l0wyRnmarERonBSrXk1nHpN15kkq3eASas15unF8yGgAuPGHQka8OMP/QcC0EAAABg+PA6Hd3A7xEAYJQ4jvT9+6W//nH7bTM9kraMmSTgARPm3wP3fDwdba9CrGyb+XzLK/rmujx3ziOTuDxyk3TEnmq+w2akcGB153t+0VRBXfmQ9Ohc69uvxTH7SL98kpkfSBKrMceRFnJSvmR+J/lZoRFm/AEAAAAAAAAA1rWcJf3ltablZCcc7Z0J99OnVh6LBVdWCFb+3Txmqgrvfl762XOmei5T7M73UbHvuEnuVZJ8h28y8XTL1nFTffemE6Un5k0r0Ksekp5d7N59vOhAk/A7butg26yOCo9HmowOOgqsRyT+AAAAAAAAAAAj44l56UOXSU8ku3veTFG6f5e59FLELx291STIjt7HtOwcD/f2PpfbNmXaSr7lVPO9XvWw9KOHV1e16PWY+WlvOtHMFwQweCT+AAAAAAAAAAAj4YoHpc9cY9ojjoqJiEnyHbev+ffQmeGYeefxSEdtMZffOcNUM175sJnjt1Ro/rUBr/TyF0hvPEHaL9GfeAG0h8QfAAAAAAAAAGCoFUrS56+Tvntf89u96miTaHs6KT25ID2z0P78v27Zd3xvku+4rWZ+4LC3vvR5pRP3N5c/fIl081OmEvD6x1cmWaMB6dXHSK8/XpqJDS5eAI2R+AMAAAAAAAAADK2nF6QPXyY9Mtf4NvGg9N7zpJccsvL6si3tXJKeWpCeSkpPJs35nkpK87m1x+aRdMj0ykTfpvjazztIAZ/04oPNJWdJNzwhPTwrbR2TXnqYNBYadIQAmiHxBwAAAAAAAAAYSlc/Iv35j6Ss1fg2h2+SPnaRtK9Ly0mf11y/b0I67aCVx5YKeysDn0ruuSxIz6RMwtBNwCsduWVvku+Yres7ERYJSOcdZi4ARgOJPwAAAAAAAADAUCmWpb//ifSNu5vf7jXHSL/7Yim0ine6x0LSUfuYy3KlsvT80t5k4FzWtA89dqt05ObV3RcA9AtPUQAAAAAAAACAofH8ovThy6UHdjW+TSQgvfvc3lSi+X1mLt8BE6bdJQCMEhJ/AAAAAAAAAIChcP3j0ievktKFxrc5ZNq09jxwsn9xAcCoIPEHAAAAAAAAABioUln6p59KX72j+e1e8QLp98+SwoH+xAUAo4bEHwAAAAAAAABgYHalpY9cLt2zo/FtQn7pnWdLLz+yf3EBwCgi8QcAAAAAAAAAGIibn5I+/kMplW98mwMnTWvPQ6b7FxcAjCoSfwAAAAAAAACAvirb0pdvkb5yq+Q0ud35h0nvOkeKBvsVGQCMNhJ/AAAAAAAAAIC+mc2YKr87nm18m6BPesdZ0iVHSR5P/2IDgFFH4g8AAAAAAAAA0HOOI133uPSX10jzuca3229c+ujLpMM39S00AFg3SPwBAAAAAAAAAHrqtmekf7xRun9X89udvV16z7lSPNSfuABgvSHxBwAAAADACLFtW4VCQeVyWbZty+/3y+PxKBKJDDo0AADq3L9T+qebpFufaX47v1f63RdLrzuW1p4AsBYk/gAAAAAAaKJQKCifz6tYLKpcLstxHHk8Hvl8PkUiEUWjUXm93r7Esbi4qFKp5Hp8YWFB4XBYY2Nj8vtZ7gMABuuJeemffyr9+LHWt91nTPrIRdJRW3ofFwCsd6wEAAAAAABwYVmWksmkyuWyJMnv9ysQCMi2bZVKJZVKJS0tLWlpaUmJRELRaLRnsSSTSeXzeUlSMBhUPB5XIBCQ1+tVqVRSPp9XOp1WPp9XPp/veTwAADSyY1H68i3S5Q9KttP69mdsk95/njQe7nloALAhkPgDAAAAAKBGNptVKpWSJEWjUY2Nja2o6rNtW6lUqpqMS6VSKpVKGh8f72octm1rbm6uWuU3NjameDy+4jZ+v1/xeFzhcFizs7NyHGdF7AAA9EMyK/37bdJ37pEsu/XtN8Wlt5wqvexIyUtrTwDoGhJ/AAAAWJessrQrLe1YknYumZ3HO9J7Pl4yb0zsm5B+5STpvMMGHS2AYVIoFKqJs1gs5prM83q9mpycXFGJl8lkFAgEujprL5lMNk36Lef3+zU5Oan5+XlJJhkZDAZp+wkA6Kl0QfrvO6Wv3ynl3LtRr5AIm9fgrz5GCvEnCgC6jqdWAAAAjKS8tSypt7Ty451L0mxGatVZ6LE56WNXSGG/9OKD+xI2gBGQTCYlSR6Pp2UFXyKRqCb+JJNs61biL5vNqlgsVmNplvSrCIVC8vv91WRhMpnUpk2buhIPAADLFUrS/90t/edt0mKh9e2jAekXXyj9wgulWLDX0QHAxkXiDwAAAEPLcaT7d0r37dyT0NtTsff8opTKt/76tu5D0ueuk04+gB3HAKR0Oi3HMdsG2km0eb1exWIxZTIZSZLjOMpms11psbm4uFj9uJ1YKmKxWLVisVQqybIsBQKBNccDAIAklcrSpQ9I/3aLtDvT+vZBn/SaY6RfPkma6F5RPACgAd7a6IBt2ytmOgAAAKB3npiX/uwq6f5dvb+vHUumPdGvntz7+wIw3NLpdPXjcDjc1tdEIpFq4k+ScrncmhN/uVyumoCU1FHiLhwOVxN/kqkcTCQSa4oHAADbka5+RPrST6VnUq1v7/VILz9SevMp0pax3scHADBI/DVhWZay2Wzdgsvj8cjn8ykYDCoWi615XkKhUFA+n1exWFS5XJbjONX7iEQiikaja0o49vr8AIDRsFQwi7Q7njVtDY/dKr1wP2nrmORhkDqGSNmWvv4z84ZCsdy/+/2P26SXHSltbr+oBsA6s3zt5/F42l7r1SblKu0512J5+1BJ8vl8bX+t1+uVx+Opfi+5XI7EHwBg1RxH+ulT0j/dJD08297XnLtdesuLpAMnexsbAKAeiT8Xtm0rlUrVLbQqHMdRqVRSqVSqtnAZGxvrOHlmWZaSyaTKZfOOlt/vVyAQkG3b1fMvLS1paWlJiUSi4x2jvT4/8PSC9PBuqexIPo/k9Zp/fV6zq8u752Pfso+9e27n9+z92O1r4yHTCgLA2pRt6danpcselK57bGUS5fv3m3+3xKUT9pdO2HdPIrD5KCOgp55ZkP7sR9Ldz/fm/EGfSezlLGkuu/JYviT9w43SBy/ozX0DGH7LE3adtsZcPldPMhswQ6HQqmOxLKvu/J3w+XzVeBzHoYMNAGBV7tkhffEG6a42X5+feqD0my+Sjtjc27gAAI2R+KtRKpU0Pz9fTZa1I5vNqlAoaGZmpu2FVDabrbZecUsc1iYfU6mUSqVSy8Hy/To/Nq68ZSqGvnOvdO/O3t1P0CeddYj0nnOlMONIgI49MS/94AHpigfrkxu1dqalyx4wF0naZ8wkAE/YzyQD9+FPA/rAdqRv3WPeVMiXWt++kUjA/A5vGTP/1n48GTUbTO7bKb3tf+u//ocPmfkjx25dfQwARlcul6t+3GmiLRgMrkj8dbKmdLPWr69NRFqWtaZEJABg4/nGXdLnrzMzsVs5eh/pt04za0kAwGCR+KuRSqVWLLCi0ajC4XB1t6dlWSoUCivmN0hmUZZMJjU9Pd3yPgqFQjUpF4vFXJNtXq9Xk5OTSiaT1eRcJpNRIBBQJNJ8Cm6vz4+N6Yl56dv3Spc/KKULvb+/Ylm66mHz7ydeRhtCoB2LeenKh00C74E1zETbsVSfCDxhP7OAO3E/ZjOg+3YsSp/6kXT7s61vOxaqSeiNr0zujYfa+5tx1BYzb+QHD9Qf+5vrpS/+vEkQAtg4bNuuG/HQidpWnMuTbt1gWVZHVYi2bTf9HACAZq57rL2k38FT0m+eJr14G+/dAMCwIPFXo9LaJRgManJysq6CLxQKKRQKKRKJaG5ubsXCsFgstrUYSyaTksxCslWFXSKRWNFyNJVKtUzM9fr82DgKJenaR011X7stHbrtusekax6Vzj10MPcPDLtSWbr5aZO8uOFxyerBe3o7lsz5KwmSreN724KeQCIQa+A40qX3m0Rb1mp8O4+k1x8v/dopJvHXLb95mvkbk6u57wd2mcT3xS/o3n0BGH61FXaraa25XG2rzrUqlUodJf5q73/52hUAgGYe2i19/IfNk35bx6W3nCqdd5gZ2wIAGB4k/papLIz8fn/Lyr1AIKDJyUnNz8+vuL5QKDRdjKXT6eqCKx6Pt4zJ6/UqFotVKwwdx6nOFRzE+bExPL0gffseU92Xch912Vd//WPppP2l8fCgI+mP5xalb90tZYrSYZuk0w8isYJ6j86aRNwPH5KSuda376bnF83l0j2JwH3H9yYBT9pfmon1Nx6MptmM9OmrpZuebH67fcel950nHb9v92OYiUm/erKZ61frH2+Uzt4uxYLdv18Aw6k2UdZpxV+35+d5PJ66jaadbNKsTfRR8QcAaMdsRnrfpY3b709FpF89RbrkKCngc78NAGCwSPwtUyiY/oUTExNt3T4UCikcDq+omGs1hyGdTlc/Dofby2JEIpEVrUVzuVzTxF8vz4/1yyqb6rpv3yvd0UartX5K5qS//Yl543e9u/xB6TPXmGrL5Q6dls44WDrjIOnILRuj/Vy2aBYaUzwdVS3kTKLvsgekh2c7//qZmHTREeYSD0l3Pmse73c+ZxL+q/Xcorlcer/5/PBN0hnbTKuXwzfR7gUrOY5pSfvXP5aWWrSOfs0x0ttOl6I9TL69/njpe/dKzy6uvH4+J/37rdJvn9G7+wYwXNaaGKtN/K31fKFQaMVaM5vN1s1ub2T5urCitiIRAIBahZL0gUul3fV/RiRJbzxBevMpZq42AGB4kfhbxrIseTyejtqn1C7Gmu0KzeVy1V2XHo+n7dYxtfFU2pH2+/xYn55LSd+5T/rB/Z1XDR06Lb36GFOVZjuSbZt/y7ZUdvZ+bDvm88rHK66v+XfHkvS/d9Xf1w8ekM4/XDrlgO5838OmWJa+cL30rXvcjz8yZy7/fqs0GTFVgGccLJ28f2/fEB+Ekm0qbf7nLvN7cdxW6V3nSNumBh3ZYFhl6cYnTbLvxifNz6QTQZ/0kkOklx1pqvGWt2A5/3BzkczC7s7n9iYDn0mtPuaHdpvLv95iko2nHyS9+GBz/yFeeQwFxzH/xyG/tCnWv+TsQk767LWmjXQzm+PSe18qndyH5/ygT/rdM6X3X1p/7H9+Jr3yKOmAid7HAWDw1pqoq10LrrW1Zu0mU8kk9FqNc6jcrtZqKxI7bVnq8/lIMgLACHIc6c+uku5vMC/+kqPMpjw2dgLA2pXL5ZZFZMt1+pqct9+WKZVKHVe61S5omiXblifUOkkuVs67fDh8oVBQKLRyyE2vz4/1o1SWfvKEmd13y9OdfW3IL513qPSqo6UXbOn+Cz7HkZ5NmQRHrb+4Wvq3N66/nWU7l6QPXdb4xXWtZM60WLz0ASnglU7Yf09iZZu0T+v3gYaaVZY+9sOVSYG7npfe+j/SH77EJK82yiJjPiv9x22mwm81LXeP3Sq97AgzHzPextP5prh0weHmIplEYKUa8I5nzeNyNWYz0nfvM5eQ3yT/XrxNOn0bLUEH5c5npb/6sfT4nm7lm+OmTeuJ+0sn9nBm47WPmqTfQotNJhcfKb39zPZ+b7vlxdvMxpLav4kl21Scf+oV/YsFwODUJuq63bqzU5FIRKlUakVcmUxGgUCgYctP27aVTCZdk46rTcYtLi62vtEy8XhcY2P0qQeAUfOvt0g/esT92In7mTX5RlmPA0CvZbNZ18163eJxmPC9JtlsVqnU3ndDt2zZ0nCBuGPHjuoCLBqNKpFItH0/qVRK2Wy2+nkikahLUvb6/BXFYlFzc3PVz6enpxUMrrOSo3Vqx6L0vful798nzWVb3365g6dMsu/CI6SxHr8Zu3NJ+rWvSlmXjQy/cLx5Q3i9uPVp6aNXdG+W4iHTph3oGQdLL9g8WgO2CyXpw5dLNzzR+DYXHWEWG+utyrHWfTul93yv89+LzXGTHL3oiO5XKO1KL2sN+mx9W8TVOHKzaQl6xjbpsBkWkb22VJC+eINJwjaz37jZUHDCnrmNa03QLuWlv77OJLGbmYpK7z7X/D4MwhPz0q9/zVSo1/qLV0ovOqj/MY2iUlnamTa/b/slev+aoRtKZemyB83zp3+E/m664XX62tSuiSYmJjqaqVcqlbR79+7q536/X5s2bVpTTIVCoW6uvGTWe7FYbMXG01wuV00ULp/jXtFsrbpc7e9Rp0j8AcDoueph896Em/0T0hd/Xhpvb6IQAKANS0tLa0r8tVrrUfG3RstLLGOxWMOFlG3bK3ZddjoovnZ35vLqvH6cH6PHdqRdS9KTSXO59Rnpp09KnWT6gz7pnO0m4Xfs1v69Kb9lTPqt001FSq3/vUt66WHSUVv6E0uv2I6p5vrSTzv7P2nlsTlz+Y/bpUTYVFWdcZB0yoFSbIjf98tb0vt/YBKhzVz+oEmKffQi6dCZ/sTWb7c/Ywap59qs4A/7pbO3m+q+E/bv3fzHzXGT+L/wCPP5ziXpZ8+tLRH4wC5z+ZebTcXhGQeZpM+JXW4JWiqbJGoqLy3mpYW8lNmTlDhqH/Nct95d95j0l9e2t+nj2UXp2fuk7+1JEB44aXb4nrif9ML9pIn23wPXTU9Kn77aVH42c/5h0u+/xDxvDcq2Kek1x0rfcGk3/TfXm2pV/wb4XWmlbJv/z+eXzIai5xfNx8/v+Xg2Y/7GSeb56U0nmsuw/uzuft7M1n183jzvvv74QUeEUVa7FuxGxWAoFHJN4mWz2WqS0uPxrBj5MDMzI9u2V3yNz+cbeAUjAGA43bfTtPh0Ew9Jf/5Kkn4AMGqo+FsD27a1a9cuOY7TcjenZVmanZ2tft6sos5NLpfTwsJC9fNgMKjp6em+nX85dhIPF6ssPbOwN8FXuTy9IOVXmb89YMIk+1525ODehLUd6R3fNG0eax08Jf3zL0iBIX0TsZWlvPSnVzWvbAv7pd8/yyQFf/K4SdwW1pCP93ulF+67p7rqYGnfIWoJmi1K7/m+SSK1K+gzlZ+vPnp9VYld/7j0kcvNzMdWXriveYyes304KiB3Lpkkzw1PSLc909730EjYb2a7nbHNtLGdXlZxZi1L4qVyJpGXyq+8bnmSL5WXMk1G187EpDe8ULrk6PXXRliS5jLS566TrmkxU68T26dNcvaE/aTj93Wv6MoUTYvM77WoLkyEpXeebVrSDoOlvPRL/+lebfv2M03V+XrnOKYda21Cr/LxziXTArUT26fNzMYjNvcm5tVYyktfvHFlBWwkIH3ll8xGh1HF6/S16XbFX7M1VadqO8248fl8mpqakt/vr7t9LBZrazagVP97ND4+3tEoCWb8AcDo2Lkk/db/mlETtXwe6TOXSCf1Ye42AGw0q5nxt7wFf6u1Hom/NUgmk8rn8/L5fJqZmWm6g7J24dXpIrK2xUvtIrLX51+ONxQGI12Qnqok9hakJ+fNx88vurcl65TfK73kEOnVx5iEwjAkU55MSv/va5Ll8gbjW06Vfu2U/se0Vg/vlj54mfRck+qoAyakT7xMOnjZQ7BQMpVgNz5p5jPuXkMLaI+ki440icVBVwEuFaR3f1e6d+fqvv6c7dIfnzsareRaueJBs8uy2eN567ip7LvoCGnf9rs5913eMsnqG54wF7dFZCcOmjSPgcW8ewvgbkiEpZ8/Xnrdsevj98lxpEvvl/72BvP3o1e8HunwTXtmBO5nqsPv3yV96irT7rGZsw6W/ugc0+JzmHz7HjOLsFY8KP3XL3dW8TjsUnnp6kdMm9NKgm/H0uo3DjXj80hvOEF68yndrejtlONIVz4sfeF6MzO31lmHSH/68v7H1S28Tl+bxcXFFVVynW6mrE38hcNhTU5Odi0+27aVzWaVy+VULpflOE41yRaJRFbEWlmrVszMzLSdvOP3CAA2hmxR+r1vSg/Puh//o7PNe0QAgMHr9DU6ib9VquwG9fv9mp6ebtk2JZ1Oa2lpqfp5p4m52oq+2grDXp9/uVFdCH7pS1/q6vmOPvponXbaaU1vc9NNN+nee+/t6Lxl27SaKpRMxUyhZC6V3fW3Tryl6dcH7IyOX/xa2/cX8EmTUWky3LgN16mnnqpjjz226XmuuuoqPfHEE23fbyvRaFRvfOMb9e+3Sv/80/rjAa/0mfN26vbrvte1+5Skc889V4ccckjT23znO99Z8aZOu5J7Kihqn3XTvk16YOxVkkzy9X3n1SfkHnvsMV199dWSzNcXSiZptlRovyVkrfl9Xqn3XrJFRzapwPjqV7+6Yuf7Wm3btk3nnXeeJPOG8x99R3qo5ke5pXC3DsjdLJ9HmombJKfd5C9VwGeSpc2qtd7whjcoFms+qGyQzxHzWfO70UgsaFphRgOtk/JveUvz54hMJqOvfa3954h2NHuOsB3pwV3SD664SrPPPdG1hELRG9Vd429septYaadekO7sOcLrMYmo6Zj7rK9ePkc0smnTJr3qVa9qepvlzxHFktlc0KzSUTK/S+Mh8xziVqF5f/yVyvib91U+bvGrCtqdPUd4PSaJnQjX/z4vf45o5O6779bNN9/c0X22svw5omxLv/F16dGa8VYnL3xJk5HuJd179Tqilbe85S1yHOk790pf+El9NXmnryPa8XTkVO0MmeeIAyek97zUJImX69XriOWeWZD+8sd720ovf45Y/vrqkxdLZx7ctVD6alRfpw+L2jXV2NiY4vH2S0Br11Sdfn03LZ//7vF4tM8++7T9tfweAcD6ZzvSB38gXfe4+/GfO85sFgYADIdOX6Mz468F2zbZFq/XK9u2VSgUtLS0pHK5LJ/P11bSb/l5Vqt2Zl9tvrbX529m+ZzDdgyq9cszzzzT1fPtv//+LW+TSqXWfL9+dfZA9TplJUod3GdJKhSkHU1uctRRR7U8zfz8fFd/xmNjY5KkXzrBVCPUvgFr2dKXf1rUdJf/X3M5l+3/NXbv3r3q77VRgyWfx8w1/MUXuid2crmc630G91xW46Glon7nG9LbTjczjdzu9/nnn1/xBthaVVpMzWelP/y2malUK2inq7/D+aQ01uqkJWmuRcVgO6Xzg3iOWFjY+xzRNJdQkpJZKdmFuMrlcte/12bPEV6P9IIt0j3heS3ln1G3iuny3pa/GfI5xc6eD/ewUtKOBt3Uev0csVq1zxF+tfidqrCkiMylls9pkTmUNFZ6XmG78+eI9JzkVhDYThu6dDrd9Z/v8ucIn9e8yfGOb628TaL0jOwl6ZkuPSX263VErXRB+ourpasbtH/t+HVEG3bae58jnlqQ3v5/0uuOk9562t5NG716HSGZFsFfvUP691tXJrndniMOmR6uKtTVtH/B6tWu6zr52Uv1a7JBtbu0LGvFem5QyUcAwPD6p5saJ/1edKD0uy/ubzwAgO4i8ddCKpVa0SJluXK5rJ07d8rv9ysSiTRdUNUm0ro9WL3X529meW/ZdsTj8RVvxgDN+H2mMuBt/1tf9fXYnNSdqSmD5fdKf/Vq6YX79f++S7ap+LjtGVNp2I8WdrvTJun31IL78dg6nLPmxnHcZ1gCq7Gjsz/Fbfnlk6SH86bN8Fz3Cn9Hwgv3k87d3jg5Nsre8vXmFcb94Ej6xl2mFfC7z+nt3Jg7n5M+e41pH95M2C/9+ilmI0yjDgiDkM1mlU6vob83OlLbCrPTzZW1t/f7B7PcXr4+8/l8JP4AACtc9oD0n7e7H9s2KX34QvfuJwCA0UHir4VCwQzGqVSpeb1eWZa1YvdnqVTS0tKS0um0JicnFQq1rmfodoVev8+P4bUeX5wduVn6heOlr9056Eh645DpwST9lrvxSen//bf0oQt6G0veMjMEGs043BKXXnuAdPN1vYthGJRt6S+vNS0wDxx0MOtMPCiNh00byYmSpAaVe6u1Ky0d3d1TrkmhJP3bLdKVN3U/rhdvk95wgElSP70g3f6sdMcz5t+U+56odeVtZ5iZqm5tUEfZoJN+yz2/KP3hd6RLjpL27/LP2XGkT/3IzLpsx7+90bSgxcZWW6HXaQVlbYVguzP1usmyLBWLeyu22XAJAFjurudM9wc3ibD0qVdI8XUw8xwANjoSfy3E43FFo1HXCrra4e+O42h+fl5TU1NtJf86UXv/3a7o6/X50X3xoHTQ5N7LgXv+jUn6/OcGHV33/b9Tpesek54dojcsuyUwJJUFsxnpD74t/erJ0q+dbNrdddsdz0rPNWihtu+49Nevlh7v7jiroVMqS396lXTVw9Jhgw5mhI2FpI+/zCxOE2EpETHz6pZX6jz9tPQvD3X3fv/2J9KVc6Ya7gXNx9/13J17Fu1PL0ibezix2eMxf2MOnJRec4ypvn58ziQA7/2+pLXtNRpaW8elN54g/dutg46kP6ai5nveJ6ju9BVeZnNMerrJ78l375NOykoTXbzP+Zx0XYuk30RE1c0BJP0gmTWQx+OpdlPptNXn8tsPaibewsLCihg6mfsOAFjfnluUPvADMzqllt8rfeLl3ZtnDQAYLBJ/LTRrizI+Pq5QKKT5+ZVDqpLJZEfD09ux1gq+Xp5/fHy8o92sg5p10c4snU4kEq1fDSUSibbu13ak+xvMKPP7pJBPCvnN5a9fbRJ8U1H3mWyZjK/r32s77YGmpqa6er/R6MrsUDggvetc0yKyouwJKuU397lfojttKtt5c2TTpk0Nj5Vt6ZmUmaHUiNdjklyJSOvzLY+rGz9fxzEVS7MZ8/OrZTvSv95iEnQfukDaunVrW7/rrRRK0hPz0rwz5Xr8wAnT7nRTXNodj7f8Xh3HtAzdnWl6M8WC0v6J9p53+vEcUShJH7rMVFhKUt6XqP4OV2wd7+18KZ9v/TxHnL29+W2CwWDb95mzzO/UUpPHriRZnoiue9zMwzj5AOlXT5KO33fl83E7j+lO1J4vXZD+4Ubp28uS5JYnUve7JEmTUVNJu5pEfqM3rb0eafuMuZTu26pMJqF8ScoUzcUqm+fsTTHzd6sTU1PuzxHLxdt4juhUo+eIXzpRuvQB87tR+/PdFJc2r6F7XjdfRzSSKUrPLJi2zg3vIyy9/zzp9G17vibj09d2dffn+5pT4jqlJP3LzY0rKJPOlDz+/ZUIS/uMr66DQaFkqggzRanobfxE6pH0umOlVx8S1FWXd/d77bZoNNrRhkLLsjpuw4+VQqHQilEPlmW1vdZZXmnX7Y2g7UilUiqVSpLM89rk5GTfYwAADKdMUXrf9xt37vjjc8y6BgCwPnic2uFw6FgymaybAzgxMbEigVBbHZhIJOoSG82USiXt3r27+nk4HF6xkOv1+ZcrFouam5urfj49PT2wHa3rxYO7pN/8n/rrf/sMU22Avf78R9L3XXbwJ8LSV36pPzPqGnlot/QnP5B2LDW+zYGT0ideJm1r/d52T932jPTxH0rzTeZ21b4ZvFqPzErv/I60kHM/fsi09JevWl2y67an93wfDc4tmfN+8PzezpBqR6Yovff70s+ecz/u80p/cr50HmWAA/XYnJl3cdXD9XNFGzl2q/QrJ0kvOtB9Q0Y3Xf+49FfXtk56Hzghvftc6TgW72t25UPSx35Yf33QJ/3nm6QtQ9hFr2xL/3G79OWbm/8eH7dV+tCFa0tgduKppPTnV0t3t5hvOhmR/vAl0jmHtnfeQsk8bv/zNvcd7MsdNiO965zBV+z2Cq/T1y6Xy62omhsbG2t7Rt7zz+/95d6yZUvTLiq2batQKMjr9XYlSZjNZpVKmRJWn8+nmZmZVXdx4fcIANaXsi2971Lppifdj7/xBPP+EwBgeHX6Gp1+jl3gtmN7+W5Pqb51ZqcVdrX52dpdp70+P3rrkVn36w+b6W8co+B3znBPEKXy0ucHOBfu+/dJv/ON5km/c7dL//jzg0/6SdJJ+0tf/kWTqGgklZfe833pC9ebCp7VeGCX9Pvfapz0O3yT9LnXrL7C7aQDpH95g3Ryk4KN+axJPH7pp82rXnppISf9wbcaJ/2CPumTLyfpNwwOmZY+eIFJ6FxyVHtVR3c/L737e9JvfF265pH2E4admM9KH75cev+lzZN+Pq9p1/ulXyTp1y3nHWaSu7WKZenvb+h/PK3MZqQ/2vOc1+h30SPT0vmvX9O/pJ9kNr/8zWul3z9LijSpBk3mpA9dbjbTzLVIct/+jJlR+6+3NE/6RfzS218s/cPr12/SD91R2/0hm22yS2qZXG7vi51wONw06VYqlbRr1y4tLCxofn5+xQJ+NdLpdDXp5/F4NDU1xegGAEDV393QOOl35sHSb53e33gAAL1HxV+X7NixY0XyrLZibvkOTMm07emkfV6hUFjRUrS2orDX51+OHaDd9/nrpP+9q/76b/+6adOGla59VPrgZe7H/vwVa69Q60ShJH3uOul79zW+jc9rds+9/rjeVwN1ynak/75T+sebzC7ARo7YJH34Qmn/ifbPXUmGZIrux4/eIn36EjOrba1sx1R6fKlFdcvx+5oWppv6+Eb37rRJPD7ZYGZWNGAGqL9wv/7FhPbtSktfu8PMICuU2vsar8e0aA76zaXy8fK2zcE9HweXfRyq+bjydcms9OVbWrchPXKz9J5zTQtOdNeDu6S3/o/k9vTy+ddKLxySJOvNT0l/eqVJnDUyLFXQzy+aGZW3PtP8dmMh6ffOlC46YuXf0IWcmbl5+YOt7+vMg02ycRirM7uN1+ndkU6ntbS0dzdXOzPcd+/eXW2zuWnTJvn9jbPbbh1jOu3YIpnNnqlUqnouv9+vycnJpvfdDn6PAGD9+M690meucT926LT0hddJUZ7iAWDodfoanRl/XeLz+aoLPam+Aq+2gq7Tirza29cu5np9fvTWoy6bfKeiJP0aOXu79JJDpB8/Vn/sM9dK/76vme3Wa08vSB+7Qnpwd+PbTEWlj100vJU3Xo9p63H8VukjVzSuWHxwt6lmetc50vmHtz7vHc9K7/2elGuQKDl+X5Ok7dYCw+uRfuVkc96P/tAk29z87DlTGdKNFqbteDZl5lI2+rkmwtJfXGISNhhOm+PSO84yrTz/52fSN+9pnMyusB3zu9/o97/bwn7pN14k/dxxq5vlh9aO2Cxd/AL3VtN/c530j68f7M++VDYbH/7z9ua3O+UA6QPn93aOaLu2jkuffZX5mf7dT6R0g8fVUkH65FWm/e67zjEbNy69X/riDdJii2T4prj0B2dJZx3S9fCxzsXjcWWzWZXLpuVBKpVq2jozm81W14KJRKLlWmr5urHZdc3kcjmlUqnq5tNON34CANa/25+R/urH7semItKfdXFNDgAYLrw91CW1i0Cfz9f0c8uyOjp/ZdFZUZvo6/X50TuOIz3q0upz+3T/Yxklf/ASKe6y8Xp3WvqHG3t734WS9C83S2/+avOk3/H7Sl/6heFN+i131D6mNeC52xvfJmuZOVef+pGUa/IUc/NT0h9/t3HS4+QDpL94ZW8WGMftK/3LL0pnbGt8m0oL09/7pvRvt0r37uhNC9DH5qTf/b/GSb+ZmGl5R9JvNExGpbeeLn39V02SLREedETGyQdI//pG6RdeSNKv137zNPdNJQ/PuicE+2XnkvSObzVP+vk80ltPMxsNhiHpV+HxSK88Svq3NzZ/3paknz4l/dpXpbf9r/Tpq5sn/bwe6ReOl77yRpJ+WL2ZmRl59pSZlstlzc7Ouq6xlrfZjMVibVXtuXVWadRtpVY2m622CXUcR8FgUJs2bSLpBwBY4ekF0ynJrbNP0Cd98uKN0Q0BADYqWn3ukcvl2l5suVne2kUyC8Xa5FltO9CtW10GxjSQSqWq8yWCwaCmp+uzQr0+fwWtX7prV1r6+X+rv57hyq197z7z5p+bL7y2Nwm3W5+W/vJa6ZlU89u94YXmTVa/r/ntho3jmJaGn7/OzK9q5KBJ6SMX1Seor3tM+sjljecsnbFN+uhFpo1hLzmOqc764o3tJfXiQemE/UwS5eQDpP0Ta2vLet9Ok/xs1Jpxv3Hps6+W9h1f/X1gsHKW9N17pa/daWaq9dtYSHr7mdLLjhi+FsLr2dfuMDNSaiXC0n/9cndaF3fiusfMZoxmbWC3xKUPXeg+p3CYOI6p6vvcdWaDxmoduVn6o3NMi+qNiNfp3VXbSlMyGy4DgYBs25ZlWdX1V7NRCW4WFxeVzWbl9Xo1NjbW9GtzuZzy+fyKOKLRqGKxWE86tfB7BACjbSkvve0bJvnn5sMXMl8eAEYNrT5XoVQqaWFhQVL7Oy1rLa+Y8/v9rhVzoVBoxWLNsqy2K+uKxb39jxrNl+j1+dEbbtV+EhV/7XjFC6QrH5Juf7b+2KevNhVs3UowzWXMLKErH25+u0hAet9LpXMO7c799pvHI73qaOmYfUwC74kGc+meTEq/9T9m7tKrjjZfd/UjpiKw0azAs7eb+XqBPiRDPR5TAXXMVumjV5hZUs2ki9J1j5uLZNo7nnyAdPL+0kn7d9Z29/ZnpPdd2rgq8uAp095uJtb+OTF8IgHzO/aaY6XLHjDVVq1+z7rlpYea9qPDVLm1UfzccWZzRO2bKKm89K+3mOfEfiiWpb+/QfqGy3zg5c48WHrvS6XxIalQbcbjMa2kT9rfJP9+9EhnXx8NmKrM1xxD9Su6x+v1anJyUpZlKZvNqlAoyLZt5fP5agIwEol0PJtPksbHxzU+3t4OIMuyVCgUFA6HFQ6H17RhFQCwvpXK0ocub5z0e/PJJP0AYCOg4m+P3btNv75NmzrfHmxZlmZn92Zv3Kr9JLNTs5JglKSxsTHF4/G27uP555+vfrxlyxbX+RK9Pn8FO0C76z9uk/7xpvrrv/wGkn/teDYlvflrpv1mrV85ybwJuBZl27zJ+483Np4/VLFtUvrEy6UDJ9d2n8Mib0mfv95UVjZzznbpxP2lv/6xmW3m5oLDpfedJ/kH8GbsUkH6i6ulax5d/TkOnZZOOsDMxzpuqxRusKfi+sdNwrRRteQLNptWe6PwJjw6U7Klm56U7tthkr6FsnleKu75t/JxseR+fTuVqZvjps3xmQf3/vtBYzc+YdoF1/J5pS//orRtqrf3/8yCmcn6UJNW0wGv9Dsvll537OhWhF73mPTZa6X5bOvbnr1deseZZqbfRsfrdHQDv0cAMJocx3Qo+va97sfPPdRU+3lH9PUhAGxknb5GJ/G3x+LiojKZTMctWqSVbT5jsVjTnZvLE2w+n0+bN7ce7rQ8oRcOhzU52Tir0OvzSywEu+2jV5jWVsv5vdLlb+1PZdR68NU7TOVDLZ9X+ufXS9tnVnfeh3ZLn71Gun9X89t5PebN1d940focjH3VwyZxlu1sdGjVK4+S/ujswVZgOI5Z/Hzh+uYtTNsR8JpKwpP3N8nAIzaZ7+2KB6U/u0oqN/ireuJ+Zo7CevwdwdqVbJMULJbrk4SFspnDccSm0WsfvF69+3sm0Vvr1APNDNNeJduufEj6zDXNn4/3S5hWzOuh1eVSXvrCT6QfPOB+fEtc+sOzW88H3Eh4nY5u4PcIAEbTN+4ynRPcHLnZzJjv9dgNAEBv0OpzlSKRiDKZjBYWFhQIBNqelZDNZqtJv2g02rJdy9jYmJaWliSZ9qCFQqFla810Or3i6wd5fnTfIy6tPrdNkvTrxOuPl370sPRgTfVD2Zb+/Grp736us0qzbFH60s3mRXOjCraKIzdL7zpHOnwdvMHayHmHme/zo1dID7RIgtZ63bGmJeGgdxR6PKb925kHS5c/aGY13v386pKAli3d8ay5/NNPpXjIVPLd+rTU6NflxdvMG/EsstCI3yv5gxLdO0fD218s3fJ0fWvjm5+Sbnyyu4kox5F2LElfua11Bfb5h5n5drF18v78WNhUi593mNmAsnPPS1bfnnbObz7FtN0FAADY6C57QPqb692PbYqZTaisRwFg46Dib5lKtZzH41EikWhZ+ZdOp6tJtlaVfsvt2rWrOhPQ5/NpZmamYWvNbDarVColSUokEm3Nj+j1+dkB2j2FknTRP9Ynly46QvrA+YOJaVQ9Miv95v+4z5f7nTOkN5zQ+hyOI137mPQ310m7M81vGwtKbz3NzLfbKLOErLL0DzdKX/9Ze7d/4wnS204f3jZzhZJJ/t3ytHTbM9LDuxsn7tbigsPN3EcqtYD15QvXuz8f7peQ/v2Nq9/Ak7PMRpZ7d5jWsffukOZzzb8m5Jd+/ywz+3ZYn3PXqlAyM1TnsqaycjNtPV3xOh3dwO8RAIwOxzHzxt1GyEhS2C994XXre7MyAGwEVPytgcfjkeM4chxHCwsLSqfTGh8fVyAQWJE4KxQKWlxcVKlUks/nUyKRaFlVt9zMzIx27dolx3FULpc1OzurycnJurmAtYnFdofG9/r86J4n5t0rypjt17lDZ6RfOsFURNT60s3SWYeYN2MbeW7RzKhza91W6/zDpN99sTQdW328oyjgk95+pnTS/tInr5JS+ca3ffPJ0q+fOtxvQIf80skHmIskLeTMm8q3PWOSgTuW1n4frznGzGQbdMUjgO578ynSFQ+Z547lnk1J//sz6Y0ntj6H45jb37dTumeH+ffR2cYtg91smzQVxYes89cOIb90+rZBRwEAADA8yrap8vu/uxvf5k8uIOkHABsRib9lQqGQ8vm972SXSiXNz8+73tbj8WhsbEzxeOfbjb1erzZv3qxUKqV8Pl9Nzvl8PgUCAdm2LcuyVCnG7HTuYK/Pj+55dM79+tXOpNvofvVk6dpHpacWVl5fKJkWYX/16vpElFWW/vtO6d9uNbdrZr+E9M6zpVMO6GbUo+f0bdK//KL08R9Kdz5Xf/ytp0m/fFLfw1qziYj00sPMRTJvxt+6pxrwtmekpUJn5/uVk8zcx2FOfgJYvXjIPN99+ur6Y/92q3ThEfUbRLJF0zL53h3SvTvNv802UbTyiheYSr8w7S4BAAA2lEJJ+tMrpWsebXybt54mveSQ/sUEABgeJP6WmZyclG3bKhQKyufzKpVKKpfLchxHHo9HPp9PwWBQ4XC4owo/N16vV5OTk7IsS9lsVoVCQbZtK5/PVxN0kUhk1VV4vT4/usNtvp8kHbrOd+33Ssgvvftc6e3frD92+7PS9++XXnnU3uvufE767DXSk8nm5w14pTedJL3pRHriV2yKm0TqV24zbUUKJSnil37nxdKrjxl0dN2xX8JcXn2M2Un58KxJBFbmA1oubWUr3na69EttVPsAGG0vP1L61j3SQzUzZrOWabf0phP3Jvju2yE91qDSv1ORgJkve8Hhaz8XAAAARstSQXr/pdLPXDbiVvzKnvcwAAAbEzP+0DFmPnTP739LuuPZlddNRaRv/b+BhLNu/OW15o3YWvGg9O+/JPm90hdvkC59oPW5TtrfVPkdMNH1MNeNxbypstw/YarmNoK8Jd31vKkEvPVpkxSUpPGQ9LtnmmQAgI3hrufcN5z0ysn7S3/I3yU0wOt0dAO/RwAwvHalpT/+rvS4e4MyeWTGTbz22L6GBQDoMWb8ASPCcaTHXFp90uZz7X7rdOknT0i70yuvTxfNrrjnUtJii7aNkxEzx++Cw2nV2Mp4WDpmn0FH0V/hgHTqgeYimVZ9qZxp6xfjfTFgQzluX+m8w6SrHu7+uf1e6bAZ6ah9zPPs0Vukfca7fz8AAAAYfk/MS3/03fr3OiqCPumDF0hnb+9vXACA4UPiDxiQ2Yz7XJ/ttPlcs1hQetfZ0nu+X3/sgV3Nv9Yj6VVHm174Y+GehId1KBE2FwAb09tOl65/vPWs2FY2xaSj95GO2mL+PXwTLaYBAABguky879LGs+fjIenPLpaO37e/cQEAhhNvJQAD8qhLtZ8kHUrFX1ecvk06/zDpyg4qMA6dlv7oHPNmKwAA7doyZmao/MvN7X9NwCsdvtlU8R29j7lsjvcuRgAAAIymHz8mfewKqVh2P74pLn3mldLBbCQHAOxB4g8YkEdm3a+n4q973nGWdMvT7pWVy0X80lteJL3uONNWDQCATr3xBLPZ5Kmk+/Et8T3VfPtIx2yRDt1k2jEBAAAAjXzrHumvfyzZjvvxg6ekv7iEDWQAgJVI/AED4jbfz++VDpzsfyzr1URE+r0zpU9c2fg2LznE3GbLWP/iAgCsPyG/9NlLpL+/QXpotzQVXdm2cyY26AgBAAAwKhxH+uefSl+5rfFtjt9X+uTF0liof3EBAEYDiT9gQNwq/g6alALs/u+qCw6XrnpYuvHJldfvMyb9wUukM7YNJCwAwDq0ZUz6yEWDjgIAAACjrFSWPnOtdOn9jW9z9nbpT85nHjQAwB1/HoABKJSkpxfqr2e+X/d5POZN2E/9SPrJ42Yn3MUvkH75JCkSGHR0AAAAAAAARs6SPny5dNOTjW/zumNN5yIfo0oAAA2Q+AMG4ImkVHbpz34I8/16IhKQPnqR2TXn9Upez6AjAgAAAAAA2GshJ73ne9L9uxrf5q2nSW860WxyBgCgERJ/wAA85tLmU6Lir9f8tFEFAAAAAABD5rmU9K7vSs+k3I/7vNJ7zpVedmR/4wIAjCYSf8AAPDLnfv12Kv4AAAAAAAA2jAd3S+/5rjSfcz8e8Usfe5n0ooP6GxcAYHSR+AMG4FGXir+piDQV7X8sAAAAAAAA6L9bnpb+5Admtp+biYj06VdKR27ub1wAgNFG4g/oM8eRHnWp+DuENp8AAAAAAAAbwhUPSn/2I6lsux/fb1z6i0uk/Sf6GhYAYB0g8Qf02VxWSuXrrz+UNp8AAAAAAADrmuNIX7tT+vsbGt/myM3Sn79CmqQzFABgFUj8AX32iEubT0naTsUfAAAAAADAuuU40t/+RPr6zxrf5tQDpY9dJEWD/YsLALC+kPgD+sytzadExR8AAAAAAMB61U7S76IjpPecK/l9/YsLALD+kPgD+uxRl4o/v1c6cLL/sQAAAAAAAKC3HEf64o3Nk36/fKL0m6dJHk//4gIArE8k/oA+c6v4O2hSCrCbCwAAAAAAYF1xHOmffyp99Q734x5J7zhL+rnj+hoWAGAdI/EH9FGhJD2VrL9+O20+AQAAAAAA1p0v3yJ95Tb3Yz6v9KELpHMP7W9MAID1jcQf0EdPJqWyU3/99pn+xwIAAAAAAIDe+bdbpH+9xf2YzyN9+ELpnO39jQkAsP55Bx0AsJG4zfeTqPgDAAAAAABYT/7jNulLN7sf83qkD15A0g8A0Bsk/oA+cpvvJ0mHUvEHAAAAAACwLnz1Dukfb3I/5vVIHzhfeulh/Y0JALBxkPgD+ugRl4q/yYg0Fe1/LAAAAAAAAOiur/9M+vsb3I95JL33pdIFh/c1JADABkPiD+gTx3Gv+GO+HwAAAAAAwOj7xl3SF65vfPw9L5VedmT/4gEAbEwk/oA+mctKqXz99cz3AwAAAAAAGG3fvkf63HWNj//xOdLFL+hbOACADYzEH9Anj7q0+ZRI/AEAAAAAAIyy790nffbaxsffebZ0ydH9iwcAsLGR+AP65BGXNp+SdCitPgEAAAAAAEbSD+6X/uLqxsd//yzpNcf0Lx4AAEj8AX3iVvHn80oHTvY/FgAAAAAAAKzNFQ9Kn/qR5DQ4/vYXSz93XF9DAgCAxB/QL4+6VPwdNCkFff2PBQAAAAAAAKt35UPSJ69qnPT77dOlX3hhPyMCAMAg8Qf0QbEsPZWsv575fgAAAAAAAKPl6kekT1wp2Q2yfr/5IumNJ/Y3JgAAKkj8AX3wxLxUdnkxeCiJPwAAAAAAgJFx7aPSx65onPT7f6dKv3Jyf2MCAGA5En9AH7i1+ZSk7TP9jQMAAAAAAACrc91j0keucN/cLUm/erL05lP6GxMAALVI/AF98Ois+/W0+gQAAAAAABh+Nz4hffhyqWy7H3/TidJbTu1rSAAAuCLxB/SBW8XfRESaivY/FgAAAAAAALTv5qekP/mBVGqQ9HvDC6W3niZ5PH0NCwAAVyT+gB5zHOkRl4q/Q6d5QQgAAAAAADDMbn1aev+lktUg6ffzx0m/fQbv8QAAhgeJP6DH5rJSKl9//SG0+QQAAAAAABhatz8jvff7UrHsfvy1x0q/dyZJPwDAcCHxB/RYo/l+h870Nw4AAAAAAAC0567nmif9XnW09AdnkfQDAAwfEn9Aj7nN95Ok7VT8AQAAAAAADJ3ZjPQnl0n5kvvxV7xAeufZJP0AAMOJxB/QY26JP59XOmiq/7EAAAAAAACgsbItfeKH0kLO/fjLj5T++FzJS9IPADCkSPwBPfaIS6vPAyekoK/voQAAAAAAAKCJ/7hduv1Z92MXHi69m6QfAGDIkfgDeqhYlp5aqL+e+X4AAAAAAADD5c7npC/f7H7sjG3Se88zXZwAABhm/KkCeujJedMiohbz/QAAAAAAAIbHQk76+BWS7dQf2xKX3n+e5OedVADACODPFdBDbvP9JCr+AAAAAAAAhoXjSJ/6kbQ7U3/M55E+dKE0Hu5/XAAArAaJP6CH3Ob7SdIhVPwBAAAAAAAMhf/5mXTDE+7H3vIi6ditfQ0HAIA1IfEH9NBjLhV/ExFpOtr/WAAAAAAAALDS/TulL97ofuyUA6RfOrG/8QAAsFYk/oAecRzpEZfE3/ZpyePpfzwAAAAAAADYK12QPnKFVLLrj01FpQ+cL3l5DwcAMGJI/AE9Mp81g6FrbafNJwAAAAAAwEA5jvQX10jPL9Yf80j64Pkm+QcAwKgh8Qf0yKMu1X6StH2mv3EAAAAAAABgpe/cK139iPuxXzlZOumA/sYDAEC3kPgDeuTRWffrD6XiDwAAAAAAYGAenZP+5nr3Y8dtld58Sn/jAQCgm0j8AT3iNt/P55UOmup/LAAAAAAAAJBylvThy6Viuf5YIix96ELJzzumAIARxp8xoEfcWn0eOCEFfX0PBQAAAAAAAJI+92PpqaT7sfedJ22O9zceAAC6jcQf0APFsvSky4vI7bT5BAAAAAAAGIgrHpQufcD92C8cL52xra/hAADQE/5BBwCsR08lpbJdf/2hM/2PBQAAAABWa35+Xh6Pp+76WCymeJyyGACj4+kF6bPXuB87crP0W6f3MxoAAOql02llMpm66x3H6eg8JP6wZiwE6z0y6349FX8AAABYq24tBoF2OI7j+rvF7xuAUVIoSR+5XMqV6o/FgtJHLpQCjGYBAAyY4ziybZeKog6R+MOasRCs5zbfT5K2U/EHAACANerWYhBoh8fjcd3o6XYdAAyrv7tBerjBJu0/PkfaN9HXcAAAcOXxeOT11k/oa5SDaYTEH9aMhWC9R11eTCbC0nS0/7EAAABgfenWYhBox9TUlILB4KDDAIBVu/ZR6Zt3ux+75CjppYf1Nx4AABqJx+OuXRSLxaLm5hpUG7kg8Yc1YyFYz63i79AZaQPnQgEAANAl3VoMAgCw3j2/KP351e7HDp6S3nFWf+MBAKAf6reJAliTuYyUzNVfz3w/AAAAwJ1t2yqVSrQwBQB0TaksfewKKV2oPxb2Sx+9SApREgEAWIf48wZ0GfP9AAAAgHqFQkGFQkHlclnlclmlUqlpa1KPxyO/3y+fzyefz6dQKKRQKNTHiAEAo+yffirdu9P92B+8RNo21d94AADoFxJ/QJe5zfeTqPgDAADAxlIqlZTNZlUsFmVZVsdf7ziOLMuqfm0mk5EkBQIBBYNBRaNR+f0saQEA9X76pPTVO9yPXXi49PIj+xsPAAD9xCoJ6DK3ij+fh51kAAAA2Biy2ayy2WzLZJ/P55Mkeb1eefYMw3YcR7Zty7bthtWAlWRgJpNRIBBQNBpVOByW18skCwCANJuR/vQq92P7J6R3ni3t+bMDAMC6ROIP6LJHXBJ/B05KQV//YwEAAAD6ZXFxsVqVt5zH46m26QwEAvL5fB0l6WzbrrYGrST9isWiJJMETKVSSqVSisViisfjJAABYAMr29LHfygt5OqPBbxmrl802P+4AADoJxJ/QBdZZenJZP31tPkEAADAepXL5ZRKpaoVeh6PR5FIRMFgUKFQaM2JOK/XK6/Xq0AgoEgkUr2+UCgon88rl8vJcRxlMhlls1mNj48rGo2u6T4BAKPpK7dJdzzrfux3z5QO29TfeAAAGAQSf0AXPZk0u8tqbZ/pfywAAABAL9m2rWQyWa2+q8zdW56c66VKFWEikVChUFA6nVaxWFQqlVI+n9fExATVfwCwgdz5rPSvt7gfO+sQ6bXH9DceAAAGhcQf0EVu8/0kKv4AAACwvliWpbm5OTmOo2AwqPHxcQUCgYHFU0kCWpalxcVFFQoF7dq1S9PT0wONCwDQHws56WM/lGyX8bD7jEnvPZe5fgCAjYPtj0AXPTLrfv2hVPwBAABgnSgUCpqdNS98p6amhiq5FggEND09rYmJCUnS7Oys8vn8YIMCAPSU7UifvEqarR8zK59H+tCF0li4/3EBADAoVPwBXeRW8ZcIS9OMGAEAAMA6UCgUND8/r3A4rEQiMbStNCORiEKhkFKplJLJpCYnJxUO864vAKxH/3W7dNOT7sd+8zTpmH36Gw8AAIM2nKs0YEQ96lLxt32adhIAAAAYfZZlaX5+XrFYTJOTk0Ob9Kvwer2anJxULBZTMpmUZVmDDgkA0GU3PiH9003ux049UHrDCX0NBwCAoTDcKzVghMxnpWSu/vrttPkEAADAOpBKpTQ2Nqbx8fFBh9KR8fFxJRIJJZPJQYcCAOiipxekj/9Qchnrp+mo9IHzJC8bsQEAGxCtPoEuaTjfb7q/cQAAAAC9MDU1NfRVfo1Eo1FafQLAOpIpSu+7VEoX6495PdIHL5AmGbsCANigRnPVBgwht/l+knQIFX8AAABYB0Y16Vcx6vEDAAzbMZV+TzUo5P6dM6QT9+9vTAAADBNWPkCXuM3383mkbZP9jwUAAAAAAGA9+pebpRuecD920RHS64/vazgAAAwdEn9Al7hV/B0wIYVoqAsAAAAAALBm1zwq/fut7seO3Cy96xzJw1w/AMAGR+IP6AKrLD3p0mLiUNp8AgAAAAAArNmjc9KfXel+bCoifeLlbL4GAECS+HMIdMFTSalk119/yHT/YwEAAAD6qVQqqVgsSpICgYACgcCAIwIArDepvPT+S6Vcqf6Y3yt9/OXS5nj/4wIAYBiR+AO64BGXNp8SFX8AAABY35LJpPL5fN31sVhM4+PjA4gIALDelGzpI5dLzy+6H/+Dl0jHbu1vTAAADDMSf0AXPDrrfv12Kv4AAAAwYizLUjabVaFQkCSFQiHFYjH5/SuXj7Ozs7Isy/UcmUxG2WxW09PTVAACANbk72+QbnvG/dirj5ZedXR/4wEAYNgx4w/ogkddKv4SYWkm1v9YAAAAgNXKZrOanZ1VNptVuVxWuVxWNpvV7t27lc1mq7dLp9OuST+Px1P92HEczc3NqVRy6csGAEAbLntA+p+fuR87bqv0jrP6Gw8AAKOAij+gC9wq/g6Zlpa97wEAAAAMNcuylEqlGh5PpVKybVvxeHxFEjAajdZVBJZKJWWzWWUyGc3Pz2vz5s09jR0AsP7ct1P6zDXuxzbFpY+9TAr4+hoSAAAjgcQfsEbzWWk+V3898/0AAAAwShYXVw5PSiQSCgaD8nq9sixL6XRaS0tLkqRyuSxJmpqaUigUqjuX3+/X+Pi4otGoZmdntbi4yMw/AEDb5jLSB38gFcv1x4I+6ZMvl6ai/Y8LAIBRQOIPWCO3Np8S8/0AAAAwOmzbVrFYrH6+adOmFRV8oVBIoVBI2Wy2WhUYDoddk37L+f1+TU5Oan5+XvF4XF4v0yYAAM0Vy9IHL5N2Z9yPv/tc6QgKyQEAaIhVF7BGbm0+JWk7FX8AAAAYEZUKPslU+i1P+i0XjUYVDoclqWXSryIUCikQCCifz689UADAuuY40ud+LN2zw/34L75QuvCIvoYEAMDIIfEHrJFbxZ/PI22b7H8sAAAAwGqUSqXqx8FgsOlt4/G4JMnna3+wUiAQUC7n0h8fAIBlvn2v9N373I+dfID0W6f3Nx4AAEYRiT9gjdwq/g6YkEI00gUAAMCIWN6Cs1G1X0UgEJAkOY7T9vk9Ho8sy1pdcACADeHO56TPXed+bN9x6SMXSn7eyQQAoCX+XAJrYJWlJ5L119PmEwAAAKNkeeKv3QRdJxV85XK5o0QhAGBj2bkkfegyqWzXH4v4pU9eLI2H+x8XAACjiMQfsAZPLUgllxel26f7HgoAAACwaoFAQB6PR1J7Cb2xsbGOzm9ZVvX8AAAsl7ekD/xAWmjw5+cDF0iH8D4LAABtI/EHrIFbm0+JxB8AAABGT2V2XyaTWTHzr9FtJyfbG2qdzWZVLpdbthAFAGw8jiN9+mrpod3ux998ivSSQ/obEwAAo47EH7AGj865X38orT4BAAAwYuLxeDU5Nz8/r0KhsOZzlkolLS4uSpKCweCazwcAWF++dqd05cPux8462CT+AABAZ9hyCazBIy4Vf+MhaSbW/1gAAACAtZqenlY6nVaxWNT8/Lw8Ho8mJycVCoU6Plc2m1Uqlap+vppzAADWr5ufkv7hRvdj2yalD5wveekSDQBAx0j8AWvgVvG3fUZifAkAAABGkdfr1fj4ePXzQqEgn8/X0TkKhYKSyaQcx1E4HFYgEJDP5yPxBwCoemZB+sgVku3UH4uHpE9eLEUpFAcAYFVI/AGrlMxK89n665nvBwAAgPViNck6n8+36ipBAMD6ly1K779USrt0lPZ6pI9cKO0/0fewAABYN0j8AavEfD8AAACgnt/vr84KBABgOduR/vRK6Ymk+/HfOk069cD+xgQAwHrjHXQAwKhym+8nUfEHAAAA9Foul9OuXbsGHQYAoEP/eot03ePux84/THrDCf2NBwCA9YjEH7BKbhV/Xo+0bar/sQAAAAAbSblcVrlcHnQYAIAOfOVWk/hzc9iM9O5zJY+nvzEBALAe0X8FWKVHXSr+DpiQQjyqAAAAgJ4ql8vy8O4wAIwEx5H+8SbpP293Pz4RkT55sRQO9DcuAADWK1IUwCqUyu796JnvBwAAAPSWbdsqFAqDDgMA0AbbkT5/nfR/d7sf93mlj71M2jLW37gAAFjPSPwBq/DkglSy669nvh8AAADQWi6XU7FYVKlUUrlclm27vLhuwHGcHkYGAOiWsi19+mrpBw80vs0fvkR64b79iwkAgI2AxB+wCm5tPiUSfwAAAEAzhUJBqVSK+XwAsM5ZZekTV0pXP+J+3CPpXedIlxzdz6gAANgYSPwBq/DonPv122n1CQAAALgqFAqan58fdBgAgB4rlKQPXy7d8IT7cZ9H+sD50vmH9zUsAAA2DBJ/wCq4Jf7GQtKmWP9jAQAAAIadbdtKJl2GZAMA1pVsUXr/pdLtz7ofD3ilj1wknXVIf+MCAGAjIfEHrMIjLq0+D52RPJ7+xwIAAAAMu3Q6XTebLxAIKBqNKhAIyOfzyev1Dig6AEA3LBWkd39PuneH+/GQX/rkxdIpB/Q3LgAANhoSf0CHkllpPlt//SHM9wMAAABc5fP5FZ9PTEwoEokMKBoAQLct5KQ/+o70sMtGaUmKBaU/f4V03L79jQsAgI2IxB/QoccbjCU5lMQfAAAA4KpcLlc/HhsbI+kHAOvI7rT0zu9ITzbo6Dwekj77KumIzf2NCwCAjYrEH9ChZM79+gMn+xsHAAAAMIqi0eigQwAAdMlzi9I7v23+dTMVlf7yVXRJAgCgnxiiAHRoMe9+fSLc3zgAAACAUREIBCRJHo+HWX4AsE48mZR+7/8aJ/02x6W/eS1JPwAA+o0VF9ChRom/cRJ/AAAAgKtK4s9xHNm2PeBoAABr9cis9HvflHZn3I/vl5D+9nXSARN9DQsAAIjEH9CxxYL79fFQf+MAAAAARsXY2Fj142KxuObzFQoFJZMNhkkBAHrqvh3SO74lLTQYhXLwlKn02zLmfhwAAPQWiT+gQ24Vf7Gg5OfRBAAAALjyer1KJBKSpMXFBj3hOmBZlvL5Bq04AAA9c8ez0h9+R0o32BR95Gbp86+VZmL9jQsAAOzlH3QAw86yLFmWpVKpJMdxqjMpAoGAQiFKvDaiJZcXt2P8KgAAAABNRaNR2batpaUlpdNpxePxVZ+LdqEA0H83PiF98DKpWHY/ftxW6c9faTZHAwCAwRlo4s+2bdm2La/XO3QD3tPptNLptBzHaXq7aDSqWCwmv3/1P8pCoaB8Pq9isahyuVxNMPp8PkUiEUWj0TX9fHp9/o3GreKP+X4AAABAa/F4XOVyWUtLS9XPV6NYLMrj8XQzNABAE9c8Kn3sCqnUYN/FyQdIf/pyKRLob1wAAKBezxN/hUJBhUJB5XJZ5XK5WjnXiMfjkd/vl8/nk8/nUygU6mtlXalU0vz8vMrlBtuXamSzWWWzWU1MTCgSiXR0X5ZlKZlMVu/L7/crEAjItm2VSiWVSiUtLS1paWlJiURC0Wh0qM6/UbnN+Bun4g8AAABoSyKRUC6Xq1b+BQLtv0vsOM6KbiwAgN677AHpUz+S7AZv5511sPThi6Sgr79xAQAAd11P/JVKJWWzWRWLRVmW1fHXO45Tba8pSZlMRpIUCAQUDAYVjUbXVF3XjGVZmpuba1nl52ZhYUGS2k7+ZbNZpVIpSaZqcGxsbEXVnW3bSqVS1bkVqVRKpVJJ4+PjQ3H+jWzJpeJvjIo/AAAAoKXK5sTKmstxHBWLxQFHBQBo5Fv3SH95bePj5x8mvf88yU/SDwCAodG1DFql8q1Vss/nM68EvF5vdYem4zjVtp+Nkm6VZGAmk1EgEFA0GlU4HO5qi8pCobDi/qPRqKLRqHw+n7xeb3XWXyWxWWthYUGhUKhlTIVCoZqUi8Virsk2r9eryclJJZPJanKu8r23Si72+vwbmeNQ8QcAAACsRqFQ0Pz8fNfOt5oNmwCA9n31dunvb2x8/JKjpHeeLfmYHgMAwFBZc+JvcXGxWpW3nMfjqbbpDAQC1eRZu2zbrrYGrST9Ksk2y7KUSqWUSqUUi8UUj8e7kgBc3t5zZmamruVMIBCoJsZyuZxSqVTdYjOdTresmksmk5LMz6jVbROJRDUxJ5nKvFaJuV6ffyPLWVLZpZ89M/4AAACAxmzb7mrSb6NY3ta0subtdF29/F/HcTpemwPYmP7rdumLTZJ+v3C89Lsvlui6DADA8Fl14q828eXxeBSJRBQMBtuqemvF6/XK6/XWVaAVCgXl83nlcjk5jqNMJqNsNqvx8fE1z6grlUqSTDKs1ZyJSkyVFp8V+Xy+abItnU5Xf2btDLL3er2KxWLV5KrjOMpmsw2/116ff6NLubT5lEj8AQAAAM2k0+m66zwej6LRqAKBQEfjHCobQfupsg4tFosql8vVZJzP51MkElE0Gu1JMm12drbrlY2rmU8PYGP5yePNk35vPln69VNJ+gEAMKw6TvzZtq1kMlmtvqvM3evXwqFSRZhIJFQoFJROp1UsFqvz6iYmJla94CqXy9XFZzsikYjy+fyKirlyuSzbthvGsHzBGw63ly2KRCIrqipzuVzTxF8vz7/RubX5lGj1CQAAADRTOyphbGysrY2KbgKBgCzLUjab7UZoTVVmEla6w/j9fgUCAdm2rVKppFKppKWlJS0tLSmRSIzEOqrVJlcAG9uTSenjP2x8/LfPkN54Qv/iAQAAneso8WdZlubm5uQ4joLBoMbHxwe6aKgkAS3L0uLiogqFgnbt2qXp6elVxVUul9tOllWEw+EVib/KedwSf5UqRcnsbm13V2vt9+I2X7Af54e01KDib4yKPwAAAKChSncVSdVxDWvh6UOZSTabrVYWRqNRjY2NrVjn2bZd3YAqmbEJpVKp5biFTni93hUjKdYqGo12VF0JYGNZKkjvv1TKWu7H33m29Jpj+hsTAADoXNulcYVCQbOzs5KkqampVSfXeiEQCGh6eloTExOSTDuU2mRcK5WZB50m/jr5GSxPqHX6s6tdnBUK9aVnvT4/pMVGrT6p+AMAAAAaWt6ucq1JP6mzOXerUSgUqkm/WCymRCJRd59er1eTk5Mr1pCZTEa5XK4nMVVai/r9/o4uy42NjfUkNgCjr2ybSr+nF9yP/96ZJP0AABgVbW31KxQKmp+fVzgcdl3wDItIJKJQKKRUKqVkMlm3CGvG6/Vqy5YtHX9vbrslfT6f622XLwA73WUZDAZX7JJ12/XZ6/PD7H5zw4w/AAAAoDGfz1cdrdCN9WQ8Hu9pW81kMinJJNtaVfAlEokVG09TqVTXRmFUKhuj0agSiUTHX18qlbR7925JqqtYBIDl/uVm6aYn3Y+9/Ejp54/rbzwAAGD1Wr7qtyxL8/PzisVimpycHPqFQmXXZSwWUzKZlGU16E/Q4Gs7VakUbHUe27ZX7HLttDVNbTJxeZKuH+eH0ajib4yKPwAAAKChSkcSx3Fc11Cr0au1aTqdrq6t2qlO9Hq9isVi1c8dx+n6/MHVVuotLS1JMuvDblRaAlifrnlE+spt7sdesNm0+OxDh2UAANAlLVdKqVRKY2NjXZ1T0A/j4+NKJBLVnZq9UptYbFRhWFtB12lFXm1irvZ+e31+GIsNKv6Y8QcAAAA0tjxx1Y21RqlU6tl4gnQ6Xf243Q4ytRV+3Wr36TjOqqskS6VStRJxNdWCADaGR2elT17lfmwqIn3i5VKI0aAAAIyUlquHqampkd0ZGI1GNTMz09P7qF20NvpZ1d6u04q8Vgu9Xp8fxpJLxV/ELwXdu7sCAAAAkNmYWKmKy2Qyaz5fPp/X/Pz8ms9TK5fLVav9PB5P2xsqa2esL5+/vladzm+vqFT7+f3+rrUeBbC+pPLS+38g5V2aPvm90sdfLm0azbcEAQDY0Fpme0Y9IdTr+JfvBg0Ggw0XZWttZ1P7fdSer9fnh+FW8Ue1HwAAANDa+Pi4otGoCoXCipl4q9Gr9cryhF2nCbfaJGE3KhJt2+64m4tkNoZWfsYTExNrjgPA+lOypY9eLj2/6H78D18iHbu1vzEBAIDuoFh/DZbvBpWkycnJhrdd68K0toJv+f324/zNdNqqx+fz1bUWHRVuM/4SJP4AAADQA+Vyua6lfzOj0K4/kUjItm0lk0lNTk623UqzlmVZHXc5acfyFp2dJtyCweCKWemd/N81EolEFAwGO/66hYUFSaZV6WorBgGsb1+8Qbr1Gfdjrz5auuTo/sYDAAC6h8TfGlRap0hmAdusurA2kdbtSsRen7+ZxcUG28MaiMfjqx5OP2huib+xUP/jAAAAwPqXzWZXdBgZZYuLi9U1S2WtkkwmFQgEOkpM2batcrnck8Sfbdsr1lWdnr92c+PyJOBqrWY2Xy6Xq973qK67APTWFQ9KX/+Z+7HjtkrvOKu/8QAAgO4aqcRfLpdTJpPp+dy+diwuLlZ3cEajUUWj0Y6+vtsVev0+/0bl1upznIo/AAAAoKlisehakWhZ1qorFTvpUtKO2gq9Tiv+ahN/g6rATKVSkqRYLLaqNqEA1rcHd0mfvtr92KaY9LGXSYHRbNIEAAD26LgsbHFxcWALmHw+35Vdk2tlWVZ1IH0wGFzVLsxO1Vbwdbuir9fnXw8cR1qi4g8AAADoWKcbJQehdp3b6WbIYVhDVSorPR6P4vH4oMMBMGSSWekDP5CKLp2Igz7pTy+Wpob/6RoAALTQ8fa/TCYjr9fb9zkBpVJJ+Xx+4JVotm1rbm5OktkBOj093bf7Hdbzj4+Pd/T7MKrz/fIlyXL5MVHxBwAAgF6IRqMKhdrfZWZZVsdt+PslHA5XK9GG1VrXXLWJv16v4WqVSqXqBtV4PD4UiUgAw6NUlj54mbSrQQfpd50jHbm5ryEBAIAe6Tjx5/F4+r6AkaT5+XlJ3W/n0qm5uTk5jiOfz9dR0q82YbnW76N2Edfr8zcTCARWNXB+1LjN95OkcSr+AAAA0AM+n29kN83VqmwetSxLPp9P0WhUXq+3442djuPIsixls9mux9jtcQn9XrtWEqs+n6+r1X6ddvxZT7+3wHry+eulu553P/b646WXHdnfeAAA2MjK5XLdqIFmOn1N3nHiz+v1qlgsdvplazI7O9vRD6FXksmkSqWSPB6PZmZmOkqOrXX3Z+2isbbCrtfnh7TkMt9Pksao+AMAAABaqiT+pqam1jx7zrZt5fMNduatUu2aaJQq5rLZbHWdPjY21tVzd1pFGo/Hux4DgLX53n3St+5xP3biftJvn9HfeAAA2Oiy2azS6QZl+F2wqpXMWgawd2pubm5gMwWXS6VS1VajnSb9pPpFY6eJzNpEXu0Oyl6fH00q/kj8AQAAAC1VuoR0I6HWj/VKtysAe8W27Wpyzu/3KxKJ9OV+AYyGe3ZIf3mt+7F9xqSPXCT5R2efAwAAaEPHf9ori59kMtn1YGrNzc31vbrQzeLiorLZbDXpt5rdqbUVdJ0uImtvXxtDr88PabFBxR+tPgEAAIDWKmuWbiT+hrEarzamfsWYSqWq1YoTExN9uU8Ao2E2I/3JD6SSy1tEYb/0yYulCfYKAACw7qw6u1Mul5VMJjU5OdnNeKqSyaRr0i8Wi/Xk/hrJZrPVAenT09OrTojV7kjttIqxtoKvNtHX6/ODij8AAABgLfx+vzZt2tSVc0WjUYVCw7UDb60VgqtRKBSqLU/D4XBP1nHj4+MdnZfuMcBwKJZN0m++wUjU975UOnSmvzEBAACj0/WMZVkdteDvOIu1fO5BPp9XKpVSIpHo9DRNJZNJ13kN0WhU4+PjXb2vZrLZbHVA+tTU1JoWUZXB9ZWfX6etOJffvtIip5/nB4k/AAAAYK261VnE6/V2vaKutjVn7cy/TvWj4q+yXpW6P9uvIhAIsEYERozjmPae9+10P/6mE6WXHtbfmAAAwF4+n6+nG+Y6XokkEglFo9Hq590eQliZpVcrGo12PcHYTC6XW5H068Zu0tpzdFKVt7z6sVEsvT7/RrfUoNXnGD8uAAAAoKVSqaRCobDmyrhSqdST6rraRF2n91GbKOx1F5XFxcXqBs5oNMq4BgBV37xHuvR+92MvOlD6jRf1Nx4AANBfHa8MKkm/cDis+fl5SdLS0pK8Xu+KhOBqVGbp1QqHw31N+hUKBS0sLEgyMxK6lQgLh8MrkpqFQqHtxWCpVKp+3Ojn3Ovzb3RuFX8hv7kAAAAAaG5hYaG6OdHj8VSr9mKxmCKR9odMZTIZ5XI5TU5OdnXTYm3ir9MuKrWJwl7u4C2VStWRFFLvqv0AjJ47n5X+5nr3Y/snpA9dKPmGb0wqAADoolX/qQ+FQpqZ2dsMvFGlXrsWFxdXLFwqwuFwz+YIurEsq5rQTCQSHS1AbdtWqVRSqVRyrbarPZdbktNNLperfhwOhxu2jOn1+Te6RZeKv3Gq/QAAAICWLMtasUZyHEder1c+n6/j9Uc0GpXjOEomk12NsXbTZKcVf7W372UF3vLvPRqNsoYDIEnauSR98DKp7PL0FQ1In7yYrkUAAGwEa1qJBAIBzczMaHZ2VpJZfMzMzHTc0iSdTrsm/YLBYF+TfqVSSXNzc9XPM5mMMpnMipYtyxdzzWY+eDwe7bPPPnXXj42NaWlpSZLZQVooFFruUl3eSrXVTs5en38jW3LJa48x3w8AAABoafmmRI/Ho82bN686WRUIBOTz+dpe77SrtkKvk9EJUn2FYK9afWaz2RUdW1jDAZCkvCW9/1Ip1WBP/gfOl7ZN9TcmAAAwGGveFhgIBDQ1tfeVw+zsbEcLpGw2W01ULRcMBjU9Pb3W8NpWKpU0Ozu7IplXqd4rl8vVi+M41ctqxOPxFQvKVCrVdCfp8kVdIpFouWu01+ffyKj4AwAAAFZn+RoxkUisuUKtklQrFBoM4l4Fr9crj8dT/bzTVp/Lbx8MBrsW13K2bVdn0UtU+wEwHEf69NXSw7Pux3/9FOmsQ/obEwAAGJyurBBCodCK5N/c3NyKHYiNZLPZFYuWikAg0Nekn23bdUm/XpqZmakuKMvlcsNkaTqdrv58YrFY27P3en3+jYqKPwAAAGB1KutDj8fT0TiFRiqbHTutymultnqwk/MXi8WG5+mW2vVzLBbryf0AGC1fu1O68mH3Y2cdLP3aKX0NBwAADFjXyrsqyb/5+Xk5jqP5+XnNzMw03H2Yy+UaJv2Wzw7sh0olX7uW7wJdbvk5mp3P6/Vq8+bN1bmIleScz+dTIBCQbduyLKt6jomJiY4Wx70+/0ZFxR8AAACwOpW1R7cSYpV1ZrcTf+FweMXs+kKh0HbLzuWbX1ttqrRtW4VCQV6vt+2fSaFQWBFbMBikYwsA3fiE9A83uh/bNmlafHrd38YCAADrVFdXCcuTf+VyuZr8q1UoFLSwsFB3vc/nW1E52C+BQEBbt27t6316vV5NTk7Ksixls1kVCgXZtq18Pl9N0EUikVVX4fX6/BtNoWQutcap+AMAAABaqszkq52jt1qVtprd7toSiURWrFWz2azi8XjLr8vlctWPw+Fw0/abtWMm2h1zkUwmV3zeTlwA1rf7dkgfvlyyXZ4K4yHpkxdL0d50HgYAAEOs69sDlyf/LMvS/Pz8imReoVDQ/Px83df5fL6mFYLrVSAQUCKRGNnzbxSLDYZjk/gDAAAAWgsEAiqXy11b73Vztl+tsbGx6hz6crmsQqHQsiovnU6v+PpmlpaWViQsi8Wistls002Zi4uLK77G5/P1rJ0ogNHwVFJ6z/elvMsmZa9H+vAF0v4TfQ8LAAAMgZ5k2ZbP/CsUCtWdiZVEYK2NmvTD6HBr8ynR6hMAAABoRzhsdsxVKvXWolQqVc/TrQrC5eLx+IrzplIp2bbd8PbZbLba5jORSLRsv7m8JWiz6yosy1Imk1lxHZ1bgI1tNiO967tSqsEm5d88TXrRQf2NCQAADI+OM22zs7Mr2pg0EgqFNDExIUnK5/Oam5vT7Oxs3e08Ho+mpqbaSvrlcjnXcwC9ttTgxfQYFX8AAABAS5FIRB6PpyuVestnxfci8SdJMzMz1dnulZnpbvME0+l0NZ5YLNZWQs5tvnqzmetuYzJI/AEbV7og/fF3pR1L7sdfeZT0Syf0NyYAADBcOm71aVmWLMtqujCpqNxmYWFBxWKx7rjH49HMzEzbA8nL5XLXh7cD7aDiDwAAAFibaDSqTCbTsq1lM+l0esXaslftLr1erzZv3qxUKqV8Pl9N/lXmpdu2Lcuyqu03JyYm2lojS6ai0LZtZbNZeb1ejY2NKRAIuN7Wsqy6asBoNEq3HGCDKpSk918qPTrnfvzF26R3ni3t2bcAAAA2qI4Tfx6Pp6MB6suTf7Xn6STpJ0m2bVd3XQL9xIw/AAAAYG3i8bgymYxSqZQCgUDDZFcji4uLdS0vKy1Ee8Hr9WpyclKWZSmbzapQKMi2beXz+WoCMBKJrCqJOT4+rvHx8Za3CwQC2rp162rCB7DOlG3pT6+U7nzO/fgx+0gfvlDysy8AAIANr+PEn9frbTp/wE1t8s/j8Wh6erqjpJ8kqv0wMA1bfVLxBwAAALSlUt22tLSk2dlZxWIxxePxltVruVxOS0tLdfMBo9Fox2vK1QgEAkokEj2/HwBoxHGkz18vXfOo+/GDJqVPvUIKd7afAgAArFOrWiUVi0UtLi4qFAq1PVMhEAgoFospk8koGo3K4/G0nUB0HEe5XE7FYpGKPwxEw1afVPwBAAAAbYvH4yoUCioWi8pkMspkMgoGg/L7/fL5fPL5fHIcR6VSSZZluY6MkMxm0rGxsT5HDwCD8R+3Sd+82/3Yppj0mUt4fwIAAOy16u2RlUVav7+2kzajQLe4tfoMeKVw7zcYAwAAAOvK9PS0du3aVa3gKxaLDRN8zc7BnDsAG8H375P+6afux+Ihk/Tbwj4IAACwDCsloA1uFX/jYQZmAwAAAKsxMzOzqvl8lVnxnc4HBIBRdMMT0meucT8W9Emfulg6eLqfEQEAgFFAvRLQBreKP9poAAAAAKvj9Xo1OTnZcH6fm1gspvHx8T5EBwCDd88O6cOXS2WXxldej/ThC6Xj9u1/XAAAYPiR+APasOSS+BsL9T8OAAAAYD2JRCKKRCIqlUrK5/Mql8sqlUpyHKc68y8UCikU4sU3gI3jiXnpvd+TCiX34+88WzrrkP7GBAAARseqE3/BYFChUEg+n6+b8bgql8vVAfDAIDRq9QkAAABg7fx+v+Lx+KDDAICB252W/vi77u9DSNKvnyK96uj+xgQAAEZLx4k/27YVCAQ0Pd3fJuLxeFy7d+9WqdRguxPQQ24Vf+NsOgYAAAAAAF2yVJDe9V1pZ9r9+CVHSW8+pb8xAQCA0eNdzRcNapB6MBgcyP1iYyuWpZxLvnmMij8AAAAAANAFhZL0/kulx+fdj591sGnx6fH0Ny4AADB6Ok78OY4jz4BeZfSjrShQy63aT6LiDwAAAAAArF3Zlj7+Q+lnz7kfP26r9KELJd+qtu8DAICNZlUvGbzewbzSGNT9YmNbatBXnxl/AAAAAABgLRxH+tx10o8fcz9+8JT0ZxdLoY6H9QAAgI2q45cNW7du7UUcbYlGo4pGowO7f2xMiw0q/sao+AMAAMAGVSqV5PfzLjQArNW/3yp96x73Y5vi0l9cwqgRAADQGUrogBZSDRJ/CV54AwAAYAOybVu7d+9WMpmUZVmDDgcARtb37pO+dLP7sbGQ9NlLpM3x/sYEAABGH1s0gRYatfpkxx0AAAA2snw+r3w+r0AgoHg8rnCYF8gA0K7rH5c+c437saBP+tQrpG1TfQ0JAACsEy0Tf7Ztj/RsvVGPH4PXqNXnOK0+AQAAsAF5vV4Fg0EVi0VJkmVZSiaT8ng8isfjikajrMEAoIm7n5c+crlkO/XHvB7pIxdJxw5u0g4AABhxLVdjs7Ozymaz/Yil67LZrHbt2jXoMDDiGlX8jbOhGQAAABvU9PS0Nm3atGIGu+M4Wlpa0s6dO5VKpVQqlQYYIQAMpyfmpfd+XyqW3Y+/6xzpzIP7GhIAAFhnWlb8TU5OanZ2VqVSSePj4/2IqSsWFxeVyWQ0NUVfBKyNW8WfzytFAv2PBQAAABgWfr9fiURCY2NjymazSqfTchxTvpLNZpXNZhUKhRSLxRQK0S4DAHalpT/6buMNxm85VXrlUf2NCQAArD8tE3+BQEATExNaWFhQqVTSxMTE0LdtSSaTyufzSiQSLDCxZosuL8jHQ5LH0/9YAAAAgGHj9XoVj8cVj8eVy+WUyWRkWZYkqVAoqFAoyOfzVduAAsBGlLOkP/6utDvtfvw1x0i/enJ/YwIAAOtTy8SfJEUiEXm9Xs3Pz2vXrl2amJgYysHthUJByWRSjuNoYmJCkUhk0CFhHVhyqfgbG75ffwAAAGDgIpGIIpGILMtSOp1WPm9eTJfLZaVSKS0uLioajSoejw/9hlIA6Ka/v0F6fN792EsOkX7/LDYYAwCA7mgr8SdJoVBIMzMzmpubUzKZVCgU0tjYmAKBwfc7LJVKWlpaUj6fl8fj0dTUFJV+6JpGFX8AAAAA3AUCAU1OTsq2baXTaWUyGUlmDmAmk1Emk1E4HFY8Hh+KNSUA9NJNT0rfusf92PH7Sh+8wIwUAQAA6Ia2E3+SWbxt3rxZyWSy2rJlkDMbCoWC0um0isViNb6pqSl2jqKr3Gb8jVPxBwAAALTk9Xo1Pj6u8fHx6hzAcrksScrn88rn8woEAhobG2PzJoB1aSEnfepH7scOnpI+ebEU6ujdOQAAgOY6fmnh9Xo1PT2tXC6nVCpVTQB6PB5Fo1FFIpGe7ti0LEu5XE7ZbLY6OF6SEokE8yLQEyT+AAAAgLWLRqOKRqN1cwAty9L8/DxzAAGsO44jfeYaaT5bfyzsl/705dIYex4AAECXrXpPUSQSUSgUqrZtWd6yRZKCwaBCoZB8Pp8CgYD8/s7vqlQqybKs6qVS2bdcNBrV2NgYVX7oiVJZylr119PqEwAAAFidVnMAU6mUYrGYotHoqtaRADAsLntQ+vFj7sfefqa0/0RfwwEAABvEmlZRlbYt8Xhc+XxemUxGpVJJklQsFl0TdR6PR16vV16vt/qxbdtyHEe2bVc/bsbn81V3i5LwQy8tucz3k6QxKv4AAACANamdA7i8qwtzAAGMuucWpc/92P3YGdukS47qazgAAGAD6cr2Sa/XW03EWZalbDarQqFQnd2wnOM4KpfLrsea8fl8CoVCikajLPrQN4sNEn9U/AEAAADd0e4cwHg8rnCYHXgAhl/Zlj55pXsHoURYeve5ksfT/7gAAMDG0PW+KYFAQIlEQpJk27Ysy6omAcvlskqlUsuKvkAgIJ/PV20TGgqFqOzDQLjN95OY8QcAAAD0QmVDaaFQUDqdrnaRsSxLyWRSHo+nOgeQNSKAYfXfd0p3Pe9+7N3nSlOMMgUAAD3U04EJXq9XoVBIoVB9eZRt29V/Kws2Fm4YNg1bfVLxBwAAAPRMZR1ZKpWUyWSUzWYlmQ4yS0tLWlpaUjQaVSwWYw4ggKHy8G7pn3/qfuwVL5DOOqS/8QAAgI1nYCskkn0YBVT8AQAAAIPj9/uVSCQ0NjZWbQNa6SCTzWaVzWYVCoUUi8VcN5wCQD8VStInrpRKdv2xrePS753Z/5gAAMDGw9ZIoAlm/AEAAACD5/V6FY/HFY/HlcvllMlkZFlmeFahUFChUJDP56u2AQWAQfinm6TH5+uv93qkPzlfigb7HxMAANh4SPwBTSw1qPgbo+IPAAAAGIhIJKJIJCLLspROp5XPmxft5XJZqVRKlmVV584DQL/c9rT09Z+5H3vTidKxW/sbDwAA2LhI/AFNpFwSfz6PFGeXHgAAADBQgUBAk5OTKpVKymazymQygw4JwAa1lJc++SP3Y4fNSG8+pb/xAACAjY3EH9DEkkurz3hI8nj6HwsAAACAen6/X+Pj4xofH1c6nR50OAA2oL/6sbTb5ekn6JM+eIEU8PU/JgAAsHGR+AOaWHSp+BunzScAAAAwlOLx+KBDALDBXPWwdOXD7sfedrq0baq/8QAAAHgHHQAwzNwq/sZD/Y8DAAAAAAAMl11p6bPXuh87eX/pdcf1Nx4AAACJxB/QlFvF3xgVfwAAAAAAbGi2I/3ZVVLaZcPwWEh633mSlzEhAABgAEj8AU0sUvEHAAAAAABqfOMu6bZn3I+982xpE52HAQDAgJD4Axoo2w127lHxBwAAAADAhvXEvPQPN7ofO/8w6bzD+hsPAADAciT+gAbSRffrqfgDAAAAViebzcq27UGHAQCrZpWlj/9QKpbrj22KS394dv9jAgAAWI7EH9CA23w/SRqn4g8AAABYlWw2q507dyqfb/Bie5VKpZIKhYIsy+rqeQGg1pdvlh6edT/2/vPMfD8AAIBB8g86AGBYkfgDAAAAeqNQKCgcXvsL68XFRWUymbrrw+Gw4vG4AoHAmu8DACruek76rzvcj/3C8dJJ+/c3HgAAADck/oAGGib+2L0HAAAArIrH4+nauXbt2qVy2aXXnqR8Pq98Pq9oNKpEItG1+wSwcWWK0ieulGyn/tjBU9Jvntb/mAAAANzQ6hNoYKngfv0YFX8AAADAQC0uLjZM+i2XzWY1Pz/fh4gArHd/c720Y6n+er9X+uAFUoit9QAAYEjwsgRogIo/AAAAoLu8XrP31LZt5XK56kw+v9+vcDhcPd6KW3vPYDCoUCgkr9cry7KUy+XkOI4KhYKSyaQmJye7940A2FCue0y69H73Y7/xIunQmf7GAwAA0AyJP6CBxQYVf8z4AwAAANam0opzuVQq1VZrzlKpVHddIpFQNBqtuy6dTmtpaUn5fF6FQkGhELv4AHRmLiN9+mr3Y8dtlX7xhX0NBwAAoKWOW33Ozc0plUopm82qUCjItu1exAUM3JJLxZ9HUizY91AAAACAdaFVe85sNqvZ2dmOzhEOh+uSfhXxeFwTExOSpGQy2X6gACDJcaQ/v1pKubw/EA1IHzhf8jFEBwAADJmOK/6KxaKKxeKK6zweT7U1Szwe71pwwCC5VfzFQ7yoBwAAAFYjm81WW3s2Y1lWR605w+HmLTkikUi1wjCfz7e8PQBUfOde6aYn3Y/9/kukreP9jQcAAKAda2r1uXwGg23bbQ1XB0aF24w/5vsBAAAAq7O4uLjic4/Ho1AoJJ/PJ7/fL8uyqpd8Pi/LshQIBFqet53bjI2NKZ/PK5vNkvgD0JanF6S//Yn7sZccIr3siL6GAwAA0LZVJ/5isZjGx9nahPVryaXib4z3CAAAAICOWZYlx3Gqn4+NjTXsFpPNZpVKpZRKpTQzM9Py3JXNqM34/X5Fo1Fls9n2gwawYZVs6RM/lPL1I0U1FZXedY7k8fQ9LAAAgLZ0nPjzeDxyHKetXZXYGObn5+VxecUbi8VGuvWrWw//BIk/AAAADFg6nVYmk6m7fnlibdiUSnvfPZ+amlIo1LiVRjQalW3bWlpaUqFQaHpbqb3En2Q61lTajbKeBdDMv/xUun+X+7H3vlSaiPQ3HgAAgE6selpZu4srrH+O48i27brLML/x0I4ll8TfGK0+AQAAMGCj+Pq7MtsvFou1TORJUjwel8fjUT7v8qJ8lSrJvuVJSACo9V+3S/9xu/ux1xwjnXZQf+MBAADo1KpbfZL4Q4XH43Gt+HO7blTYjnurz3Eq/gAAADBgHo/HdT3mOM5QJ/8ktZX0qwgEAioUXF6Ur1LlZzbsPyMAg/P1n0lfvNH92AET0m+f0ddwAAAAVmXViT+gYmpqSsFgcNBhdFWmILm9HTBOxR8AAAAGLB6Pu7bULxaLmpubG0BErfn9ZunZSYtNr9erYrHYtRhs217xLwAs9393S1+43v2YzyN94HwpQpdgAAAwAijbA1wsNthYPEbFHwAAANCxSsKvk6RbpT1ordpztHvOcrksie41AOp9917pr3/c+PgfnysdtaV/8QAAAKxFxyueyiJplNs4Aq0sNhglQqtPAAAAoHOdztcrlUrVRF1tu8/K9RXtJv4q981aFsByP7hf+sw1jY//0dnSxS/oWzgAAABrxlZHwIXbfD+JVp8AAADAakWjUS0uLrZ124WFherH8/PzK5J/2Wx2xW3bTSZmMhlJnbUbBbC+/fAh6VM/ch/1IUm/f5b06mP6GhIAAMCarXrGX7FYlNfr7XubFNu2ac2CnmtU8UerTwAAAGB1otGostmsZmdnlUgkXBNwlmUplUpV23zGYjGVy2XNz88rEAioVCrJcVa+Rb+4uKhwuPkL9VwuJ8uy5PF4qvMGAWxsVz8iffLKxkm/3zlD+rnj+hoSAABAV6x6xZNKpZRKpSSZHZOVi8/nUyAQ6ElyLpfLaWFhQVu3bu36uYHlGs34o+IPAAAAWJ1AIKBgMKhisajZ2dkVa0fbtmVZVl0bz1AopFAopF27drnO/AuHw8rn80omk5qcnHS930KhUF27RiKR7n9jAEbOdY9JH/uhVG6Q9XvradIbTuhvTAAAAN3Sla2OlmXVLcIqOym7mRCs7Oyk6g+9xow/AAAAoPsmJye1a9cuOY6jcrlcl+hbLhAIKBQyO++mpqY0OztbV+2XSCTk9XqVzWa1a9cuxeNxBYNBeb1elctlZbPZFa1BY7FYb74xACPjxiekD18ulRuMB/31U6RfPqmvIQEAAHRVz3qcOI7TVkKwkhRsJ5HX7tB2YK0aJf7iVPwBAAAAq+b1ejU9Pa25ubm6JF6tiYmJ6sd+v1/T09NKJpPVZGEl6Tc2NqZsNqtyuVyt7HMTi8Vo8wlscDc/9f/b+/co2fu8Lux9162ru7q6a/fe+3lmYIQMgngLIDcVRBABQWAYzzGJYalneS7LmHgJMIEoIiaKiIJAlh4vMYlJjifnoieHYbipsECCQAQVEURFZHKQYWY/e+9+qi/VXffzx56u6a7+9d59q+quqtdrrWdNV32rfvXdPfu3v/3pz/fz+SZf893J4IJfL/3eT05+36fOd04AALft2lHP+vr6pB3LqwK2016WEKzVaueqBE8nBItau8As7Be0+myuJVWFpgAAcCO1Wi2PHz/O/v5+jo/P77hbW1tLq9U6l6Sr1Wp5/fXXMxgMzpw3Xy6Xs7m5mcPDwws/c21tLdvb27f7B1kRz58/T6lUOvf85uZmms3mHcwIrucf/dvkq78r6V+Q9Ptdvy75v/yGpOCvOwDAXBwcHBTGNVfJwSU3SPxtbW1NArHRaJThcDhJ6A0Gg2slBHu9Xnq93pnnTyoETz4jiTafzFxRxd+WNp8AAHArqtVqdnZ2zpztd9njIYqq9ra3t9Pv98/Fk8mLBJWk3/WNx+PC2P6qv3yAu/RP35f8se9Mehd0F/6dH5f8J58u6QcA3K3xeHwrnS+vnPgr+tCT3Za1Wu3c2HQy8FXnOEw7qRCEedorqPjb1uYTAABuVblcnpzjd1OPHj06E3dWKpXU63UbR2+oVCoVVvwVPQf30U+9P/mq70iOB8Xj7/y1yR/5zZJ+AMDdK5VKhfHLRZvxLjLzAw5O2nZOO50MvE5CEGZpX8UfAAAsnGq16hy/W/bw4cOsra3d9TTgWn7mA8lXvic5umA/+Rf+6uTLP0vSDwC4H5rNZmE7/V6vl2fPnl36OncWEZ0kBDc2Ns48P50MPPlfmCcVfwAAALC4/tUbybvekxye7wCcJPn8X5l85W9JypJ+AMCSuXbib1b9/E92aJ5OCI5GoxwfH6fdbs/kM+G08bi44m9bxR8AAADcez/3LHnXtycHBZt6k+S3fkzyn//WpKITMACwhBbiR5xyuZxGo5FGo3HXU2EFdPrJsCCvvaXiDwCAFXYbh8zfpUWfP3A5732efPm7k3bBht4k+cxfnnzN5ybVhfiNGADA1V35x5yTSr/B4IJTkWeoUqnM/TNZPRcFBy0VfwAArLCnT5+m0+nc9TSupdPp5MmTJ3c9DWDGfuHN5Mvenbx5VDz+6W9P/uRvS6p+vQQALLFr72+aVavPlymXbcdi9orafCbJlsQfAAArbGdnJ+12O3t7e3c9lSvZ29tLu93Ozs7OXU8FmKFfbCdf9m3J8wv2J/yGj0z+1BckNUk/AGDJXTuT1ul05t4qpVarqfpj5vYuOANgW6tPAABWWK1Wy4MHD3J4eJjnz58vROvM3d3dHB4eptVqpV73Az0sq/fvvUj6vXFYPP4pvyz5ut+erPmVEgCwAqrXfWO/388HPvCBrK+vp16vZ21tLdXqtS93KbVaLa+//vpMPwP2Lqj421bxBwDAitvY2Ei5XM7z58/z5MmTPHjwIOvr9+8H5W63m93d3YzH4zx48CAbGxt3PSVgRp4cJP/pu5MPHBSP/7oPT77+C5P6bH9lBQBwb1z5x561tbUMh8MMh8MkyfHxcY6Pjydjjx49ut0ZwpztX1Dxt2WDMAAApF6v5/Hjx3n27Fl2d3dTr9eztbWVWq1211PLYDDI/v5+jo+PUyqV8vDhQ5V+sMSeHr6o9PulCzoQf9yHJd/wRcn63f/zBAAwN1dO/E0n9gaDwSQRWCqVbm1icFdU/AEAwMuddGPZ3d1Nt9tNt9tNvV7P5ubmnSTaut1uDg4O0uv1JvN7+PChc+Jhib15lHzFu5N/2y4e/zVvSf78FyeNtfnOCwDgrt240UG1Wp15i0+Yp4sSfyr+AADgQ8rlch49epSjo6O02+1JArBUKqXRaGRjY2OmVYD9fj9HR0fpdDoZj8eT51utVhqNxsw+F7h7+8fJu749ee9u8fjHvpZ84zuSTUk/AGAFydjBlKJWnxu1pOYQcAAAOGdjYyP1ej0HBwc5PDzMeDzO4eFhDg8Pk7w4EqJer6dSqaRWq11r4+hgMEi/35/8d1LZd1qj0cjW1pYqP1hynV7yld+R/OzT4vGPfpR885fYvAsArC6JP5hSVPG3LWAAAIALlcvlbG9vp9ls5vj4OIeHhxkMBkmSXq9XmKgrlUopl8spl8uTr0ejUcbjcUaj0eTrl6lUKmk0Gmk0GhJ+sAKO+8l//p3JP/9A8fjbd5JveaejOgCA1SbxB1P2Cir+BA0AAPBq5XJ5kojr9/vpdDrpdrsZDofnXjsejyfnxV9FpVJJvV5Po9GYaStR4H7pDpKv/u7kn76vePxtreSb35k82JjvvAAA7huJP5hSWPEn8QcAAFdSq9XSarWSJKPRKP1+f5IEHA6HGQwGr6zoq9VqqVQqkzah9XpdZR+soMEw+ZN/J/nxXygef0sz+dZ3Jo835zsvAID7SOIPpuxr9QkAALeqXC6nXq+nXj//g/VoNJr870lST3IPODEcJX/6e5Mffm/x+KNG8q2/I3nL1jxnBQBwf0n8wSnjcXGrzy0VfwAAMBOSfcBFRuPkz31/8v3/unj8wcaLM/3e1prvvAAA7jORFZxy1E8Go/PPq/gDAACA+RmPk2/5+8n3/Ivi8a168s1fkrz94XznBQBw30n8wSn7BdV+iYo/AAAAmJfxOPm//oPk3T9dPN6oJd/0juRjHs93XgAAi0DiD07ZKzjfL1HxBwAAAPPy3/7D5P/9T4vH1qvJn//i5Fe/Zb5zAgBYFBJ/cErR+X5Jsq3iDwAAAGbub/6j5H/88eKxtUry9V+YfPyHz3dOAACLROIPTtm/oOJPq08AAACYrb/1T5P/+keLx6rl5E9/QfIpHzHfOQEALBqJPzilrdUnAAAAzN17fjr5iz9UPFYuJV/7ecmnvX2uUwIAWEgSf3DKvlafAAAAMFd/918m3/QDxWOlJF/9Oclv+Zh5zggAYHFJ/MEpexe1+lTxBwAAALfuB/518vXfl4wvGH/Xb0l+26+c54wAABabxB+csldQ8bdeTerV+c8FAAAAltmPvDf5L/9eMrog6/eHPyP5kl871ykBACw8iT84Zb+g4m9Lm08AAAC4VT/+C8mf+J5kOCoe//2/Mfn3P2G+cwIAWAYSf3BKUcXftjafAAAAcGt+8n3JV39X0hsWj/8fPiX5PZ883zkBACwLiT84peiMv20VfwAAAHArfuYDyVd9R3I8KB7/Dz4h+T//+vnOCQBgmUj8wSn7BRV/Wyr+AAAA4Mb+9dPkP3tP0ukXj7/z1yZ/8DclpdJ85wUAsEwk/uAUFX8AAABw+977PPmKby/ecJskX/Crki//LEk/AICbkviDDzruF58voOIPAAAAru99ey+Sfm8eFY9/9sckX/XZSVnSDwDgxiT+4IP2Lth12FLxBwAAANfy9DD5ine/+N8iv+ntyZ/43KTqN1QAALfCj1XwQfsFbT4TrT4BAADgOtrHybu+/UXFX5FP/Yjkv/j8pFqZ77wAAJaZxB980EUVf1p9AgAAwNV0eslXvSf5+efF45/w4cmf+e1JvTrfeQEALDs/XsEH7an4AwCAmRoMBul0OhkOh+n3+xmNRimXy6lUKqlWq6lUKllfX0+1KlSFRdYdJH/su5KfeVI8/qteT77hi5L12nznBQCwCkRT8EH7F1T8bav4AwCAG2u32+l0OueeHw6HGQ6H6fV6SZL9/f2USqVsbGyk0WikVpMZgEUyGCZ/8u8k/+QXi8ffvpN84zuSzbX5zgsAYFVI/MEHXVTxt6XiDwAAbmR3dzfHxxf8wF1gPB6n0+mk0+mkXq9na2tLAhAWwGicfP33JT/83uLxD9tOvvmdSUucDQAwMxJ/8EEXnfGn4g8AAK7v6OjoXNKvVCpNWnsmyWg0yng8zmAwyHg8PvPabrebbreb9fX17OzszG3ewNWMx8m3/mDyvT9bPP6okXzLlySPN+c7LwCAVSPxBx+0X7ABea3ioHEAALiJ00m/tbW1NJvN1OsX764bjUbp9/vp9/vpdruTFqDHx8d58uRJHj586AxAuIf++o8m3/ZTxWPb9eSbvyT58NZ85wQAsIpES/BB7YLE31Y9KZXmPxcAAFgW/X4/yYuk36NHj175+nK5nHq9nnq9nmazmdFoNGn7ORwO8/Tp0zx+/FjyD+6R//s/Tv7mPy4e26i9ONPvo159+wMAcAvKdz2BRTEajbK3t5f3v//9GY1Gdz0dZmC/oNXntnMHAADgRobDYZKk1bpeqU+5XE6z2czrr7+era2tjMfjPH/+/DanCNzAu38q+Ws/Ujy2Vkm+4YuSX/2W+c4JAGCV2SL5CoPBIIeHh+l0OpPnRqNRyuWb50y73W6Oj4/T6/UyHA4zHo9TKpVSqVSysbGRRqNxo8+Z9fWXzV5BxZ/EHwAA3Ezpgy00bqNCr9lsZn19PW+88Ub29vayvb1942sC1/e9/yr55r9fPFYpJ3/qC5JPfNt85wQAsOok/i7Q7/dzcHBw7hD627r27u7uZOdrtVpNrVbLaDTKYDDIYDDI/v5+9vf302q10mg07tX1l9VeUcXfxUePAAAAl1Cv1yftPm9DtVrNgwcP8uabb6bZbNrMCHfkh9+b/JnvS8YFY6Ukf/xzkk9/+3znBACAxN8Z02dHzEKn00m73U6SNBqNbG1tnQlUR6NR2u32JOHYbrczGAwuvZN11tdfZvtFZ/yp+AMAgBtZX1+/9Q2VGxsbefPNN3N8fGwjI9yBf/KLydd+TzK84CSUr/is5HM/dr5zAgDgBVsj8yIZ9uzZs3zgAx/I/v7+JOnXaDTy2muvTVrT3FS3250k5TY3N9Nqtc7tTi2Xy9nZ2cn6+ocyToeHhzk6Orrz6y+z7iA5Hpx/XsUfAADczMbGRkql0pnjE25DpVJZ+TgG7sLPfCD5o9+Z9C7YL/0ffVryzn93vnMCAOBDJP7yIhnW6/WSvDh/YmtrK295y1vSarVSrVZvrXXM7u7u5DNeVWE3ffD9SULvLq+/zPYL2nwmzvgDAIDbsL29fabzyG0YDoe32kIUeLWff5Z85XuSowtuvd/9SS/+AwDg7kj8fdD6+nparVbe+ta3njsn4jYq/g4ODjIev+h832w2X/n6crmczc3NyePxePzSHbKzvv6yK2rzmSRbKv4AAODGGo1G1tbWsru7m+fPn984Ydftvti5dxIDAbP3vnbyFd+e7F2wcfadvzb5/b9xvnMCAOA8ib8P2tnZmenZEAcHB5OvT7fZfJmNjY0zj1/WxmbW1192FwUuKv4AAOB2PHr0KNVqNd1uN0+fPs2TJ0/S6XQyGl1wSNgFBoPBmW4nwOw9PXyR9Ht2wX7hz/0VyZd/VuKWBAC4e9W7nsAqODo6muxELZVKqVYv922v1WpnHp+0I5339VfB3gUVf874AwCA2/Po0aM8ffo0w+Eww+Ew7XY77XY7lUoltVot9Xo9lUol5XJ58r/Ji2TfcDjM8fHxmU4l0zENcPvax8m7vj15317x+Ke/Pfnqz0nKkn4AAPeCxN8cnE6oXTUwrVarGQwGk8fdbjf1+tls1KyvvwouTPyp+AMAgFtTLpfz+uuvp91un0ngnSQCr3oG4GWOOQCur9N7cabfzz8vHv/EtyX/5ecn1cp85wUAwMW0+pyD0y00L1uNd2Jtbe3M4+FwOPfrrwKtPgEAYH5arVYePnx45fjltEajsZKbFmFeuoPkj31X8i+eFI//qteTP/uFSd2WcgCAe0Xib8ZGo9GZA+evegZFpXJ229zp6rx5XH9V7F+wsXjL7xEAAGAm6vV6XnvttWslADc3N9NqtWY0M2AwTP7k30n+yS8Wj799J/nGdySNteJxAADujn1ZMzZdQXfVgHY6Mdfv9+d6/VVRVPFXLScbjgwBAICZOkkA9vv9HB0d5fj4+JWdSA4PD3N4eDg5B/BkA+TJmYCnvx6NRpP/rdVq2d7entGfBJbDaJx8/fclP/ze4vEP206++Z1JS4ccAIB7SeJvxqYTaVetyDsduN7F9VdFUcXfdj254rcTAAC4plqtNknMDQaDHB8fp9/vp9vtnulyctrJ2YCX1e/3Jf7gJcbj5Ft/MPneny0ef9RIvuVLkseb850XAACXJ/E3Yye7S69rOjE3fb1ZX39VFFX8bdm9CAAAd6JarabZbE4ej0aj9Pv99Pv9DIfDDAaD9Pv9CxOCFxmPxxkMBjc6WxCW2V//0eTbfqp4bLuefPOXJB+uyy4AwL0m2pmxmybSpiv4pgPbWV//Mq7aHrRSqZxrMXrX9ooq/iT+AAC4Q9epZltW5XI59Xo99fr5Q7hHo9EkGTgcDiePT399Wq/Xk/iDAv/TP07+5j8uHtuovTjT76MezXdOAABcnWhnxqYTabfdWnPW17+Mvb29K72+2Wxma2trRrO5nv2iir/zv1MAAIC56XQ6OTg4uOtp3Hvlcjnlcjm12sUHdI9Go0kS8GWvg1X17T+d/NUfKR5bqyTf8EXJr37LfOcEAMD1SPzN2W1X6M37+suqreIPAACW1klycBEr/UajUY6Pj1MqlSZ/jtNOx3CnN4aeJDuTF+cnLuKfnfn4vp9N/sIPFI9Vysmf+oLkE9821ykBAHADfvK/56aDutuu6Jv19RdBf5gcFXRF2lbxBwAAJOl2uzk+Pk6v18twOMx4PE6pVEqlUsnGxkYajcbMYql+v592u32ja2xtbZ05MxFO/Mh7k6/73qTo0I9Skq/+nOTT3z7fOQEAcDMSf/fcTSv45nH97e3tK7XLuW/n+xW1+UxU/AEAcLcajUbhmXYX6ff7V27Dz8v1+/3s7u5OzgmsVqup1WoZjUYZDAYZDAbZ39/P/v5+Wq1WGo3GHc8YLu8n3pf8ie9Jhhf8WuDLPyv5vI+d75wAALg5ib8Zm26dOX0m31W9rK3LLK5/GbVaLWtrazf63Lu0V9DmM5H4AwDgblUqlXu3aW6VdDqdSaVdo9HI1tbWmXhpNBql3W7n+PhFQNFutzMYDLK9vX0n84Wr+JdPkj/6HUlvWDz++39j8jv+3fnOCQCA2yHxN2PTibSrVthNJ/KmK+tmff1VcFHF35ZWnwAAsJK63e4k6be5uVmYzCuXy9nZ2cnu7u4k+Xd4eJharZaNjY1bm8vpmG9zc3MSw52O/abjwOnHEsic9t7nyX/2nqRTcORFknzpJya/+5PmOycAAG6PxN+MTSfmTlrEXNarArZZX38VqPgDAABO293dTfKiw8qrKvhardYk8Ze8qPy7zcTficvMBV7ll/aSd3170r4gDn7Hr0n+wKclU82FAABYILM5fZyJ6Qq6q1bkTb++Wj2bq5319VfB3kVn/Kn4AwCAlXNwcDCpqms2m698fblczubm5uTxeDxOp9O59Xld51gGOO3ZYfIV3568cVg8/ls/JvmKz5L0AwBYdCKHGZuuoOv3L+ilcYHpCr7pRN+sr78K9i/Y6bil4g8AAFbOwcHB5Ov19csFBdMVfkdHR7c6J7ip/ePkXe9JfrFdPP4bPjL545+bVPyWCABg4fmRbsbK5XJKp7bLXbUV5+nXr62tzf36q0DFHwAAkLxI2J1U+5VKpUt3RJneQNnr9W59biVlWFxTp5d81Xcm/+ZZ8fjHf1jyp78gqa3eyR8AAEtJ4m8O6vWzGaSrVOWdDhinrzOv6y+7ojP+KqVkczXzoAAAsLJOx0dX7YYynSTsdi/YYXhNWn1yHb1h8jXfk/z0+4vHP/a15Bu+KFlfveY/AABLS+QwB9PtYa4SAA4Gg8nXjUbjTq6/7IoSf1vrzjUAAIBVc7pF51XPP5/uoHLVbiwXueo57nBiMEr+1N9NfvwXisc/cif5pnckzdXcAwwAsLQk/i7hpNXLdU2f93DZg95PB53r6+sX7vCc9fWXXVGrT20+AQBgtYxGozOx31Vba06fv356k+VtWNV4jesZjZNv/P7kB/9N8fhbmslfeEfyYKN4HACAxXW1LYwranqH5XUSgVtbW9nf30/yYudnt9t9ZWvN04fKb21t3en1l9n+BRV/AADA6piu0Ltqxd904u8qRzBcxunE32AwSKfTSbfbzXA4zHg8TqlUSqVSycbGRtbX1688f5bHeJz8pR9KvvtfFI8/3Ei++Z3JW1b31wAAAEvNlsFX6Ha75xJ9l62oO63ZbJ4JBNvt9ktbtnQ6nckO0Var9cqgbdbXX2Yq/gAAgOlE3VUr/uZRkTcYDPLs2bO88cYbOTw8zGAwmMSr4/E4g8Eg+/v7eeONN9Jut2c+H+6n//7Hkr/9k8VjzXryTV+SfMSDuU4JAIA5Wt1sT4F+v59utztp8TIYDM4c7n7iZGdlrVZLpVJJuVxOrVZ7ZYXd48eP8+TJk4zH4wyHwzx9+jQ7OzvnDo0/ODiYVO9tbm5e+uy9WV9/WRVV/G2r+AMAgJVy07P0phN/t3U238l1jo6OrrQJtdPppNfr5dGjR9qErpC/9U+Tv/FjxWPr1eTPfVHyMY/nOycAAOZL4u+Ubrc7SYi9ynA4PNMKZn19/ZWJv3K5nNdffz3tdjvHx8eT5FylUkmtVstoNEq/35/s2Hzw4MG58/vu8vrLaDBKDs7ndrOl4g8AAFbKTRN10xWCNz0rftrJ9arVajY2NiabUEejUXq9Xo6Ojs595mAwyO7ubh49enTtz71qy9JKpXKu7Snz8d0/k/zFHyoeq5WTP/OFycd92HznBADAedP5pVe56s/kEn+nNJvNNJvNmX5GuVzOzs5O+v3+pHJwNBrl+Ph4kqDb2Ni4dhXerK+/bA4K2nwmKv4AAGDVTCfN7kuV3Ol5tVqtwlhuY2MjrVYre3t7OTw8PDPW6/XS6XSuHQPu7e1d6fXNZnOlz5C/K3//55I/9/3FY+VS8rW/LfnUj5jvnAAAKNbpdHJwcDCz60v83ZFarZZWq7Ww118W+xck/lT8AQDAarvtCsCbXuvRo0fnjnGYtr29nXK5fK6Tzd7ens2fS+zHfiH5U383GV1QZPpVn5181kfPd04AANwdiT9WWrvgfL9ExR8AAHA10xWCt1Ux2Gg0rpS0azab6XQ6Z1oHnZxhX636FcCy+an3J3/8u5L+BXnqP/QZyRf+6vnOCQCAu+Wnflba/gWJv5bEHwAAcAU3rRC8Ta1WK8+fPz/zXK/Xu1bib3t7+5WVhqc5329+/s2z5Ku+IzkeFI//vk9N/oNPmO+cAAB4tUajkXr98m0H+/3+lVrwS/yx0va0+gQAAHK+Nef0mX9XdZdnBNbr9VQqlTNVf4PBBdmhV6jVallbW7utqXFLPrCffOV7Lj63/nd+fPJ//NT5zgkAgMupVCoz3TB3P04rhzuyp9UnAACQ84m6q1bwTScKr1IlNwt3/fnMzn73RaXfG4fF41/wq5I//BnJLR4zCQDAApH4Y6Vd1OpzW8UfAACslOnE3+lqucuYThTedcvL6c93vt9y6A5enOn388+Lx3/zL0++6rOTsqQfAMDKkvhjpRW1+iwl2ZT4AwCAlTJdIXfVir/p1991om06kXnXiUhubjROvv57k594X/H4J74t+drPS6p+0wMAsNL8OMhKK2r1uVW3OxIAAFbNdGKs3+9f6f3TFYJ33WpzOhFZr9vduMjG4+Qv/VDy/T9XPP5RD5Ov++1JXWEnAMDKk/hjpe0XVPxtOd8PAABWTrlcTunUoWhXbfV5+vVra2u3Nq/rOn3m4Pq6IGfR/b9+IvnbP1k89loz+cZ3vNjECgAAEn+stKKKP+f7AQDAapquirtK1V+v17vwOlc1GAzy5MmTK7cbPa3b/dAux2azeaP5cLe+72eTv/zDxWPNevJNX5y87v9iAAA+SOKPlVaY+LMZFgAAVtJ0Zdzp5NmrDAaDydeNRuOlrx2NRjk6Orrw+uVyOcPhMPv7+5f+/Om5nFQgNhqNO287yvX9o3+b/JnvLR6rlZOv/8Lkox7Nd04AANxvEn+stL2COFviDwAAVtPGxsaZx51O51LvOzo6mny9vr6ecvniUPukmu/NN9/M8+fP8+zZs3OvKZfLWV9fT6fTOZNQvKx2u53kxbmFW1tbV34/98PPPU2+5ruTQUHhZynJ13xe8us+fO7TAgDgnpP4Y2UNR8lBUeJPq08AAFhZpxNlw+HwUlV/BwcHhe8vsr+/f+b8vV6vV5hgPKkaPEniXdbBwUF6vV5KpVIeP3780iQk99cH9pOv/I7ksFc8/oc+I/nsj5nvnAAAWAwiAFbWYS8ZFzy/peIPAABWVrPZTKVSmTxut9svPWvvdFVeq9VKtVp96fWLKviKnqvX6ymVSun1etnb27vU3Pf29rK/v59KpSLpt8D2j5OvfE/y9LB4/D/8dcm//wlznRIAAAvk5REJLLGi8/0SFX8AALDqHj9+nCdPnmQ8Hmc4HObp06fZ2dk5d1bewcHB5By+zc3NV57tl7xoJzp9dt90i9HTz3c6nRweHqbT6aTRaKRer08Sk+PxOIPBIL1eL0dHRxmPx2k0Gmm1Wtf5Y3MPdAfJH/uu5L27xeOf+yuSP/Dp850TAACLReKPlVV0vl/ijD8AAFh15XI5r7/+etrtdo6PjyfJv0qlklqtltFolH6/P2nZ+eDBgwuTd9OazWZGo1E6nU7K5XK2trbOJRRPNBqNSRvQ8Xicw8PDHB4Wl4Gtra1le3v7wmtx/43GyZ/53uQnf6l4/JPelvzRz0nKpfnOCwCAxSLxx8rav6Dib0vFHwAArLxyuZydnZ30+/10Op10u92MRqMcHx9PEoAbGxuXqvKbtr29ne3t7Ve+rlar5S1vecvk84fDYUajUcbjcSqVSiqVSur1etbX11/ZYpT7bTxO/uIPJT/wc8XjH/0o+brfnqxViscBAOCEyICVpeIPAAB4lVqtdqetM8vlcprNZprN5p3Ngdn7f/5E8v/5yeKx15vJn//ipGmTKgAAl+Ckb1bWhWf8SfwBAAAwJ3/vXyV/5YeLx5r15Jvekbwm7wsAwCVJ/LGyLkr8afUJAADAPPyjX0j+7PcVj61Vkj/7hcnbH853TgAALDaJP1bWRa0+Jf4AAACYtX/9NPma70kGo/NjpSRf83nJJ3z43KcFAMCCk/hjZe0XVPw160nFXQEAAMAMvX8v+cr3JIe94vE/8puT3/LR850TAADLQYqDlVVU8bet2g8AAIAZ2jtOvvI7kmed4vEv/cTkd378fOcEAMDykPhjZRVV/G2vz38eAAAArIbuIPnq70r+t93i8c/72OQ/+rT5zgkAgOUi8cfKKqr4c74fAAAAszAcJV/3vclP/lLx+Cf/suSP/takXJrvvAAAWC4Sf6ysPRV/AAAAzMF4nPzFH0r+/s8Vj3/Mo+TrfntSq8x3XgAALB+JP1bSaJzsq/gDAABgDv6nf5L8z/+seOwtzeTPvyPZXJvvnAAAWE4Sf6ykTu9F8m+aij8AAABu0//jnyR/7UeKx7bqyTe+I3m8Od85AQCwvKp3PQG4C0Xn+yXJtoo/AAAAbsn/+OPJf/O/Fo+tVZJv+KLk7Q/nOycAAJabxB8rqeh8v0TFHwAAADc3Hif/3T9M/ocfLx4vJfna35Z83IfNdVoAAKwAiT9WksQfAAAAszAeJ3/1R160+LzIl31m8pm/fH5zAgBgdUj8sZL2L2j1uaXVJwAAANc0Hid/8YeSv/2TF7/myz8z+d993PzmBADAapH4YyWp+AMAAOA2jcbJt/z95N0/XTxeSvKVn5188a+Z67QAAFgxEn+spL0LKv62VfwBAABwRcNR8o0/kHzXzxSPl0vJH/uc5PN/5VynBQDACpL4YyXtX1Dxp9UnAAAAVzEYJX/2+5K/96+Kxyul5Gs+L/mcXzHfeQEAsJok/lhJRRV/jVpSrcx/LgAAACymwTD5038v+f6fKx6vlpP/4vOTz/zl850XAACrS+KPlVR0xp/z/QAAALis3jD5L/5O8kM/Xzy+Vkn+9Bckn/b2uU4LAIAVJ/HHStovqPjT5hMAAIDL6A6SP/E9yY/+b8Xja5Xk678w+fUfOd95AQCAxB8rqa3iDwAAgGs47idf/V3Jj//b4vGNavINX5x84tvmOy8AAEgk/lhR+xJ/AAAAXFGnl/zR70x+4n3F441a8o3vSD7uw+Y7LwAAOCHxx8oZj5O9glaf21p9AgAAcIGDbvJV35H81PuLx5tryTe9I/k1b53vvAAA4DSJP1bOUT8Zjs4/r+IPAACAIvvHybvek/yLJ8Xj2/XkL7wz+ZWvzXdeAAAwTeKPlbNX0OYzSbZU/AEAADDlzaPkXd+e/OzT4vEHG8m3vDP56EfznRcAABSR+GPlFLX5TFT8AQAAcNbzTvLl705+/nnx+KPGi6Tf2x/Od14AAHARiT9Wzr6KPwAAAF7h6WHyZe9O/n+7xeOvNZNvfWfyEQ/mOi0AAHgpiT9Wjoo/AAAAXuYD+y+Sfr/YLh5/61byrb8j+fDtuU4LAABeSeKPlXPRGX/bKv4AAABW3vv2ki/7tuT9+8Xjb9t+kfR7y9Y8ZwUAAJcj8cfKuSjxt6XiDwAAYKX9Yjv5I9+WvHFQPP6RD14k/R5vznFSAABwBRJ/rBytPgEAAJg2GCZf/V0XJ/0+6mHyLe9MHjbmOy8AALgKiT9Wzn5Bxd9GNVmrzH8uAAAA3A9/+yeTn39ePPYrHid/4UuSBxvznRMAAFyVxB8rp6jiT5tPAACA1fX0MPkbP1Y89qteT77pHbrEAACwGCT+WDlFZ/xt1+c/DwAAAO6Hv/wPkqP++ec/6mHyzV+SNMWMAAAsiPJdTwDmbV/FHwAAAB/0E7+YfO/PFo+967Mk/QAAWCwq/rix58+fp1QqnXt+c3MzzWbzDmb0coUVfxJ/AAAsiIODgxweHp57fjwe38FsYLENRsm3/GDx2Of/yuTjP3y+8wEAgJuS+OPGxuNx4S8Z7uMvHsbj4oo/rT4BAFgU4/E4o9HorqcBS+H/+8+Sn39+/vlGLfkDnzb/+QAAwE1J/HFjpVKpsOKv6Lm71h0kveH557X6BABgUZRKpZTL509tuGhDHlDs2WHy3/3D4rH/069PHm3Odz4AAHAbJP64sYcPH2Ztbe2up3Ep7YI2n4mKPwAAFkez2Sxsqd/r9fLs2bM7mBEspr/2o8lh7/zzH/Uw+d9/3PznAwAAt+H8NlFYYkVtPhNn/AEAAKySf/ZLyff8i+KxL/vMpFqZ73wAAOC2SPyxUvYuqviT+AMAAFgJw1HyrT9YPPY5vyL5xLfNdz4AAHCbJP5YKXsXVfxp9QkAALAS3v3Tyc8+Pf/8Ri35Tz59/vMBAIDbJPHHStm/oOJvS8UfAADA0nvzKPlv/tfisd/3Kclr54/PBACAhSLxx0pR8QcAALC6/tqPJAcFceFH7iT/3ifMfz4AAHDbJP5YKc74AwAAWE3//P3Jd/5M8diX/eakVpnvfAAAYBYk/lgp+wU7O9cqSb06/7kAAAAwH8NR8i0/WDz2Wz46+ZSPmO98AABgViT+WClFFX+q/QAAAJbbd/5M8i/fOP/8ejX5g79p/vMBAIBZkfhjpRQl/rac7wcAALC02sfJf/0jxWO/95OTt2zNdz4AADBLEn+slL2CVp8tFX8AAABL66//aHEs+Mtaye/6xPnPBwAAZknij5WyX1TxJ/EHAACwlP7lk+Q9P1089p/+5hdnvgMAwDKR+GOlFO3y3NbqEwAAYOmMxsm3/GAyLhj7jI9KfsO/M/cpAQDAzEn8sTK6gxf/TdtW8QcAALB0vvtnkn/+gfPPr1WSP/wZ858PAADMg8QfK2O/oNovSbZU/AEAACyV/ePkr/5I8djv+eTkw7bnOx8AAJgXiT9Wxl7B+X6Jij8AAIBl89/+w6RdEAN+2HbypZ84//kAAMC8SPyxMorO90uc8QcAALBMfvaN5Nt+qnjsj3xGUq/Odz4AADBPEn+sjP0LKv62VPwBAAAshfE4+db/JRmNz4992r+T/KaPmv+cAABgniT+WBlFbV4SFX8AAADL4u/+q+Sf/dL552vl5A9/xvznAwAA8ybxx8q4qOLPGX8AAACL76Cb/JV/UDz2pZ+U/LIHc50OAADcCZ3tWRkXnvEn8QcAAFDo+fPnKZVK557f3NxMs9m8gxld7G/8WPL86Pzzb2kmv+eT5j8fAAC4ioODgxweHp57fjwu6GP/EhJ/rIy9goq/WjlZdxcAAAAUGo/Hhb9ouOovH2bt554l//NPFo/9oc9I1mvznQ8AAFzVeDzOaDS68XWkPFgZ+wUVf1vrScHmVQAAAJKUSqXCir+i5+7KeJz8Vz+YDAtykZ/6Ecln/vL5zwkAAK6qVCqlXD5/Qt9Fm/EuIvHHyiiq+Nuuz38eAAAAi+Lhw4dZW1u762m81Pf9bPIT7zv/fLWcfNln2uwJAMBiaDabhe30e71enj17dunrnE8dwpIqqvhzvh8AAMDi6vSSv/zDxWO/69clH/FgnrMBAIC7J/HHyiiq+NtS8QcAALCw/vsfS54enn/+tWbyez95/vMBAIC7JvHHythT8QcAALA03vs8+Vs/WTz2Bz89adzvDqUAADATEn+shP4wOeqff17FHwAAwOIZj5P/6n9JhqPzY5/0tuSzP2b+cwIAgPtA4o+VUNTmM0laKv4AAAAWzg/8XPKP/u355yvl5Ms+MymV5j8nAAC4DyT+WAn7BW0+E60+AQAAFs1RP/lL/6B47N/7+OTtD+c7HwAAuE8k/lgJF1X8afUJAACwWP5vP568cXD++UeN5Pd96vznAwAA94nEHythT8UfAADAUvikX5Z85IPzz//Hn55srs19OgAAcK9I/LES9i+q+JP4AwAAWCif8hHJ3/gPk//405KN6ovnPuHDk8/72LudFwAA3AfVu54AzMOFFX9afQIAACycWiX50k9KPvdjk7/yw8nv/qSkVLrrWQEAwN2T+GMlXHTGn1afAAAAi+u1ZvK1v+2uZwEAAPeHVp+shP2Cir9KKWnU5j8XAAAAAACAWZD4YyW0Cyr+tta1ggEAAAAAAJaHxB8rYb8g8afNJwAAAAAAsEwk/lgJewWtPrfr858HAAAAAADArEj8sRL2VPwBAAAAAABLTuKPlbBfUPG3peIPAAAAAABYIhJ/LL3BMDnsnX9exR8AAAAAALBMJP5YegcFSb/EGX8AAAAAAMBykfhj6RWd75ckWyr+AAAAAACAJSLxx9LbKzjfL1HxBwAAAAAALBeJP5beRRV/zvgDAAAAAACWicQfS0/iDwAAAAAAWAUSfyw9rT4BAAAAAIBVIPHH0tu/oOJvS8UfAAAAAACwRCT+WHpFFX/lUrK5Nv+5AAAAAAAAzIrEH0uvqOJvq/4i+QcAAAAAALAsJP5YekUVf1vO9wMAAAAAAJaMxB9Lb6+g4m/b+X4AAAAAAMCSqd71BJidbreb4+Pj9Hq9DIfDjMfjlEqlVCqVbGxspNFopFxe/tzvRa0+AQAAAAAAlonE3xLq9/vZ3d3NcDhMklSr1dRqtYxGowwGgwwGg+zv72d/fz+tViuNRuOOZzxb7YJWnyr+AAAAAACAZSPxt2Q6nU7a7XaSpNFoZGtr60xV32g0SrvdzvHxizK4drudwWCQ7e3tO5nvrA1HyYHEHwAAAAAAsAKWv8/jCul2u5Ok3+bmZlqt1rlWnuVyOTs7O1lf/1Dm6/DwMEdHR3Od67wc9Iqf39bqEwAAAAAAWDISf0tkd3c3SVIqlV5Zwddqtc48PkkYLpu9gvP9EhV/AAAAAADA8pH4WxIHBwcZj8dJkmaz+crXl8vlbG5uTh6Px+N0Op2Zze+u7F+Q+NtS8QcAAAAAACwZib8lcXBwMPn6dBvPl9nY2DjzeBnbfe4VnO+XqPgDAAAAAACWj8TfEjg6OppU+5VKpVSr1Uu9r1arnXnc611wIN4Cu7DVp4o/AAAAAABgyUj8LYHTCbvpZN6rTCcJu90LSuQW1P4Ff5wtFX8AAAAAAMCSkfhbAqdbdF622u/E2tramcfD4fBW5nRfXFjxJ/EHAAAAAAAsGYm/BTcajSZtPpMXrT6volKpnHk8GAxuZV73RVHir5SkuXb+eQAAAAAAgEUm8bfgpiv0rlrxN5346/f7N57TfbJX0OqzWU8q/uYDAAAAAABLRvpjwU0n6q5a8VcuL/dfgaKKv+36/OcBAAAAAAAwa8ud9VkBo9HoRu+fTvzd9Hr3zX5Bxd+W8/0AAAAAAIAldLW+kNw7N03UTVcInj4v8LKu2h60UqmcazE6K4UVfxJ/AAAsgOFweK61/8ssW9t+AAAArk7ib8FNJ+ruonXn3t7elV7fbDaztbU1o9mcVVTxp9UnAACLoNPp5ODg4K6nAQAAwALR6nPJ3HYF4CIbjbX6BAAAAAAAVofE34qbrhC8i4rBWTnsvUj+TVPxBwAAAAAALCOtPlfcTSsEk2R7ezu1Wu3Sr5/X+X7dQfJRD19U/e0dJ70PHo+i4g8AgEXQaDRSr19+11q/379yG34AAACWi8TfgptuzTl95t9VXafir1arZW1t7UafOwuPN5P/4Us/9Lg7eJEAXL98jhIAAO5MpVKZ26Y5AAAAloPE34KbTtRdtYJvOlF4lcq9RVOvJq8173oWAAAAAAAAs7E8B7qtqOnE33A4vNL7pxOFdhQDAAAAAAAsJom/BTddoXfVir/p11erikABAAAAAAAWkcTfgpuu0Ov3+1d6/3SF4DK3+gQAAAAAAFhmEn8Lrlwup1QqTR5ftdXn6devra3d2rwAAAAAAACYL4m/JVCv1888vkrVX6/Xu/A6AAAAAAAALA6JvyWwvr5+5nG32730eweDweTrRqNxa3MCAAAAAABgviT+lsDGxsaZx51O51LvOzo6mny9vr6ectlfBwAAAAAAgEUl07Mktra2Jl8Ph8NLVf0dHBwUvh8AAID7bzQa3fUUAACAe6Z61xPgdjSbzXQ6nQyHwyRJu93O48ePL6zi63Q6kzafrVYr1aq/CgAAAEW63W6Oj4/T6/UyHA4zHo9TKpVSqVSysbGRRqMxlw4q/X4/nU4nR0dHGY/Hk+dP5rK2tpbNzU3xHQAArDDRwBJ5/Phxnjx5kvF4nOFwmKdPn2ZnZye1Wu3M6w4ODrK/v58k2dzcdLYfAABAgX6/n93d3ckGy2q1mlqtltFolMFgkMFgkP39/ezv76fVas0sthqNRmm32zk+Pi4cH4/Hk/l0Op00Go1sbW05zgEAAFaQxN8SKZfLef311ycB4Unyr1KpTILTfr8/2Rn64MGDc+cDLqPhcHjm3MNGo5FKpXKHM4Ll4f6C2XKPwWy5x3iZTqeTdrudJIWJtOlkXLvdzmAwyPb29q3OYzAY5Pnz55Pk42Xn3u12X9oFZhm4h2G23GMwO+4vmK1Vv8ck/pZMuVzOzs7OpAVMt9vNaDTK8fHxJAF40opmVQyHwzPnGdbr9ZW6yWGW3F8wW+4xmC33GBfpdruTpN/m5mZhMu8k9trd3Z0k/w4PDycx121pt9tnkn6NRiPr6+uTzi79fj/dbjeHh4dn3jccDrO7u5tHjx7d2lzuG/cwzJZ7DGbH/QWzter3mMTfkqrVamm1Wnc9DQAAgIWzu7ub5MXZea+q4Gu1WmdacLbb7VtN/PV6vSTJ2tpadnZ2zlXw1ev11Ov1bGxs5NmzZ2fO/uv1eun3++eOfwAAAJbX8vb8AAAAgCs6ODiYJM+azeYrX18ul7O5uTl5PB6Pz7QVuol+v5/kxdmCjx49emnbzlqtlp2dnXPPd7vdW5kLAACwGCT+AAAA4INOtwRaX1+/1HumK/yOjo5uZS4nSbsHDx5c6vX1ev3cnK9yNiAAALD4JP4AAAAgLxJ2J9V+pVIp1erlTseYbqV50p7zpvr9fkql0pVaddbr9TOPS6XSrcwFAABYDM74A+6dk/ZKpVLpUu2VgKtxj8FsucdgcZ1O2F31XLxqtZrBYDB53O12zyXhrmowGKTRaFzpPZVK5dy84L6wRsJsucdgttxjLAoRAHDvHB4eZjQapVwuW0RhBtxjMFvuMVhcp1t0XjVhtra2dibxdxstNl977bUrv2f6cy/brhTmwRoJs+Ueg9lyj7EotPoEAABg5Y1Go0mbz+TqLTKnK+1OJwHnqd/vT77e3NxMuSzsBwCAVSICAAAAYOVNV8pdteJvOvF3OgE3L6PRaFK1WK1Ws729Pfc5AAAAd0viDwAAgJU3nai7asXffaisa7fbGY/HqVQqefTo0V1PBwAAuAPO+AMAAGDljUajG71/OvF30+tdVbvdzvHxcarVah49enQvEpEAAMD8SfxxZdMB7F20sLmK6fnd9/mSydkq4/E4vV7vjmfDy7i/FpN7bHG4xxaTe2xxLNs9Nj3/eSeeFt1Nv1/TFYKnzwu8TSfzLJfLGY1G6Xa72d/fz3A4nFT63STpN/19ODo6utK9US6Xz7U9nZVlu4dXgTVysbjHFo97bHG4vxaTe2xx3Pd7bDgcXin+mD4//FXvLY1nFY2wtA4PD7O3t3fX0wAAAF5ie3s7m5ubdz2NhdFut9PpdCaPHz58mHq9fun3DwaDvPHGG5PHlUolr7/++q3OMUl2d3dzfHz80tdUq9VsbGyk2Wxe+friPQAAuN9eFevp/QEAAABTbrsC8LZ0u90kLxKLa2trWV9fP1dhNxgMsr+/n/e///2T1wMAAKtBq08AAAC4oen2mrM6Y6/ZbKbRaBRef29vL4eHh5PH4/E4z58/v3L1IgAAsLgk/riyer2e7e3tyeNKpeLgeAAAuGOj0SjD4XDyWKJnvuZ1puLL2ndub2+nXq/n+fPnZ57f3d3NW9/61ktd/yTeG41GGY1GqVQqV6penOcZfwAAsIiuesbfeDzOcDhMuVxOuVx+Zawn8ceVVavVVKv+6gAAAMtjOrk1Ho9vdL272hxZr9ezvr5+5hzA8Xico6OjbGxsvPL94j0AAFhsyrQAAABYedOJuqtW8E0nCmu12o3ndF2tVuvcc71e7w5mAgAAzJvEHwAAACtvOvF3um3qZUwnCu+y3WW5XD5XwTivVqQAAMDdkvgDAABg5U1X6F01UTb9+rtulzmdeHQuOwAArAY/+QMAALDyphNl/X7/Su+frhC8y1afyflE311WIAIAAPMj8QcAAMDKm26PedVWn6dfv7a2duP5HB0d3ej90xWI9Xr9RtcDAAAWg8QfAAAA5Hxy7CpVf71e78LrXNVgMMibb755o+Tf6URktVq98wpEAABgPiT+AAAAIMn6+vqZx91u99LvHQwGk68bjcZLXzsajXJ0dHTh9avVaqrVag4ODi79+af1+/2Mx+PJ4wcPHlzrOgAAwOKR+AMAAIAkGxsbZx53Op1Lve90Zd76+vq58/VOGwwGefLkSd588808f/48z549K3xdvV7PYDC4VtXfm2++Ofl6c3NTtR8AAKwQiT8AAAD4oK2trcnXw+HwUlV/pyvzTr+/yP7+/plqvF6vV5hgPElCvvnmm2eqCV+l0+lMXt9oNLK9vX3p9wIAAIuvetcTAOD+G41GOT4+TqlUSrlcPreLvVQqTb4+/Yus0WiU0WiUJKnVaqlWLTusttFolIODg3Q6nbz++usvrQgBruam95e1jhPNZjOdTmdyRl673c7jx48v/Dt1OtHWarVe+XegKIlX9NzpKr2nT5+m1Wqdq0icdnBwkP39/SQvKv0k/YBXsf7B7RDrweyI9a5ucWYKV9DtdnN8fJxer5fhcJjxeJxSqZRKpZKNjY00Gg0LMFxBv99Pu92+0TW2trbSbDZvaUawWAaDQQ4PD89UdIxGo1tZi6x5rLrbur+sdZz2+PHjPHnyJOPxOMPhME+fPs3Ozs65lpnTibZXne2XvKjkO3nP6eeKlEqljMfjjMfjvPnmmzk4OMj29nZqtdqZv+Pdbjd7e3sZDAapVCpptVqp1+tX/WMvBOse3C7rH9yMWA9mR6x3fRJ/LJV+v5/d3d3J7txqtZparZbRaJTBYJDBYJD9/f3s7++n1WpdKjAHgOvq9/s5ODjI8fHxTK5tzWOVzfL+gnK5nNdffz3tdjvHx8eT5F+lUpn8W9vv9yc7gh88ePDKarwTzWYzo9EonU4n5XI5W1tbF57BV6/Xz/wdHwwGef78eeFrS6XSwv1C4iqsewDcJ2I9mB2x3s1J/LE0Op3OJHPfaDSytbV1Jvs/Go0mgXvyomXPYDDQ/gaAW3Xyy9zTbeJumzWPVTWP+wtOlMvl7OzspN/vp9PppNvtTtoEnSQAT3bbX9X29val/k3e2dnJaDSa7PgfDAbndvyvra1lfX19aSv8EuseAPeDWA9mR6x3uyT+WArdbneyKF50lsVJ4L67uztZHA8PDycBO3Cx0z9kbm5uTna3n/S5nv666HGlUpnhDOHujUaj7O7uptfrnXm+0Whkc3MzT58+PdMr/rqseayiedxf1jouUqvV0mq17uzzy+VyNjY2Vvbfb+sezJb1D15NrAezI9abDYk/lsLu7m6SF+1tXrXDpdVqnSkTbrfbFka4pMvcY7CqyuXy5AfVUqmUZrN55syFcrl8K7vWrHmsonndXyfXt9bB/WHdg/mw/sHFxHowO2K92ZD4Y+EdHBxMsvSXOc+iXC5nc3Mzh4eHSZLxeJxOp6MfNlyCQ6Ph5U5arRWtKaVS6cbXt+axymZ9f52w1sH9Yd2D+bH+wcuJ9WB2xHq3b3X+pCytg4ODydfr6+uXes/0Dpijo6NbnRMAq2lnZ2emgZY1j1U26/sLuH+sewDcF2I9mB2x3u2T+GOhHR0dTXbDlEqlVKuXK2Kt1WpnHk/3EAaK3eYuG+BqrHkwH9Y6uB+sezBf1j+4O9Y8mI9VWusk/lhopxe06cXuVaYX0W63eytzgmW2SiXxcN9Y82A+rHVwP1j3YL6sf3B3rHkwH6u01q3On5SldLqE/bK7YU6sra2deXxbh4TCMhqNRnc9BVh51jyYLWsd3C/WPZgP6x/cPWsezNYqrnUSfyys0Wg0KYNPrl6qW6lUzjweDAa3Mi9YZqu0MwbuE2sezI+1Du6edQ/mz/oHd8OaB/OzSmvd1bYQwD0yvYPlqjtiphfGfr9/4znBsju9QA4Gg3Q6nXS73QyHw4zH45RKpVQqlWxsbGR9ff3K9yVQzJoH82Otg7tn3YP5s/7B3bDmwfys0lq3uDNn5U0vZFfdEbNKGX64TYPBIO12u/DQ6PF4nMFgkP39/ezv76fRaKTVat3BLGG5WPNgvqx1cLese3A3rH8wf9Y8mK9VWesk/lhYN+3NO70wrmKvX7isk/vj6OgonU7n0u/rdDrp9Xp59OiRH0bhBqx5MHvWOrg/rHswP9Y/uFvWPJi9VVzrJP5YWDddyKZ30Jzupw0UO7lPqtVqNjY2UqlUUi6XMxqN0uv1cnR0dO5eGgwG2d3dzaNHj+5iyrAUrHkwP9Y6uHvWPZg/6x/cDWsezM8qrXUSfyys6Ztw0bLusEhO32+tViuNRuPcazY2NtJqtbK3t5fDw8MzY71eL51Op/B9wKtZ82D2rHVwf1j3YH6sf3C3rHkwe6u41vmXhKVx2ztkgLNKpVIeP378ykVue3s7W1tb557f29ub1dRg5VjzYDasdXA/Wfdgtqx/cH9Y82A2Vm2tU/HHypreQWNHDVys0WhcaVdLs9lMp9PJcDicPHdyQG61aumBebPmwatZ62B5WPfg8qx/sNisefBqq7jW+ZeAleWwW5itVqt17rler3cHMwGseTAb1jq4n6x7MFvWP7g/rHkwG4u+1kn8sbBu+/BaO2LgdtXr9VQqlTPPDQaDO5oNLDZrHtxP1jqYDese3G/WP7g91jy4nxZ9rfMvAQtreiG76g6X6YW0VqvdeE7AWe4ruB3WPLi/3E9w+6x7cP+5r+B2WPPg/lrk+0nij4U1vTCe7rl7GdML6XQGH7i56ftqUfpgw31jzYP7y1oHt8+6B/ef9Q9uhzUP7q9FXusk/lhY0xn3q+6ImX79It24sCimf4D1AyhcjzUP7i9rHdw+6x7cf9Y/uB3WPLi/Fnmtk/hjYU3faP1+/0rvn95Bs8ilu3BfTf8AWq/X72gmsNiseXB/Wevg9ln34P6z/sHtsObB/bXIa53EHwurXC6fOQD3qqXwp1+/trZ2a/MCPuR0r/n19fU7nAksNmse3F/WOrh91j24/6x/cDuseXB/LfJaJ/HHQpvOsl9lV0yv17vwOkAyGAzy5MmTK7eZOK3b7U6+bjabtzEtWFnWPLh91jq4v6x7MDvWP7hfrHlw+1Z9rZP4Y6FNZ9pP34yvMhgMJl83Go1bmxMsi3K5nOFwmP39/Wu9fzAYTHaeNRoN7Sbghqx5cPusdXB/Wfdgdqx/cL9Y8+D2rfpaJ/HHQtvY2DjzuNPpXOp9R0dHk6/X19fPHdQJvFgg19fX0+l0zvwgeVntdjvJi371W1tbtz09WDinW0RchzUPLnbd+8taB/eXdQ9mx/oHt0usB7Mj1rse/xqw8E7feMPh8FK7Yg4ODgrfD5x1slvsZLG7rIODg/R6vZRKpTx+/NgPn5Dzh0Jf54dXax4Uu8n9Za2D+8u6B7Nj/YPbI9aD2RHrXc/izRimNJvNVCqVyeN2u/3S3r2ns/ytVivVanXmc4RFVa/XUyqV0uv1sre3d6n37O3tZX9/P5VKZWEXR7ht3W733A+nl93FeZo1D8676f1lrYP7y7oHs2P9g9sh1oPZEetdX2l801pkuAdGo1GePHky+YegUqlkZ2fnXO/dg4ODSV/fzc3NbG9vz32usGja7fZkUS2VSmk0GqnX65MfSMfjcQaDQXq9Xo6OjjIej9NoNNJqte5y2nBn+v1+ut1uRqPRmfujSKVSSa1WS6VSSblcTq1We+WB7NY8Vtms7i9rHdxf1j2YHesfXI1YD2ZHrHe7JP5YGqPRKO12O8fHx5PnTv4RGI1G6ff7k4XzwYMH5/pnA8X6/X6ePn16qdeura1le3t74Q68hdt0Ogi7qvX19ezs7LzyddY8VtWs7i9rHdxv1j2YDesfXI1YD2ZHrHe7JP5YOv1+P51O58wOgUqlkkqlko2NjUlvX+DyRqPR5L4aDofn7q16vZ719XWtJWDOrHlwe6x1cP9Z9+D2Wf/gfrLmwe1ZxbVO4g8AAAAAAACWwGKeTAgAAAAAAACcIfEHAAAAAAAAS0DiDwAAAAAAAJaAxB8AAAAAAAAsAYk/AAAAAAAAWAISfwAAAAAAALAEJP4AAAAAAABgCUj8AQAAAAAAwBKQ+AMAAAAAAIAlIPEHAAAAAAAAS0DiDwAAAAAAAJaAxB8AAAAAAAAsAYk/AAAAAAAAWAISfwAAAAAAALAEJP4AAAAAAABgCUj8AQAAAAAAwBKQ+AMAAAAAAIAlIPEHAEug3+/nyZMnGY1Gdz2VmRiNRnnjjTfS7/fveioAAABzI9YD4Kok/gBgwR0dHeXp06dpNpspl5dzaS+Xy9nY2MjTp0/T7XbvejoAAAAzJ9YD4DqWc8UAgBXR7Xbz5ptvZnNzM41G466nM1PNZjObm5t5/vy5gBAAAFhqYj0ArkviDwAWVL/fz/Pnz7O2tpbt7e27ns5cbG9vZ319Pc+fP9cKBgAAWEpiPbEewE1I/AHAAhqNRnn27FlKpVJ2dnbuejpz1Wq1UiqV8uzZs6U95wIAAFhNYj2xHsBNSfwBwALa3d3NeDxOq9Va2rMeLlIul7Ozs5PxeJzd3d27ng4AAMCtEeuJ9QBuarVWDwBYAkdHR+n1ellbW8vGxsZdT+dO1Ov1rK2tpdfr5ejo6K6nAwAAcGNiPbEewG2Q+AOAGxiNRtnb25vbGQSj0SjtdjtJVuash4uc/PlPvh8AAAC3Rax3d8R6ADdTvesJAMAiGgwGOTw8TKfTSZLUarXUarWZf+7BwUHG43HW1tbm8nn3Wa1Wm+wE3dvbW/ngGAAAuDmx3t0T6wHcjIo/ALiG3d3dSSCYvGhHMmuj0SiHh4dJkmazOfPPWwSNRiNJJt8XAACAmxDr3Q9iPYDrk/gDgGsYDoeTr6vV6lwOXT8+Pk6SlEqluQSfi2BjYyOlUilJzgTnAAAA1yHWux/EegDXJ/EHANcwHo8nX88rMDvZ6Xiy85EXTg69txMUAAC4KbHe/SHWA7geiT8AuKLpw93nEQz2+/0MBoMkHwp+eGFtbS3Ji7M4Tr5HAAAAVyXWu1/EegDXI/EHAFc0HXDM4+D1061NVv2g92mng3EtYAAAgOsS690vYj2A65H4A4ArOn3mQ6VSmcuZD91uN8mHdjzyIeVyeXL2w8n3CQAA4KrEeveLWA/geqp3PQEAWDSn279UKpWZf95oNJoEoDdtNTMYDHJ8fJxOp5OHDx+mWq2eGet0Oul2uxkOhxmPxymVSqnVatnY2Mj6+vq1At+jo6P0er0MBoMMh8MMh8OUSqVUKpVUq9XU6/Wsra2dmctV1ev1HB8fa/8CAABcm1jvasR6APeTxB8AXNHpgGMerVhuEnz2+/3JfydB3onTh9Z3u908f/783PvH43F6vV56vV7a7XY2Nzezvb19qc/udDo5ODiYBH+1Wi31en0SFJ6c03B8fJwkV7r2tJNg8OTPMo+zOAAAgOUi1hPrASwDiT8AuKSjo6McHBycCQY7nU6Oj48zGo0mwVWr1Uqj0bi1zz3d0uQqwefe3l4ODw9f+bqjo6O8+eabl7rm4eFhut1uHj169NIdoe12e3IGw0Xfj36/n729vfR6vUt99suc/r4IBgEAgKsQ64n1AJaJxB8AvMLe3l46nc6ZXZMnxuPxmZ2Vye3vDD19/au0SGk0GtnY2MhoNEq32y0MDDudTtrtdqrVajY3N7O2tpZyuTxpOXPSKua0wWCQZ8+e5bXXXiv83KOjo8l7tra2LgyMa7VaHj16lGfPnqXX693o/IzTu2On//8AAAAoItYT6wEsI4k/AHiFjY2NbGxsJHmxc7Hdbk/GHj58eC6Iue1g8LpnGZwOHOv1+rmA9mQHZtEuzXK5PDmTYWtrK8+ePTszj8FgkHa7nVarde5z9/f3J1+vr6+/cp6tVitvvPHGjYLB0+919gMAAHAZYj2xHsAyuv6/ugCwImq12uS/006CpdPjszgH4mRXY6lUutF1ps+M6PV6efDgwStb1ZTL5bz22mvn3t/pdM4FXqcPpz9576vc5KD3007mZxcoAABwGWI9sR7AMpL4A4ArOH34+rzOFjjZuXmTXZJF7z9pD3NZW1tb556bbg0zHYid/n696tq3FUgXtekBAAB4GbHeWWI9gMUl8QcAV3D6cPJZ7PicNhqNJl/fdBfotMu0ZjltY2Pj3I7N04fRJ+fnuLu7e6l2LM1m88bfz9v+/gAAAKtDrCfWA1gWEn8AcAWnA5t5BIOn3XQX6G1cb3Nz88zj6V2f08HieDzOG2+8kd3d3RwdHZ0Jbm/b6T/PLD8HAABYPmI9sR7AsridRssAsAKmdzPe1nkFL3M6qLntYPA6pgPgolYrjUbjXFuY4+PjHB8fJ3lxPsPJeRlra2sz+T6ORqN78f0CAADuP7GeWA9gmUj8AcAlnT7DYG1tbS6fed92Nk4f+j79OElarVYGg8GZVjmnDYfDM8FipVJJs9l85cHzr3LfAmcAAGAxiPXEegDLxL+UAHBJ8z7zYdp9CAanFQWDSfLo0aO0Wq1LncUwHA7Tbrfzxhtv3OjPeHpHqmAQAAC4LLHeeWI9gMWl4g8ALukugsHTQU1Rq5V5mw7W6vX6ha9tNBppNBrpdrs5Pj5Ot9s9d07EaYPBIPv7+2m1WrcyNwAAgMsQ64n1AJaJxB8AXNJdHvae3I9gZzqYW19ff+V76vX6JGgcjUbpdrvp9Xo5Ojo6F+B2Op1sbW1daxfnybUus/MUAADghFhPrAewTNRGA8Al3MVh79OfdR92gXa73cnX1Wr1yt+HcrmcjY2NtFqtvPWtb82DBw/Oveb0+RrXcVFLGgAAgGlivRfEegDLQ+IPAC7hdIAy72BjnoHnqxwfH0++3t7eLnzN7u7upQO6jY2NbG1tnXnuOrtdT7/nPn2/AACA+02s94JYD2B5SPwBwCWcDm7m3frldPA5vRt1njqdzqT9y9raWuGZD6PRKMfHx1ea53QLmesEc6fb0tgFCgAAXJZYT6wHsGwk/gDgEk63PSkKNtrt9o3bllzkdPA5q8+4jL29vcnXrzqU/Sqtak6/tlQqXSvYPh18vuwQegAAgNPEemI9gGUj8QcAl3A62Di9S7Hf7+fJkycZDAYz2x16Ori5zWBwd3f30rs1d3d3Mx6PUyqV8vDhwwt3ap60YTkdPL/K0dHR5OuLWsq8yunvi2AQAAC4LLGeWA9g2WiMDACvMB0w9fv99Pv9dDqddDqdbG1tpdlszuzzy+VyKpVKhsPhrQaDw+EwT58+zfb2dhqNRuFrBoPBJGhcX19Pq9VKuXzxvqGTNizHx8c5OjrKxsbGS+fQ7/dzeHiY5EVLmYvm8Son3xdnPgAAAJcl1hPrASwj/2ICwCtMB2AnQeDJjsh57Dqs1+vpdDrp9Xq3et3xeJx2u529vb3U6/XUarWUy+WMRqN0u930er2USqU8ePDglYFdcvb8hTfffDO9Xi+bm5vngrTRaJSDg4NJILi+vp6dnZ1r/zlOvi92gAIAAJcl1hPrASwjiT8AeIWiXY+X2RF5mxqNRjqdTpIXweltt5oZj8c5Pj7O8fHxmeev+uec3jF7EjgnL87LKJVKGQ6Hk7MeKpVKtra2LhVoXuR0q5nr7iIFAABWj1hPrAewjCT+AOAV6vV61tbWJkFYs9mc+27DWq02aQFzdHR0K8Hg48ePMxgM0ul0MhwOMxqNMh6PU6lUUqvV0mg0rvznPGkl0+v10u12MxgMJsHfcDhMqVRKpVJJvV6f/HdTJwFstVrV/gUAALg0sd7lifUAFod/MQHgEh49enTXU0ij0cj+/n46nc61D0aftrGxcaMdmEVOgrJ57cg8OTB+c3NzLp8HAAAsD7He5Yn1ABbDfGrWAYAbOwmuxuPxmZYnq6zb7U5ayayvr9/xbAAAAK5OrHeeWA/g+iT+AGBBlMvlSUB4cHBwx7O5H06+D5ubm3M7gwMAAOA2ifXOE+sBXJ9/NQFggWxtbSVJer3eucPVV02/30+v10upVEqz2bzr6QAAAFybWO9DxHoANyPxBwALpFwup9VqJUn29/fveDZ3a29vL8mLQ+btAAUAABaZWO9DxHoAN+NfTgBYMI1GI9VqNcfHxyt7/sPR0VF6vV7W1tbmdrA8AADALIn1xHoAt0HiDwAW0KNHj1IqlbK7u3vXU5m70WiUdrudUqmUnZ2du54OAADArRHrifUAbkriDwAWULlczs7OTsbj8coFhO12O+PxOI8ePdL2BQAAWCpiPbEewE35FxQAFlS9Xs+DBw9yfHw8OQPhZUaj0RxmNVt7e3s5Pj7OgwcPUqvV7no6AAAAt06sJ9YDuInqXU8AALi+jY2NjMfjtNvtVKvVl56BMB6PzzweDAYLFVB1Op0cHh7mwYMH2djYuOvpAAAAzIxYD4DrkvgDgAXXaDRSqVSyu7ub9fX1My1RRqNRRqNRer1ehsPhmfd1Op1Uq9VUKpV730ZlNBrl4OAgjx8/XqgAFgAA4LrEegBcR2k8vSUEAFgK7XY7nU7n0q9/y1vecu+DQgAAgFUn1gPgZVT8AcCSWl9fT61WS6lUSpJzgd7JORAne4AEggAAAPefWA+Al1HxBwAAAAAAAEvAdg8AAAAAAABYAhJ/AAAAAAAAsAQk/gAAAAAAAGAJSPwBAAAAAADAEpD4AwAAAAAAgCUg8QcAAAAAAABLQOIPAAAAAAAAloDEHwAAAAAAACwBiT8AAAAAAABYAv9/jWRyds/4lHUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -94,7 +94,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAKyCAYAAAAdJqksAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVzU1f7H8feA4M4A7hvgbiqoLaYmpGmmgrbnAi23umJk3Xsrl6TbrVtY6q1bNyP1ZrduINptNUizVTAzW1TGrTQFlNyFQdzY5vcHyU+YYRlgZlhez8ejR8z3nDnfD9TAfOf9PecYLBaLRQAAAAAAAAAAAADqNTdXFwAAAAAAAAAAAACg5gj+AAAAAAAAAAAAgAaA4A8AAAAAAAAAAABoAAj+AAAAAAAAAAAAgAaA4A8AAAAAAAAAAABoAAj+AAAAAAAAAAAAgAaA4A8AAAAAAAAAAABoAJq4ugDUP5mZmfrss89KHvv7+6tly5YurAgAAABoPM6cOaP09PSSx9dff726dOniworQGHAdCAAAALiGvdeABH+w22effabo6GhXlwEAAADgd/fcc4+rS0ADx3UgAAAAUHdUdA3IUp8AAAAAAAAAAABAA0DwBwAAAAAAAAAAADQALPUJu/n7+5d6HBMTo/79+7uomort2rWr1HI0dblWFLvvvvt06tQp+fr6asWKFa4uB+XgtVX/8NqqH3ht1T+8tuqHhvbaKvv9lH1/DjhCfbkObGiv98aAv6X1A6+t+ofXVv3Aa6v+4bVVPzS015a914AEf7Bb2Q3c+/fvr6FDh7qoGvvUp1obK09Pz5J/89+q/uC1Vffx2qqfeG3Vfby26qeG9toq+/4ccIT6eh1YX+pszPhbWj/x2qr7eG3VT7y26j5eW/VTQ3ttVXYNyFKfAAAAAAAAAAAAQANA8AcAAAAAAAAAAAA0AAR/AAAAAAAAAAAAQANA8AcAAAAAAAAAAAA0AE1cXQAAXGrGjBnKzc1Vq1atXF0K0KDw2gIcg9cWAAA1w99SwDF4bQGOwWsL9QHBH4A6JTIy0tUlAA0Sry3AMXhtAQBQM/wtBRyD1xbgGLy2UB+w1CcAAAAAAAAAAADQABD8AQAAAAAAAAAAAA0AwR8AAAAAAAAAAADQABD8AQAAAAAAAAAAAA1AE1cXADhSly5d9Mgjj5R6DKDmeG0BjsFrC3AMXltA7bvvvvvk6elpdXzGjBmKjIx0QUXFeL0DjsFrC3AMXluAY9TX19ayZcu0fPlyq+N5eXl2jUPwhwatS5cuevTRR11dBtDg8NoCHIPXFuAYvLaA2nfq1Cmbx3Nzc51cSWm83gHH4LUFOAavLcAx6utrKzc3V0eOHKnxOAR/AAAAAADALr6+vjZn/LVq1coF1QAAAAD1X6tWrdSxY0er43l5eeXeeGcLwR8AAAAAALDLihUrNHToUFeXAQAAADQYkZGRNpfN37Jli26++eYqj+NWm0UBAAAAAAAAAAAAcA2CPwAAAAAAUCeYzWbFxcVp6tSp6tKli6vLAQAAAOodlvoEAAAAAAAukZycrJSUFJlMJqWmpspsNru6JAAAAKBeI/gDAAAAAAAuERsbq5SUFFeXAQAAADQYLPUJAAAAAABcYtWqVcrMzFRmZqYSEhJcXQ4AAABQ7xH8AQAAAAAAlwsJCZHRaHR1GQAAAEC9RvAHAAAAAAAAAAAANAAEfwAAAAAAAAAAAEADQPAHAAAAAAAAAAAANABNXF0A6r/77rtPnp6eVsdnzJihyMhIF1QEAAAA1H/Lli3T8uXLrY7n5eW5oBoAAAAAQH1A8IcaO3XqlM3jubm5Tq4EAAAAaDhyc3N15MgRV5cBAAAAAKhHCP5QY76+vjZn/LVq1coF1QAAAAANQ6tWrdSxY0er43l5eeXefAcAAAAAaNwI/lBjK1as0NChQ11dBgAAANCgREZG2lw6f8uWLbr55ptdUBEAAAAAoK4j+EOdZzabtWTJEplMJmVkZCg9PV1Go1He3t4aOXKk7rzzTgUGBrq6TAAAAACAg6WnpysuLk4pKSnKyMiQ2WyW0WhUUFCQwsLCFBER4eoSAQAAAJci+EOdlZ6erpiYGCUlJVm1mc1mmc1mpaenKz4+XqGhoVq+fLkLqgQAAAAAOMOcOXMUHx9vddxsNislJUUpKSmKjY3VsmXLuDkUAAAAjRbBH+qkSy/oQkND5e/vL7PZrIyMjJJZf5dKSkpSTEyMoqOjXVEuAAAAAMCBpk6dqpSUlEr7paena/z48UpISFBISIgTKgMAAADqFoI/1DkXQz+j0ai1a9fK39/fqk9ycrLmzZtXKgCMjY3VrFmzZDQanVkuAAAAAMBBzGazIiMjlZKSouDgYEVERCgwMFDe3t7KyMhQSkqKlixZIrPZXOp506ZN06ZNm2xeTwIAAAANmZurCwDKM2vWrHIv0kJCQrR27VqrkO/jjz92RmkAAAAAACe4GPotXLhQq1atUlhYmPz9/WU0GhUYGKioqCh9++23Cg4Otnru3LlzXVAxAAAA4FoEf6izoqKiKmw3Go2aP39+qWPJycmOLAkAAAAA4EQpKSnatGmTIiIiyu1jNBq1atUqqxtHU1JSrLaJAAAAABo6gj/UOQ8++KASEhKq1HfSpEmlHu/YscMRJQEAAAAAXCA6OrrKy3Xaunk0KSmptksCAAAA6jSCP9Q5/v7+Vd6E3Wg0llruMzs720FVAQAAAACcLTw8vMp9IyIirLaD2LZtWy1XBAAAANRtBH+ot0wmk+Li4kodK7uhOwAAAACg/iob5FUmLCys1OOMjIzaLAcAAACo85q4ugCgKkwmk1JSUrRt2zbt2LGDfRoAAAAAAFYCAgJKPc7JyXFNIQAAAC70dep+vb9pp1o09VDoVf00coC/DAaDq8uCkxD8oc4ymUx65ZVXtHHjRquZfP7+/vLz81NgYKCSkpIIAgEAAAAA8vPzq/AxAABAQ7bn4HE9tuITrf3hl5Jji99LUWBAB0WFDVP4qMFq2czThRXCGQj+UOeYzWbNnj3bahP20NBQTZ48WcHBwaWWe0lJSXF2iQAAAACAOsjf37/UYy8vLxdVAgAA4DynTp/V31d+qdc++U4FhUVW7aa0o3pgyUea959Pdc/Yy/XAxKvVu0tbF1QKZyD4Q51iNps1YcKEUjP4QkNDtXjxYrv3dgAAAAAANC5ZWVmlHg8ePNg1hQAAADhBfkGhlq/doqdWfqFTp89V2t985rxe/miTXv5ok64f0ksPhg3TxCv7yt3dzQnVWruQX6BNuzO0eU+Gmnt6KPSqvgSStYDgD3VKZGRkqdAvODhYy5cvd2FFAAAAAID6IiMjo9Tj0NBQF1UCAADgWOt+/EWPvf6Jdh88Xq3nf7Z1nz7buk8BHXw0c8JQ3TvuSrXxalHLVZZmsVi059BxffbTPq3fulcbTAd09kJ+Sfujr3+iYX27KXz0YN0RHKi2xpYOraehIvhDnZGenm61bOeyZctcVA0AAAAAoL5JTU0t+drf399q6U8AAID6bs/B43r09U+07sdfKu9cBWlHszTvzU/1t/gvNPXaIEWFXq0re3etlbEl6WTOWX2x/Vd9tnWvPtu6TwePmyvsv/nng9r880H95d9JGn9FH4WPHqxJQ/upeVOPWqupoSP4Q51RNvQLDQ1leU8AAAAAQJVt3Lix5OuoqCgXVgIAAFC7Lu7jF5v0nQqLrPfxu5RHE3c9NGm4Bvh30NKkzfp+b2al41/IL9Bbn/+ktz7/SUP7dFVU2DDdPnKgmnnaF7jl5Rdo888Hi2cU/rRXP+z7TRaLxa4xJKmgsEiJW/YoccseebVoqluvGaiI0YMVMjBAbm6uWZq0viD4Q52Rk5NT6rG3t3e1ngcAAAAAaHwSExNLto7w9/dXRESEiysCAABVcfZ8nk7knFXnNq3VxN3d1eXUOfkFhVq2doueiv9CWbmV7+M3edhlWvSH8SV75d0z9nJt+fmgYpO+0zspJl3IL6h0jC2/HNKWF9/VY69/ovvGXanIiUPl397HZl+LxaJ9v53UZ1uLl+/8KnW/cs/l2fdNViLn7AX957Mf9Z/PflS3dkZNv3aQwkcP1gD/DrV6noaC4A91hpeXV6nHZfdmsGXOnDml9gQEAAAAADROCxYskCQZjUYlJCS4uBoAAFCRoqIifbh5t/7xXoq2/HJIFotF7m5u6tLGSwEdvOXf3kcBHbzl185bAR18FNDBR93aGuXRpHEFg/bs4zfQv4Ne/GOoxgzuadU2tG83De3bTf+4b4Le+OxHvZb0nTKOZ1c65omcs1r4brIWv5+isKH99GDYMI0Z1FPmM+d/X76zeJ/AtKNZ1fn2quXgcbMWvpushe8ma0jPTgofNVhTrw1SJ1+vyp/cSBD8oc4YNGhQqccpKSlKT0+3uSeD2WzW7Nmz5e3tLX9/f8I/AAAAAGgAzObSe74kJiYqLCys0ufFxMQoPT1dRqNRq1evZm8/AADqqPyCQq3csF2L3022CrMKi4qUcTz790Aqzeq5bm4Gdfb1UkB7b/l38FFAe2/5tf89GGzvo27tjGrqUTuRR2Fhkc7nF+jchfxS/z6fV6CWzTwV0N5bLZp51sq5bNl98Jgee31tlfbxa+vVQn+/83rdN+6KSmdMtjW21JzbQvTozSOV9MPPik3crM+27qv0HEVFFq3ZvFtrNu9WJ9/WOpqdq6Ii+5fvvJSbm0FDe3fV9Zf30uigntp98Jjiv9qmTbsrnxB00dZfD2vrr4c15z/rNGZQT0VcN0Q3DbtMrZo3rVFt9R3BH+oMPz8/q2PTpk1TQkJCqYu2uLg4xcbGKioqShERERoxYkSp55jNZvYGBAAAAIAGIDIyUuHh4XrwwQfLDfPmzJmj+Ph4BQcHa9myZVwPAgAatePmM/r+l0P6JfOEWjX31LUDu5cs+ehK5y7k6431P+gf72+s0kwzW4qKLDp0wqxDJ8zauMt6IojBYFBn39byb188Y7BrWy8VFll0Pi9f5/KKQ7tzefk6n1eg87//+1zexWCvQOfz83//d4HyCworraeDdyv16Oir7h191L2Dj7p39FWPjr7q0dFHnX295O5u/z50p06f1dMrv9RrduzjFz1llLxbNbfrPO7ubpp89WWafPVl+iXzhF5L+k5vfv6jcs5eqPS5h0+dtutcl/Jr561xl/fSuMt767pBPeVzSd3XBnbXzIlX69fDJ7Xy6+2K+3Kb9h0+WaVxi4osJbMPWzbz1E3D+yt81GCNGdyjUS4fS/CHOsNoNCo6OloxMTElx9LT0zVixAgFBgZKkkwmU8kdnBePZWdnlxpnypQpmjx5sry8vNjTAQAAAADqibKz/S6Kj49XfHy8AgMDFRQUpICAAElSWlqa4uPjJUnR0dGKiopyVqkAANQJ5jPn9cPeTP24L1Pf/3JIP+zNtBmqXdW7i6ZeO0h3BAeqcxvnLodoPnNeryV9p5c++kbHzWccei6LxaLMkznKPJlj16yx6jqanauj2bn6do/1uTyauCugvffvYaCPuncoDgh7dPRV9w4+VkFdTffxq4k+XdrqnzNC9cydYxX/9Xa9lrRZprSjNR5Xklo289TooB4aN6SXrr+8t3p3biODwVDhc3p2aqO/TrtOT0wdrS2/HFL8V9u0OjlVJ3LOVumcZ87nKf6rbYr/aps6+rTS1JBBirhusAb36FTpuRsKgj/UKVFRUUpOTlZKSkqp4yaTSZJs3sFZ9uIwIyNDS5Yskdls1qRJk7jbEwAAAADqgYs3dRqNRs2aNavkuu4ik8lUcm14kb+/v5YtW1ZyYygAAA3VmfN52rb/sH7Ye0jf/1Ic9v2SeaJKz/1+b6a+35upx1as1ejA7po6apBuGTGg1Gyr2nYsO1cvf7RJsUmbqzSLrKHJLyjU3t9Oau9vtmes+bRqXhwIdvRVQHsfJW7Zoz2HaraPX021at5UkROGasb4q5SyM02xSd/pg007VVBY8czDSxkMBl3Rq7OuH9JL1w/preH9usmzmsuvGgwGXd23m67u200v3D9Rn/60V3FfbdOazbt1Ib+gSmMcycrVSx99o5c++kZjh/TSp8/8oVq11DcEf6hzVq1apcTERMXFxSkjI6Nkn4bw8HBFR0db9c/MzHRBlQAAAACA2pSTkyN/f/+S7R6ioqKUmJioNWvWKCMjQxkZGSVbO/j5+SkiIoJVXgAADdKF/AKZ0o7o+72Z+uGXQ/pxX6Z2Zhyr8Z5qFotFX6bu15ep+zUrdo0mXNlH00YNUthV/dS8qUet1J5+LEsvvL9RK9b/oPN5VQtnunfw0dRrg3Qi56zSjmYp/Vi20o9lVzncqY+ycs/px33n9OO+36rU3559/GrKYDAoZGB3hQzsrt9O5ujf677X8nVbdCQr12b/Lm28NO7y3rp+SC+NGdRTbY0ta70mjybuChvaT2FD+8l85rze+2aH4r/apq9NB6o8xqDuHWu9rrqK4A91UlhYWJU2cAcAAAAANAyBgYHatGlTqWNcGwIAGrrCwiLtOnhM3/8e8P2wN1OpB44orwp7zNVEXkGhPtq8Wx9t3q1WzT118/ABmnbtoGrvibb74DEt/F+yEjZsr/IMsYH+HTTnthBNCQm0OmdRUZGOmc8o7WiW0o5mK+N4dvHXx7KUcSxbaceyde5Cvt111jceTdz18OThip4yWsaWzZx+/s5tvPS38DF6/I5r9cG3u/Tm5z9pb+YJ9e3aTuMuL57Vd1m3dk5dQtPYspnuHXel7h13pTKOZSthw3bFfbVNuzKOVfi88FGDnVNgHUDwBwAAAAAAAACAE5zPy9eWXw5p4840pexM17e7M3T6nGuXwsw9l6e3v9yqt7/cqnbGlrojOFDTrh2kYf26VRrofP/LIT3/vw36aPNuWSxVm5F4dd9umnfHtQq7qq/c3Nxs9nFzc1NHn9bq6NNaw/r5WbVbLBYd/z0YTD+erfSj2Uo7lqW0o/8fDJ45nydJauLupuaeHmrm2eSSfzdRM08PNfdsoqaljtvo5+Gh5k2bqKlH8T8nc85q/5FTOnA0SweOnNL+o1kOCSEnD7tMi++doF6d29T62Pby9GiiKSFBmhIS5OpSSvFr7625t1+rObeFaNv+w4r/apsSNmy3mp0YGNBBg3p0clGVzkfwBwAAAAAAAABoMA6dMOvnQyfUzthSvTu3qbVlLKsj5+x5bdqdoZQdadq4M01bfjnkkNl8Hk3cNah7R13Rq4uu7N1Fg3p00k/7ftOqDdu1YUdalUO54+YzejVxs15N3KyADj6aGhKkadcO0sCADiV9LBaLvjYd0HPvfK0vtv1a5RrHDumlebdfq1GB3Ws8Q8xgMKi9dyu1926loX27WbVbLBadu5AvTw93hy+NabFYdDQ7VweOZBUHgr+HgWlHsrT/6CkdOpFT5Z+/VBxSvXC/Y/bxa6gMBoOG9OysIT076/k/3KAvt+9X3Ffb9MGmnTp7Ib9RzfaTCP4AAAAAAAAAAA1AfkGhnvjvZ3rpo29Klps0GAwKaO+tvl3bqV/Xdurbra36/f51O2PLWl+i8Fh2rlJ2pmnjznSl7Dyg7QeO1HhvvrLc3Azq3629ruzd5fd/uiqoe0c19Sj9cf8Vvbroj+Ov0qETZr2TbFLChu366deq7SknSWlHs/T8/zbo+f9tUGBAB027dpC6d/TVSx9+o+9+PljlcW4eMUBzbwvRVX26Vvk5NWUwGNSimafTznVxduLwy6xnJ17IL1D6seziYPDo78HgkSylHT2lXw+fUs7Z4hmfnXxb66/TrtP9466Uu7vtmZCoXBN3d427vLfGXd5buVGT9eHm3bouqIery3Iqgj8AAAAAAAAAQL126IRZ0xet1je70ksdt1gsxUsyHs3Suh9/KdXm06p5cRjYte3voWBxINi9g488mlQ+S8xisSj9WLaSf5/Nt3FXmn4+dKJWvy9J6tWpja7s00VX9e6qK3t30eAendSqedMqP79rW6MeuWWkHrllpPYcPK5VyduV8HWq9h0+WeUxTGlHZUpbX+X+7m5uCh89SHNuC9Fl3dpX+XkNUVOPJurTpa36dGlr1WaxWJSVe07ZZ87Lr53R4bMTG5tWzZsqYvRgV5fhdAR/AAAAAAAAAIB667Ot+xSxeLVO5Jy163lZuef07Z4Mfbsno9Rxjybu6tnR1yoQ7NOlrX47maOUnWkls/oOnTDX5reibu2MurJ3V13Zq4uu7NNFV/TqIp9WzWtt/H7d2ump8LH62/Qx+mFvplZtSNXqlFQdPnW6VsZv5tlE9427Uo/eMlL+7X1qZcyGzGAwyLd1C/m2buHqUtCAEPwBAAAAAAAAAOqdwsIixaz+Sn9P+MquPdQqk19QqD2HjmvPoeP6SLtrbdyymno00dA+XTVygL+G9fPTVb27qoNPK4ed71IGg0FX9emqq/p01aJ7x2vDjgNK2LBd732zU+Yz5+0ez6tFU0WFDtPDk0c47XsAYBvBHwAAAAAAAACgXjluPqOIf7yjz7fuc3UpVda6eVON6O+n4AEBGtk/QFf16aJmnh6uLkvu7m66blBPXTeop5Y8MFlrf/hFCRu2K3HLHp3PK6jwue2MLfXnG6/RA6FXy9iymZMqBlARgj8AAAAAAAAAQL2xaXe6pj6/Spknc8rt07OTr/54w1X69cgp/fz77L1j2WecWGVxKDZyQIBCBgRo5AB/BXXvWOf3cGvq0UQ3De+vm4b3V87Z8/rw291K2LBdX2z7VYVFRSX9/Np567FbRuoP11+hFs08XVgxgLII/gAAAAAAAAAAdZ7FYtFLH36jeW9+qoLConL73TS8v974861WM9BOnT6rnw+d0J5Dx0vCwJ8PndCvh0+VCrWqK6CDj0b291fwwAAFDwhQny5tZTAYajyuq3i1aKa7xgzRXWOG6GhWrj76bpcOHMnS5b0666Zh/eXRpG6HmEBjRfAHAAAAAAAAAKjTzGfO696X3tOH3+4qt08Tdzc9f88N+vNN19gM3Hxbt9Dwy/w0/DK/Usfz8gv065FT2nPwuFUwmHP2QrnnG+DXXiMHBJQEfV3bGqv/DdZxHXxaacb4oa4uA0AVEPwBAAAAAAAAAOqsbft/0x3PJejXw6fK7dOljZcS5k7VNf397R7f06OJLuvWXpd1a1/quMVi0ZGs09rzexi4//ApNfNsoit7d9HI/gFq49XC7nMBgKMR/AEAAAAAAAAA6hyLxaIV63/Qw0sTdSG/oNx+Y4f0Utxjd6idsWWtnt9gMKiTr5c6+XppdFCPWh0bAByF4A8AAAAAAAAAUKecOZ+nB2PX6O0vt5bbx2Aw6MlpoxU9ZbTc3d2cWB0A1F0EfwAAAAAAAACAOuPnQ8d1+4KV2plxrNw+bb1aKG72FF0/pJcTKwOAuo/gDwAAAAAAAABQJ6xOTtWMVz5Q7rm8cvuMuMxPCXOnqmtboxMrA4D6geAPAAAAAAAAAOBSF/ILNHvFWr2auLnCfo/cPFIL7h4njybuTqoMAOoXgj8AAAAAAAAAgMukH8vSlOcS9P3ezHL7eLVoqhV/vlW3jBjgxMoAoP4h+AMAAAAAAAAAuETS93t09wvvKiv3XLl9BvfopNXzpqlX5zZOrAwA6ieCPwAAAAAAAACAU+WcPa9nV32lF97fWGG/+2+4Ui/NCFPzph5OqgwA6jeCPwAAAAAAAACAU5zPy9fST7ZowTtf62TO2XL7NW/qodioG3XXmCFOrA4A6j+CPwAAAAAALmE2m5WSkqKMjAxlZWXJ399f3t7eCgsLc3VpAADUWwWFhXr7y216euUXOnjcXGHfvl3b6p150zUwoIOTqgOAhoPgDwAAAAAAScnJyVqwYIFMJlO5fUJDQxUdHS1/f/8anScxMVGpqanKyMiQ2WyW0WiUn5+fJk+erPDwcBmNxjo7PgAA9rBYLPpo82498d/12n3weKX97wgO1PKHblbrFk2dUB0ANDxuri4AAAAAAABXmzFjhqZNmyaTyaTg4GAlJCRo165dyszM1KZNmxQdHS2j0aikpCSNGDFCcXFxdp/DZDJpxIgRmjZtmuLj4yVJQUFBCgwMlNlslslkUkxMjPr3718nxwcAwF5fp+7XNY8t060x8ZWGfh5N3PXKzElaOWcKoR8A1AAz/gAAAAAAjZbZbNaUKVNKZvlFR0crKiqqVB9/f39FRUUpNDRUEyZMkNls1ty5cyVJERERVTpPXFxcyXPCw8NLgsRL65g9e7aSkpIkSXPnzlV6erqio6PrxPgAANhj66+/af5b67X+p71V6j/u8t5a+IfxCure0cGVAUDDR/AHAACABiE795zSj2Ur7ViWMo5lK+1ottKPZyv9aJbSj2fLIGlYPz+t+NMtamts6epyAdQRkZGRFYZ+l/L399fSpUs1bdo0ScXhWXBwcKXLfiYnJ5eEclFRUTbDNqPRqOXLl2vGjBkl4VxsbKwGDRpU6d6Cjh4fAICq2vfbST0Z97lWJ6dWqf/QPl214J4bNDqoh4MrA4DGg+APAAAAdZ7FYtHJnLNKP56ttKO/B3vHspV+LEvpvwd85jPnKx0nccsejY1eoS3/jJKnB2+FgcYuLi5OKSkpkoqDsYpCv4tCQkIUGBhYEhZGRkZq3bp1FT5n5syZJeeobIbd4sWLS4I5SZozZ06lwZyjxwcAoDK/nczRs6u+0or1P6igsKjS/v26ttOzd12vm4b3l8FgcEKFANB48GkHAAAA6oy8/AKt37pPuzOOKe1YltKPZZf8c+Z8Xq2cw5R2VEs+3qxHbhlZK+MBqL8WLFhQ8vWsWbOq/LyIiIiSGXYmk0kmk0mBgYE2+8bGxspsNlf5HBcDyNjYWEnFS3TGxcWVu6Soo8cHAKAi2bnntOjdZP3r42917kJ+pf27tjXqb9Ov011jhqiJu7sTKgSAxsfN1QXUJxcvpgAAAFD7Pvx2l7rfu1g3/v1tzXvzUy39ZIvW/vCLdmUcq7XQ76JnVn2pY9m5tTomgPolMTGx1DXewIEDq/zcSZMmlXr89ttvl9t3yZIlJV+HhoZWafzJkyeXepyYmOiy8QEAsOXs+TwtfjdZve5/QQvfTa409PNt3Vz/uG+Cfl7+F9077kpCPwBwIGb8VcBkMuntt9+2uiA0Go3y8/NTUFCQHnzwwUr3c6hMcnKyEhMTlZqaqoyMDJnN5pJzTJ48WeHh4aU2Za9r4wMA6q4z5/P0/qadWv/TXjVxd9Owfn4aFdhdfbq0ZTkV1BnZuef05+VJevvLrU47Z87ZC/rr259p2UM3O+2cAOqWNWvWlHpsz3Wd0WiU0WgsuU5MTEzUokWLrPpdei1pNBqrfI6yswcvLkfq7PEBACiroLBQb3z2o55Z+aV+O3W60v4tmnroLzddo0dvCZaxZTMnVAgAIPizwWw2a/bs2aX2PSjbfnE5l/j4eIWHhys6Otru8MxkMikyMlLp6emSii++goKClJ2dXTK+yWRSTEyMFi5caPfSK44eH43bnoPHtf3AYRVZLHJ3c5O7m0FN3N0u+dpd7m4Gubu5/X780q9t9XcraW/TuoXc3ZmQDFSXxWLRxp3peuuLn/S/jSblnvv/mVL//aI4WOns21rXBvbQqKDuGhXYQz07+RIEwiU+37ZP9730vg6dcMzKCm28WqhbW6O27T9s1bZi/Y96IPRqDe7R2SHnBlC37dixo9Rje2/o9PPzK9nnz2w2l9xgeank5OSSr4OCguwa/9J9BC+OFRIS4tTxAQC4yGKx6L1vduqvb3+mXzJPVNrfo4m7Zoy/StFTRquDTysnVAgAuIjgr4z09HRNmzatJCyrivj4eG3cuFFr166tcvgXFxdXsieEreCwbPg4d+5cpaenV7pRu7PGR+N09nyeVqeYtOyT7/T93kyHnce7ZTM9EHq1nrnzeoIIwA4Zx7L19pdb9dYXP+nXw6cq7PvbqdNK2LBdCRu2SyreZ2FUYHeNCuqhUYHd1b2jrzNKRiN25nye5v1nnWKTvqvROB28W8m/vbf8O/jIv523Ajp4y6+9twLa+8i/vbdaNW8qSZq2cJXeSTGVeq7FYtFflifpy+fu5+8N0AjZc81ny6XBnyRt377dKji7dAlNPz8/u8YPCgoqNX5GRoZVH0ePDwCAVPy+eeaSD/X6pz9U2tdgMGjatUF6OmKsenBdCQAuQfBXxsUA7KLw8HCFhYVp0KBBkoov5lJSUko2Qr8oPT1dkZGRWrVqVaXnSE5OLgnloqKibIZtRqNRy5cv14wZM0rCudjYWA0aNEhhYWEuHR+Nz66MY1q+dov+++VWmc+cd/j5ss+c13PvbFCLph6aP2W0w88H1Gdnz+fp/W936b+f/6QvU/fLYrFUa5xDJ8yK+2qb4r7aJknyb++tUUE9dG1gd40O7CG/9t61VzQavU270/WHF9/TvsMnK+xnMBjU2be1Ajr4yM9GqOfXzlvNm3pU6ZwL/zBea77brfN5BaWOJ+9I03vf7NRtI6u+txeAhslkMlktgVmRnJycCh9fnAV4kb0rxAQEBJR6XDaodPT4AABc9Oyqr6oU+k28qq+evfN6DerRyQlVAQDKQ/BXxsW9DYKDg7Vs2TKri6eQkBCFhIRo8uTJmjJlSqkLrZSUlCpdLM6cOVNS8YVZZTPsFi9eXGrJ0Tlz5lQazDl6fDQOF/IL9MGmXVq+dos27DjgkhqeSfhKN48YoMu6tXfJ+YG6ymKxaNPuDL31+U96J8Wk0+cu1Po50o9l663Pf9Jbn/8kSerR0VfX/j4jcHRgd3Vpy96wsN+F/AI9Hf+FFr+foqKi8kNqrxZN9VJkmKaFBMnTo3bervq199ZjtwTr2VVfWbXN/c86hQ3tq2aeVQsRATRM6enpdgV/qamppR5nZ2eXelx2Bl11lhK91KWz85wxPgAAkvS/jSY9Ff9FhX1GXOanBXffoOCBAc4pCgBQITbRusTFC53AwECtWrWqwjsmAwMDtXTpUqvjlW2KHhsbWxIWzpo1q9KajEajoqKiSh6bzWbFxcW5bHw0fPuPnNLjb34q/3sWKXzxapeFfpKUV1Coma98qKKiIpfV4Ey55y7opQ+/0R//9b6eTfhSW3/9rdqzt9AwHTyerefe+VqXRf5TIXOWa8X6HxwS+tmy/8gp/eezH3X3C/+T3z2L1G/Gi4p85QMlbNiuY9m5TqkB9dv2/Yd19V9itfDd5ApDvzGDeyr11Yd195jLay30u2jObSHq0sbL6nja0Sz988NvavVcAOq+ivbjq4pLbwKVrGf8bd++vdRjb29vu8b38rL+feXM8QEA+HFfpv7wz/fKbR/o30Ef/jVCyYtmEPoBQB3CjL9LXAztFi9eXKX+ISEhCg0NLTVjLi0trcLnLFmypOTr0NDQKp1n8uTJpZYWTUxMVEREhEvGR8NUUFiopO9/1rK1W7T+p311KmzauCtdy9d9r5kTr3Z1KQ61I+2obo2JL7Xs3d/iv1DXtkaFXtVXYUP76bpBPRrFbJRTp89Kknxbt3BxJXXDuQv5+uDbXXrri5/0xbZf7X59+rZurmnXDtI9Yy9X17ZGbdhxQF+n7tfXqQe059Dxate197eT2vvbSb3+6Q8yGAwa1rebJl3dT2FD+6m/X3v2S0OJgsJCLX4vRU+v/FL5BYXl9mve1EOL/jBeMycOlZubY+5Na9nMU8/dc4PueuF/Vm3PvbNBd4+5XJ1tBIMAGqaRI0eWupaLj4+32hu9PGW3fpCsZ9CVDQLt5ePjU+px2RmFjh4fANC4HT6Vo5ufidO5C/lWbe5ubnpt1o26Z8zlcndnXgkA1DUEf5fYtm2bjEajXcu7hISElLpYrOgiMTExseSuUKPRWOWlWMrWU96sQkePj4Yn84RZK9b/oNc//UGZJ+374GBwj06aMWGohvTopMIiiwqLilRQWFTm6+LHtr8u7lN0Sf9vdmfog007rc417z+fatLQfg12acGEDds1418f6KyNN9OHTpi1bO0WLVu7RS2aemjskF4KG9pPoVf1VUef1i6o1nFOmM9oxisf6KPNu+Xu5qYpIYF6OTKsUQaAFotFm/cc1Ftf/KTVyanKOWvfrD53NzeNv6K37h57ucKG9lPTS2ZN3T4yULePLP69fyTrtL5OPaCvTfu1wXRAv2SeqHa93+7J0Ld7MjT/rfXq0dFXYUP7adLV/RQ8IEAeTdyrNS5qj8Vi0YGjWWri5qZu7YxOC2Z/yTyhe158V9/9fLDCfsP7+ek/f7lVvbu0dXhN00cNUmziZm0uU9OZ83ma/9Z6vfnIbQ6vAUDdMHny5FLXclLxjZSVbZdwsV9ZZWfQZWVl1ai+suOVDfocPX5ldu3aZVf/Ll26qEuXLnY9BwDgGucu5OvmZ+LK/azo5Zlhum/clU6uCgAajszMTGVmZla5v73vvQn+LpGRkaHw8HC7nlP2rs6KwrZLl44JCgqy6zyBgYGl9lxITk5WSEiIU8dHw1BUVKTPt/2qZWu36OPv9qjQjmU0m3k20ZSQIEVOGKqhfbrW+gfHMybkaeuvvyntaOkPMU6fu6BZSz/W+9HhDWoWUX5Boea8sU7/WrOpSv3PXsjXms27tWbzbknS0D5dFTa0eIZVUPeO9fpnczQrVzf89Q2Z0o5KkgqLirTy6+3auDNdK+dM0fDL/CoZoWHIyy/Qq4mb9e9Pv9fPh+wP4fr7tdc9Yy/X9FGD1Mm38llLHX1aa+q1QZp6bfHfjMwTZn1tOqANpuIw8NfDp+yuQSpeFvRfazbpX2s2ydiymcZf0UeTru6n8Vf0kU+r5tUaE9X3w95DmhW7Rt/vLX5D2cm3tUYH9dDooB66blBPBXTwqWQE+xUVFSk26TvNe/NTm3cIX+TRxF1Ph4/RY7cEO+1OYYPBoH/OCNXwR62XbH/7y62KCr1aQ/t2c0otAFwrLCxMRqOx1JKdsbGxGjRoULn7npvNZkVGRlot8ylZXwuW7VPbS2s6evzKVCUgvdQjjzyiRx991EHVAABqi8Vi0X0vv19y/VBWVOjVeqCBr8oEAI62atUqvfjiiw4bn+DvEuvWrbP7OWU3VJ80aVK5fRMTE0u+LhsYViYoKKhUMFf2vM4YH/XbcfMZvfX5T1q+bovdH+b369pOkROG6s4xQxz6oX3LZp567cEbNeHJN63a1mzerfc37dSt1wx02Pmd6fCpHE19fpU27kqv9hhbfjmkLb8c0pNxn8uvnbdCh/bVpKGXaVRQ91IzvOq6307m6ProN2wuO5lxPFuj5v1bMXeN0yM3X+Ow5f/qgpM5ZxX6tzfLvbgqj0+r5pp2bZDuHnu5rujVpUYBcJe2RoWPHqzw0YMlFe8p+LXp96VBTQesQvmqMJ85r9XJqVqdnCp3NzeFDAwoWRK0Z6c21a4VlTt7Pk9PrfxC//zwm1J76h0+dVorv96ulV8X7w3VvYOPRg/qodFBPTU6qHuVQuOKpB/L0v0vva8vU/dX2C8ooKPeevR2BXXvWKPzVcfQvt0UMXqw4r7aZtX2l+VJ2viPyHp9M4WznM/LV/qxbOWez9NlXdupRTNPV5dUqZ3pR3U0O1fXDerp6lJQRyxdulTTpk0rdSwyMlLh4eF68MEHS4V5iYmJmjNnjsxms6KioqyW+6xsj72aLs1ZWbDn6PEBAI3DgtVfa3Vyqs22MYN76p8zqra1EADAderPJ8N1VGrq//8hjIqKKnepT7PZXOqOzKrsG3GpgICAUo/T00uHBY4eH/WLxWLR0exc7T54XHsOHtPGXel6/5udyqtgb6WyPJq46+bh/RU5YaiuDezutA9Ax13eW3deN0Rvf7nVqu3hpR/rukE96/2MoY070zTl+QQdycqttTEzjmfrtaTv9FrSd2rV3FPXD+ldsiRoO2PLWjtPbTt4PFtj579Ram/DsgoKizT3P+u0YccBvfmX29TGq+Et/Xn4VI5ueOI/2plxrEr93dwMuuHy4qU8Jw3t57C9H7u189ad1w3RndcNkSSlHc26JAjcr4PHrWc7VKSwqEhfpe7XV6n79ci/P1F/v/aaNLSfwq7up6v7dKu1GV8Wi0Vnzufp5OmzOpFzVifMZ3Ui54zc3Ay6slcXpywn6Wpfp+7XjFc+qNKNHgeOZunA+h/1xvofJUmXdWtXPCNwUE+NCuxe5eV2LRaL3vz8J/1leZJOnyt/eVo3N4Pm3haiJ6ddJ08X3qSw4O5x+uDbXTpzPq/U8c0/H9TKr7eXBOCNWWFhkQ6dNOvAkSwdOJqltKOX/PvIKf126nRJX9/WzfXsXeM0Y/xVdTI0PXchXzGrv9Li91LU1quFdr72Z3nX8/cTqB0hISE2Q7z4+HjFx8dLUqlZgUajUevWrVNWVlap5/j7+9t9DVaZskFiZcFiXRsfAFD/vPfNDj0Z97nNtj5d2mr1vGlq4s5WDgBQ1xH81YDZbC6ZZRcYGFjhUidlZ9BVdf+9i8rO4Lt0dp4zxkfdVFhYpPTj2dp98Jj2HDz+e9B3XLsPHlP2mfPVGjOgg49mjL9K94y9Qh18WtVyxVXzwv0Tte7HX3TcfKbU8SNZuZr7xjotf/hml9RVUxaLRUs+/laPrVirgsLyl1iNCr1aYwb3UuKWPfrk+591NNu+gDD3XJ4+2LRTH2zaKYPBoGF9uylsaD9NHnaZ+vu1r+m3UWvSjmZp7PwVOlDFWWSffP+zLn94iRLmTtGIy+z7HVeXpR3N0rgn3qhSQHNZt3a6e8zlCh89WJ3bOP+u/IAOPrqng4/uGXu5LBaL9h85pbU//KI13+3WBtOBCv+/tmVXxjHtyjimhe8mq52xpUKv6quwof10/ZBeatW8qaTi183ZC/k6kXNGJ3LO6mTO2d///fvj38O9k+bSjy/kF5R73huu6K35d4zSyAEBNflx1EnmM+c19z/r9O9131d7jN2//z2JTfpOBoNBg3t0/H02YA8FDwhQ6xZNrZ5zJOu0Zi75UB9/t6fCsXt3bqM3H7lNw/q5fvneLm2Nmnd7iP76tvUHG4+/+aluGt5fLevBDLaasFgsOm4+Uxz+HikO9PYfOVUS8GUcz67y6/rU6XOKevUjvZti0vKHb1b3jr4Orr7qPt+2Tw++uqbkJpMjWbmK/u96vRp1o4srQ10RHR0tf39/zZ0712b7xdDP399fCQkJ8vf3V1xcXKk+oaG1P/shOzu71seszfFjYmLUv3//Kvdnfz8AqNu2/vqb7nnxXZtt3i2b6aMn76z3N2IDQF0xdepUBQcHV7n/rl277Fpqn+CvBmbPni2z2Sx/f3+tXr26wr7bt28v9djeuykrW3bF0ePDtS7kF2hv5kntPnRpwHdMP2ee0Pm88j/crio3N4NCr+qryAlDNW5Ib6fts1SeNl4t9OIfQ3XnP96xalux/gdNHzVIo4J6uKCy6jtzPk8zXvlAqzbYXi5Dkpo39dBrD95YMrvqpuH9VVRUpO/3Zipxyx4lfrdHqWlH7DqvxWLRt3sy9O2eDEX/d71Cr+qr5Q/frI4+rWv0/dTUvt9Oamz0CrtnjB06Ydaoua/r2buu12O3jKz3S3/uOXhc4554o9wN06XiC6yp1wbp7jGX6yoH7K1ZXQaDQT07tdGsScM1a9Jwmc+c16c/7dXH3+3W2h9+UVbuObvGO24+ozc//0lvfv6Tmno0Ue/ObZSVe04nT5+tld9zl/r0x7369Me9unZgd82fOkpjBvWsMz/Xmvj4u92KevWjUrOwaspisWjrr4e19dfDevGDjWri7qahfbqWzAgc3q+bErf8rKjYj3Qy52yFY82aNFzP3T2uTi0H+ZebRur1T39Q+rHsUsczT+Zo8XvJeip8rGsKc4Cs3HN6J8WkXRnHdOCScO9sBXswVseXqfs1aNYreu7ucXog9GqX/p4+bj6jR1//RPE2lnRdtvZ7RYwe0mj2kEXlIiIiNGnSJMXHx2vNmjXKyMgoudbz8/NTWFiYIiIiSvpfur+6JE2ePNlqzLIzAGsatJW9ZnP0+JXp37+/hg4dWqNzAgDqhsOncnTTM3E23xu6u7lp9ePT1KcRrJwCAM7SpUsXh94YR/BXTXPmzFFSUpICAwO1evXqSpd1qel+Cz4+PqUel72oc/T49d2KFStqdbwBAwZo2LBhFfbZvHmzdu7cade4RRaLzp7P07m8Ap27kK9zecX/XPzQ+43dFX/43aKJNLV31V/WHk3c1d7YSu29W6qpR55+275Rb27fWKrP0KFDFRgYWOE4X3zxhdLS0qp83sq0aNFC06ZOVfxX27Tux1+s2mcu+VDr/zpFn623f1/OiowePVo9elQcKK5Zs0bHj1vvRVeRc3n5+iXzhFpcyNe9l5X+73PsnEWJaYXq0dFX786frkE9OpVqd3NzUzuPfAXkZWjWkBa6MNBPWbnnlJV7TjlnL8hiscguub/q6YX/1PiJE3RjyFUVdk1ISNDZsxV/kG+PgIAAjRkzRnsOHtfY6BU6bCOcGODrplHdmsqndXP9VkEYtve7LzR3xyb17OQrjyYVLzMydepUtWxZ8XKnrvgd8V7Sen2eslk3tC+U2lu/bpt6NFG3dkb5tmohN7cTMm1cL9NGGwNd4r777quw/cyZM1q1alWl9dvj4u8IY8tmuiM4UHcEB6qgsFDf7MpQ4pY9+vi73epqyFZ3L3uDtZNSC0ntpbJvV87kS6v3Vfz7sH1zg8ICKlmCpvCgVse/raT3mqpLGy95t2pWYQDoqN8RFWnXrp3ND5Mv9VPqTr3zYaJOnj6r8R0kdbD9d8BgMMi3VXOd/f3vS0US0wp17Jz175eCwiJt2p2hTbsztO/HjUrwNMhisejGLpK62D6vZxN39ezURsYmR5UQ/3a557z4O6IiJpNJW7ZsqbCPvWIiRinixQ+tji9+L0V/uP4K+bf3qTfvI8pzzHxGaUez9PrOvAr72fs+onxF2pa8To99/5UmjB2l60NGVNjbEe8jzrftozlvrNWp07ZvQrBYLJq55EP98PKDlf4dQeNhNBoVFRWlqKioSvtu3Pj/f5SNRqPN98tlr7HsvWYr23/w4MFOHR8A0Dicz8vXrTErdeiE7RtzX5oRqrGDezm5KgBATRD8VeLSvRzMZrNSUlK0YMECpaenl8z0q8peDllZVVvKrjxl774se5Hm6PErsmvXLrvO5eg025ZDhw7V6nhdu3attI/ZbK7Red0ktZTU0lOSZ9Xulnc3SF1b2XNnvUW6cFrHj5Y/O6Qqy/ecOnWqVn/GrVu3lsFgUOyDkxUY9S+r/Zf2/nZSyz/ZLI8jtfvf9dy5ymcoHT9+vFrfaxsPSR62/tsUaeJVffXfR28vd8mMc+fOWZ2ztUFq3dIgqTqzlCx6OHaNfkjP1t+mX1fu+vyHDx/W6dO1N3PIy8tLO9KO6vonVuhY9hmbffp2aK02nuekC7lV+H/5go4eOVzpeQsLK9/b0tm/IzbtTtd/P/1Wl7eRil/tthTpfE6Wfsup2e/3SxUWFtb692rrd0QTd3ddG9hd1wZ21+L7JuiNt+J0MO3XWjtnTl7lgbenmz2/D/N1xnxSZyqZgOrI3xHVYbFYtPLr7VqS8LHGdymq2vdrOa/mVfi74ulW+eumU0uDvDyr8nvIotNZJ3S6kv+VqzLTJDc3t9Z/vn++7TaFDAxQ8o60UsfP5xVo3n8+VcLcqfXyfURZnauwVaP97yMqk6+Y+PXacbJID08eUe6KArX9PuKCxU0L43dU2MfdzU0TruyjwqIiecj1wV9mZqYyMzOr3N/e99+oXSaTqdT+6rNmzbLZr+zvNXsD7rLXeGW3Z3D0+ACAhs9isej+lz/Qdz8ftNk+c+JQRYVVfMMaAKDuIfirxOzZs5WUlGSzLT09Xf3791dgYKAmT55c4Z2hl14YSrW/tKajx6+IPWvLStIjjzyiRx991EHVoCHxb++jmLuu15+XW78G47/epnv61f9fYV3bGrVsdoTzl0KzWLRg9ddKNh1Q/Jwp6tq28hsYaio795yum/96ucsBXtGrs2aGDtTGDV87vBZX+nzbPt38TJxGti+S6sCHzc5ga0841MzB49l64NWPtPaHX3SZj0GSh6tLqrcMBoNe/GOorvpzrNUs6ndSTIoK5YOOmsgvKNRjK9bqvW926vU/3aJ+3do5/JwX8isOrof26aqls26ymmXvSqtWrdKLL77o6jJQRTExMSVf+/v7l3sdOGjQoFKP7V1VpezNmGX3cXf0+ACAhu/5/21QwobtNtvGDOqpl2aEObkiAEBtqN+bIznBxSVc/P39FRwcrNDQUKsLIpPJVLKxedm9HspT06U5Kwv2HD0+6iY3t/q/R1VZUaHDdHXfblbHi4rsXOKyjura1ujS/Y827krX5Q8vUdL3exx+rg07DpQb+g3r203rn71XLZrWnb2/HOGjzbs06an/1vqeWo2Zu5ub2hlb6rJu7RQ8IEA3DrtM9427UhHXDXZ1aQ5RVFSk15I2a2DUy1r7g/VSyLUlfs4ULXlgkm4ZMUC+rW3PRm5IhvTsrHuvv8Jm2yP/tn0DGOzz7Z4MXf7wEi16N1kFVZiJ7QitmzfVvyLDtHFxZJ0K/VC/mEwmpaSklDyeP39+uX3LzqDbsaPimahlZWRklHpcdjlRR48PAGjYPti0U0/89zObbb06tdGqeVNZEh0A6qn6P13GwWbNmqXw8HCby3nGxMQoNja25LHZbNa0adOUkJCgkJCQWq3D29u7wsd1fXzUrqYeTdS3S1v169ZOl3Vrp37d2uuybu3UoZWHXnt1iavLq1Xu7m5a9tBNuvJPr6qgsMjV5TRIJ3POavLTb+uRm0cq5q7r5enhmD8N+QW2//sFDwjQx3+7q8HPCov/apv+8M/3VFjE/8c11c7YUnuW/UFtjS1lbNHUZnh+8OBBvfFG7eyPdlFefsX7Cjraz4eOK/KVD5WyM83h5/Jv762RVwTqgdBhKioqUmraEX21fb++TN2v5B0HlHuu4r3i6qNn7rxe76SYdPrchVLHf/r1N4X5NqybEjp4t1L3Dj4K6OhT/O8OPurewVftW3no/fj/OOy8F/IL9Pibn+q9b3ZoxZ9u1cCADg47V1k3jxigl2eEqosTZrijYZs9e3bJ18HBwQoLK38mhNFoLNkyQipeMcYely7dGRwc7PTxAQAN17b9v+muF/5ns83Yspk+evJO+bauwlrxAIA6ieCvEhUt3xkdHa3g4GBNmzat1PGZM2fW+r4b9i7b4szxL852rCpn7+8nVW0vHXtUZV9Ho9FY5fPuOXRc2bnWe0e5u7mpuaeHmjdtouaeHvroyQm6rFs7BbT3sblPzpkzZ2r9e23VqlWlfXx9fWv1vC1alH5zGRjQUXNvC1HM6q9LjuUVSYdyi+RmMCioeyc186z5r7PmzSuf1dKuXflLlB3LztWBo1lWS8Vdqq2xpXp08C2ZnVnReJfWVdOfr8Vi0ZGsXGUcz5bFYlGejezpxQ82auPONK2cM0XdO/qqU6dOVfp/vSI5Z89rz6ETKioq0snz1j+X64J66MMn71TLZsUfqrdq1arC7zW/oFD7Dp+U+cz5Cs/bra1Rndt4yWAwyL2cPQwv5ejfEcvWbtGDsWtK/b+RnWfRodzi/xC+rVuoV+c2cjM4dtauu7t7g/kd0btL2wr7eHp6VnjOoiKLjplz9dvJHOUVVG320R9f/Vh33GDWAxOvLjeorspr2h7t2rVTfkGhXvxgo55e+aUu2Agfzxeo1P9LAR185FnDO3M9Pf8/6HJzc9PgHp01uEdn/eXmkcovKNSP+zK1PmmNzDmnVVBYqFbNm6pLGy81rcGNA76+vpX2qex3RHVc/B3RwaeV/jpttOa8sc6qz9FzBg3u0ancPersVdvvIyTpzPk87f3tpM7nlT+j2KtFU/374Vt028iBtseohfcRhUVFOnjcrCNZxXvEnrZRzg97M3Xln1/VE1NGae7t19r9O8JisehEzlmlH8u2OXvwzCXn7NrWqFcemKTJV19m9/fiTFOnTrUreNm1a5fdy+2j5ubMmSOTySSpeEWYZcuWVfqckSNHlto6wmQyVXlmXWpqasnX5d1Y6ujxAQANz5Gs07rpmTibK9G4u7lp1dypTlmeHQDgOAR/NRQSEqLQ0NBSF1tms1mJiYml7v4s+wFPTYO8sktxOnr8ivTv319Dhw6t0fkc7b777nP6OYcNG6Zhw6q2L1D3PyxWxvHSH+YO7+enlOdnyGBHENCyZUuXfK9jxoxx+DnmTxmld7/ZoZ8PnZAkHTtn0Ru7i39m1zf11Nq/32PXz6q6Jk+ebHXsfF6+Hl6aqBVf7S/3eR5N3PXSjFBFThhqd509evRQjx497K7Vlh/2HtK0hat17Nwpm+1bfjmkK/70qv798M1WNzXY6/Nt+3TTM3E6V86yljdc0VvvzQ9X86b/vzdZYGBgpR9WFRUVaeG7yXoy7vMKlnw9qbFDfPTfR25Xy5YtK63Vka+bf7yXorn/sQ4Sthwt0pajRbprzBDFPHyzmlQhoKyphvw7oqwOHTpU6XvNyy/Qf7/cqoX/S9b+I7ZfF/+vQFvf/FSL3k3Ww5OH66HJI+TTqvQNA7Z+R9TE1l9/0/BHX9PWXw+X2+fAaYvOHm6mVx6YpFuvsR3o1CaPJu4a1s9Pw/rNcvi5yqrK74iaeGjScC1f+732HT5Z6viyHRc0p5+fnrvnBoedu6yqvo+wWCxatnaL5v37E5vB8EVX9u6iH/81VT06lh+w1ubviJQdabr/5fe179RJm+35BYX6W/wX+uDbXXr9T7dU+ffEr4dPKip2jT7ferTCfm5uBj00abieDh9bL2aUd+nSxSU3x6Hq4uLiFB8fL6k49Fu7dm2VQvzJkyeXulZMSUmp8u+xiyGjJIWHh7tkfABAw3I+L1+3Phuvg8fNNttf/ONEjbu8t5OrAgDUNvb4qwWLFy+2OlZ2rz8fH59Sj+3dg69s/8GDBzt1fDhOdu45ZRzPtjo+qEdHpwRZ9UUzTw8tm3WzzbbPtu5T3FfbnFvQ79KPZenauf/WivU/lNunSxsvbVj4R82ceLXL/5te2burfnj5Qd0eXP4HQuYz53XHcwl66LU1Fc4cqcjaH37W5KffLjf0CxvaTx88EVEq9KsqNzc3PX7HKH2x4D519m1dbr/Pt+7T5Q+/oq9Syw9kHclisejJtz+zGfpdFBV6tVb86RanhH6wzdOjie6/4SrtXvZn/ffR23VZFe5szco9p6dXfqnuf1is+W9+qmPZubVe1/m8fEW/tV5X/6Xi0E+S7hl7uXYu/bNTQr+GztOjiRbfP8Fm20sffqNfD9sOsVwl5+x5TVu0Wg/Grqkw9Ht48gglL5pRYehX24IHBmjrK7P0l5uuqfBv37b9hzXskdf05NufVfg95BcU6vl3NijowX/p8637Kjz35T07a/OLD+jFP4bWi9APdV9sbKzmzp0rqfiGy4SEhCqvilB2KdC4uLgqPS8xMbHk69DQ0HLP5+jxAQANh8ViUeQrH2rzzwdtts8Yf5UeDKvaDewAgLqNGX+1oOzeCpL1jLuyM+gu3U+hKrKysko9LruRu6PHh+OY0mzfsR4Y0NHJldR9wQMDNGP8VVq+7nurtkdf/0Tjr+ijdsbKZ3fVls+27lP44tU6mXO23D6jg3po5Zwpau9d+XKIzmJs2UwJc6ZodFAP/WV5UrkftMYmfadNuzOUMHeq+lSyrOKl1ny3W1OeSyh3+cRbRgxQ/Ow7aryXYMjA7vrplYd01wv/0/qf9trscyQrV+OeeENPTrtO8+8YVWvL9FWmqKhIj76+Vv9as6ncPvNuv1bP3nW9y8NgFGvi7q7w0YM17dogffDtLi1Y/bW27a84cDt97oIWvpushe8mq6lHEzX3bKJmnk1+X6LZ4/fHHqWONfu9X3H7JW2eTdT096+LLBYtWP21fsk8UeH5Azr4aOmsm3T9kF61+aNo9CYN7aexQ3pZhUt5BYWavWKt3n8iwkWVlfbTvkxNXbhKvx4uf6aqd8tmWvHnW3XT8KovyV6bWjTz1D/un6hbrxmo+19+X3sOHbfZr6CwSDGrv9aH3+7Sij/fqqv6lF7289vdGZq55EPtSK94ll/LZp76e8RYzZo0jBsqUCvMZrNmz55dMqMuMDBQy5Ytk7+/v13jREdHKyYmRlLxPnzJycmVLq25ZMn/79td2bKujh4fANAwLH4vpdybpkcH9dC/Zk7i+hQAGgiCv1ri5+dXaqkUb2/vUu2DBg0q9djepTjLzsgre7Hp6PHhOKa0IzaPB3Un+LPl+T+M18db9ujwqdOljp/MOatH/p2ktx+7w+E1FBQWauH/kvXUyi8qWGpSmn1rsJ696/o6+eGjwWBQ5IShGt7PT1MXJpQsoVrWtv2HddWfX9VrD96k6aMG2exzqXc37lD44tUqKLSxiaCkKSFB+u+jt9Xaz6SdsaWSnrpLi99L0V/f/lyFRdbnLSqy6Kn4L5SyI03/fex2dfQpf5ZgbSgsLFLkkg/1n89+LLfPgrvHae7t1zq0DlSPm5ubbr1moG4ZMUCf/PCzFqz6utw7Yi91Ib+gOEQ/4/gaDQaDHp48XH+PGKtWzZnNVNsMBoNevH+ihjy0xOp3ykebd+uLbb9qzOCeLqqu+E7t2MTNemzF2gr3p7y6bzclzJ0i//Y+5fZxluGX+enHfz2ov6/8UovfTyn3b+fOjGMa8dhSPXZLsP42/TqdzyvQ/LfWa/m67yvcP1eSQq/qq1cemFQnvl80DImJiZozZ07JzZ3h4eFatGhRtcaKiopSXFyc0tPTJUnz5s2rcKnQuLi4kmvLhQsXVnpt5ujxAQD135rvdmv+W+tttvXs5KvV86bJo4b7hAMA6g6W+qwlZYO+gICAUo/LzqDbsWOHXeNnZGSUelx23wZHjw/HSS0n+Bvo38HJldQPxpbNtOQB23torfx6u9b+8LNDz//dzwc19M+xFe4v16q5p955fJqe/8P4Ohn6XSqoe0dt+WeU7rxuSLl9cs/l6c5/vKM//ut9nT2fV26/lV9v1/RF5Yd+d40Zorcfvb3WfyZubm6ae/u1+vK5+9SlTfn7k36x/VcNfOBlRSx+R29+/pMyT9je06Am8vILNH3x6gpDvyUPTCL0qwcMBoNCr+qnjf+I1Gcx92p0UO3ss1lT/f3aK2XRDL34x1BCPwca4N9BkROustn2yL+TVFBYfuDmSNm553T7cwl6eFlihaHfIzeP1NfP31+nQrBmnh5acM8N+vaFmRW+xykqsmjRu8ka8tASDXjgJS1bu6XC0K+Tb2u98/g0ffTknXXq+0X9FRcXpxEjRigyMlJms1nBwcHatGlTtUO/iy4N4tLT0zVhwoRSN45edOmyolFRUYqIqNosY0ePDwCov1IPHFHE4ndsvqfyatFUHz15p9p4tXBBZQAAR2HG3+8SExOt9kewR9kZdsHBwaUel10O9OLdmFV16dKdZcd2xvhwHNMB6+CvewcfebVo5oJq6oebhvfXLSMG6P1NO63aol5dI1Psw7X+gbj5zHlF/3e9ln5S8QeQ/bq203vR4epXhX3C6opWzZvqzUdu0+hBPTQrdo3OlrMv3xvrf9TmPQe1au5UDSjzoe2bn/+k+19+v9yfzf03XKnXHrxRbm6Ou99k5IAA/fSvWbrnn+9q7Q+/2OyTlXtOCRu2K2HDdknSZd3aaczgXho7uKdGBfao0V5Q5y7k67YFK7XuR9vndnMzaMWfbtVdY8oPWVH3GAwGXTeop64b1FPf7ErXgtVfl/vf2JGauLvp8Tuu1eN3jFLTGi6Ti6p5KnysEjakKiv3XKnjO9KP6t+f/qAHJl7t1Hq+/+WQpi1cpQNHs8rt49u6uf7zl9sUNrSfEyuzz5W9u2rLS1F67p2v9dw7G8q9WaSypW4NBoNmThyqmLvGydiS90yomcTERK1Zs6ZkSU+peIbfgw8+WGuz4YxGo7799tuSpUPT09M1fvx4+fv7a+DAgcrJyVFqamrJ9dyyZcvsuj519PgAgPrpWHaubvz72zpj4yZeNzeDEuZO1WXd2rugMgCAIzHjT8UhWWRkZKkNzu116Yy5wMBAmzPmRo4cWeqxrTswy5OamlrydXn7NTh6fNS+oqIimWzsVxPIMp+V+tfMMJsf9GUcz9aTcZ/X2nksFotWJ6eq/8x/6rWk7yoM/W69ZqA2v/hAvQr9LnX3mMu15aUoBQaUPxNjV8YxXf3Ia1qx/oeSn8XydVt030vvlfuziQq92uGh30VtjS215sk79fw9N8i9CufbffC4lnz8rW56Jk5tpz2ra+cs1zMJX+rb3Rl2zejJOXteoX97q9xAyKOJu1bPm0boV89d099fSU/frS0vRenmEQOcdt4re3fR9y89qKfCxxL6OVEbrxZ6KnyMzba/xX1uFQg6isVi0csffaPgOcsrDP2u6e+vn/41q06Hfhc19Wiip8LH6rt/PqDBPTrZ/fzAgA7auHiGljwwmdAPtWL79u3auHGjQkNDtWzZMmVmZmrRokW1vgSm0WjU8uXLtW7dOoWHh8vf31/Z2dlKSkpSRkaGgoKCtHDhQmVmZlYrlHP0+ACA+uVCfoFuW7BSGcezbba/cN9Ejb+ij3OLAgA4hcFS2YYZjcT48eMlSevWrbP7uSaTqeT5F8ewFfwlJiYqMjKy5HF0dLSioqKqdI4uXbqUfL1r1y6b+zU4evyLtmzZoptvvrnk8QcffKChQ4dW6Two7dfDJ9Xnjy9aHX9i6mg9HTHWBRXVL/9e971mLvnQ6rjBYNA3/4jU1X271Wj8/UdOadZra/Tpj3sr7OfmZtDz99ygR24e2SA2wj53IV+P/DtJy9d9X2G/adcO0pCenTTnjfJ/b/7lpmu0+L4JLvm5bNqdrumLVuvg8eot6Wls2UyjArvr+iG9NHZwL/Xq3Mbm93Ey56xC//amvt+baXOc5k099N78cN1wRe9q1YG6a/fBY/rk+5+VeTJH5y7k63x+gc7lFejchXydy8vXhbwCncvLLzl2Pv9i2+/7AVaiZTNPPTV9jB6+cXidXza4ocovKNSQh17R7oPHrdr+dOMIvfjHUIee/9Tps7r3pff08Xd7Kuw397YQPR0xtl7uy5JfUKhF7ybrmVVfKb+C5Uul4t+nT067Tn+56Zp6+b3WJt6PwxX4/w4A6g+LxaJ7X3pP//1iq832+2+4Uktn3dQgPsMAgMbA3vfi3Db+u+DgYMXGxlZryc/Zs2eXfB0VFVXu/nhlx42Li6tSMHfpTMTQ0NByQzlHj4/at93GMp+SFBjAjL+quG/cFUr4ers27DhQ6rjFYlHkKx9oyz+j5FmN2TH5BYV68YON+nvClzqfV/GH8/392mvZQzdpxGW1e0e4KzVv6qHXZt2kUUE9FPnKhzp97oLNfpcumWnLvNuv1bN3Xe+yC4kRl/nrx5dn6d6X3lPiloo/NLfFfOa8Ptq8Wx9t3i1J8mvnrbFDemrs4F4aM6in2hpb6vCpHI3/65vaYWPmrlS8X8LHf7tLIwcE1ORbQR11Wbf21V4Wp6ioSBfyC4uDwZJQ8GJQWLzcblBAR3m3al6bJcNOHk3c9cL9oZr4tzet2l5N3KwZ44c6bJb3t7szNH3R6nLv0Jaktl4t9Najt9frO7U9mrgreupo3Tisv+5/+b1yb6K4fkgvxT54o3p09HVyhQAAAPXPC+9vLDf0u3Zgd70ycxKhHwA0YCz1+bvJkydLkiIjI+3aHy8uLq5kSc3w8HBFR0dX2P/S9vT0dCUnJ1d6jiVLlth8vivGR+2ytb+fJA1iqc8qcXNz09KHbrK59J0p7aj+8X6K3WN+sytdVzy8RPPfWl9h6NfMs4li7hqnH19+sEGFfpeaEhKkH//1oK7o1dnu5z4VPsalod9Fbbxa6MO/RuiLBffpwbBh6tu1bbXHyjierTfW/6jpi1arY8RzuupPr2rk7OXlhn5tvFroiwX3EfrBJjc3NzVv6iHf1i3Upa1RPTu10cCADrqqT1eFDOyukIHdCf3qiBuu6K2JV/W1Ol5QWKRHX/+k1s933HxGi95N1qh5/64w9AsZWLyvaX0O/S41MKCDNv4jUs/fc0Opv+vtvVsqbvYdWvv3ewj9AAAAquCN9T9o3puf2mzr0dFX/5s/vVo3SQMA6g9+y//u0ll6EyZM0KJFiyqd+RcbG6uYmBhJxTP9qhKaRUVFKS4uriRcnDdvntauXVvuLLtLg8WFCxdWus+Eo8dH7UpNsw7+WjT14IMtO/Tp0lZ/nTZaT/z3M6u2Z1d9rVuvGai+XSufjXHq9Fk9/uanev3THyrtO+7y3no1anKj+O/Us1MbpSyO1ONvfqqXP9pUpecsuHuc5t5+rYMrqzqDwaBRQT00KqiHJCnjWLY+37ZPn2/7VV9s26cTOWftHtNiseinX38rt72zb2t9+uy96u/HJulAQ/DC/RO1/qe9KigsKnV83Y+/6JPvf7YZDFZFQWGhdqQf1bd7Durb3RnavCdDvx4+VeFzDAaD5t9xrZ6cfl2DWwK2ibu7Zt8Wonuuv0JJ3/8s39bNdV1QD7Vq3tTVpQEAANR5FotFz73ztf769uc2271aNNVHT96pNl4tnFwZAMDZCP4uYTQaZTabZTabFRkZqcDAQM2fP1+DBg0qFZwlJydrwYIFMplM8vf31/PPP6+QkJAqn2ft2rUaPny4zGaz0tPTNWHCBC1btsxqidCywWJERESdGB+1x2Qj+Bvo30Hu7kzGtcdjtwRrdXKqTGmlZ15dyC/QzCUf6osF98nNzfbP1GKxKP7r7Xrs9U903HymwvN09GmlF/8YqjuCA10+k82Zmno00Yt/DNW1gd1130vvKyv3XLl9X7h/ov580zVOrM5+fu29de+4K3XvuCtVVFSk7QeO6Ittv+qzbfu0cWdapcu7Viagg48+i7m3UQTDQGPRp0tbPTRpuP754TdWbY+t+ETXD+lVpT3nTpjPaPPPB7V5T4Y27zmoLb8c0pnzeVWuo713S7392B0aO7iXXfXXN+2MLXXP2MtdXQYAAEC9UVhYpL/8O0mvJm622e7mZtDKOVO4ORUAGgmCv0uMHDlSSUlJJY9NJpOmTZtms6/RaFR0dHSV9tCz9dxvv/1Ws2fPVlJSktLT0zV+/Hj5+/tr4MCBysnJUWpqqsxmsyRp2bJldu076OjxUTtyz12weVc/+/vZz6OJu5Y/dLOumb1MRUWWUm3JO9L0+vofNGO89WanezNP6MHYNfpi+68Vjm8wGDRz4lA9e+f1jXrpvRuH9deQf3XW9EWr9e2eDKv2JQ9M0gOhw1xQWfW5ublpSM/OGtKzsx67NVjnLuTrm93p+nzrPn2+bZ+2/nrYrvH6dW2n9c/+QV3aslcq0NA8MXW03v5yq9Us4Z8PnVBs0mb96cbSNz0UFhb9PpuvOOTbvCdDe387We3zjw7qobcfu12dfL2qPQYAAAAangv5Bbrrhf/p3Y07yu2z+N4JmnBl9VapAADUPwR/l1i+fLnMZrNSUlK0Zs0aZWRkKCMjQ2azWUajUX5+fgoKClJYWJhdM/xsMRqNWr58uUwmk95++21t3LhR2dnZSkpKkr+/f8l5qjsLz9Hjo+bK2xcsiP39qmVo3256eNIIvfSR9WyMuW+sU9hV/dS5TfGHpRfyC7T43WQteGeDLuRXPLsrKKCjlj50k67u280hddc3fu299dXz9+up+C/0zw+/0YX8Anm1aKp/zZykO68b4uryaqx5Uw+NHdyrZDbNcfMZfbHt19+XBt2ng8fN5T53SM9OWvv3P6idsaWzygXgRN6tmuvvd16vqFc/smp7euWXGn9FH+07fLI45NudoS17Dyn3XNVn85XHYDDoyWmjFT1lNCsCAAAAoBTzmfO65dk4fW06UG6fv02/Tn+6cYQTqwIAuBrBXxlGo1FhYWFOmwEXGBioRYsW1dvxUX229veTmPFXE09HjNEH3+5U+rHsUsdzzl7QQ0s/1nvR4fo6db+iYj/Sz4dOVDhWi6Yeeip8jB6ePKJKy7c1Jh5N3BVz9zj9+aZrtP/IKfXu3Ea+rRvmHgHtjC019dogTb02SBaLRXt/O6nPt+7TZ9v26evU/co5e0GSdOs1A7X8oZsa9YxQoDG4f9yVWpr0ndXfcPOZ8+o/86VaP99A/w56KTJMo3/foxQAAAC46PCpHIX+7S1tP2D78yU3N4OWPDBZkROsV0ACADRsBH+Ai5jKeWMWGNDByZU0HK2aN1Xsgzcq9G9vWbV9+O0ujXviDX2xreJlPSUpbGg//WtmmPzb+ziizAajnbFlo5rdZjAY1KdLW/Xp0lZRYcNUUFioA0ey5Onhzv8rQCPh7u6mf84I1Zj5Kxwyfr+u7TSsXzcN6+en4f38NMC/faPaUxYAAABV80vmCU148k2lHc2y2d7Uo4lWzpmim4b3d3JlAIC6gOAPcBFTmvVSn13bGhvszClnGX9FH4WPHqz4r7ZZtVUW+nVp46WXI8N00/D+fNCKSjVxd1fvLm1dXQYAJxsV1EM3jxigDzbtrNE4rZs31dC+XTW8n5+G9eumq/t24z0AAAAAKvX9L4cU9tRbVntPX+Tdspk+/OudCh4Y4NzCAAB1BsEf4AIWi8XmUp/s71c7Xrx/oj798Zdy3wSX5eZm0Kyw4fp7xFi1btHUwdUBAOq7RfeOV9KWPcorKKzyc/p2bathv4d8w/v5qX+39uzZBwAAALt8+uNe3f7cSp05b3sv6S5tvPTJ0/doIKtJAUCjRvAHuEDG8WyZz5y3Oh7E/n61oq2xpV78Y6jueuF/lfa9vGdnLX3oJl3Rq4sTKgMANAQ9Ovoqesoo/S3+C5vtrZp76uo+3UqW7RzWj9l8AAAAqJm4r7bpvpfeU0Fhkc32fl3bae3f75Ffe2/nFgYAqHMI/gAXSC13fz+Cv9oyfdQgxX21Tet/2muzvVVzTz0Tcb2iwq5WE3d3J1cHAKjvoqeOlqdHE8V9uVVubgYN6dn5//fm82M2HwAAAGrPC++naM4b68ptH9a3m9b87S618eJmMwAAwR/gEiYby3xKLPVZmwwGg1578EYNnvWKTp+7UKrt5hED9NKMUHVta3RRdQCA+s5gMGjObSGac1uIq0sBAABAA1VUVKQ5b6zTPz/8ptw+E6/qq9Vzp6pFM08nVgYAqMu4FRlwgdS0o1bHPJu4q0+XNi6opuEK6OCjz2LuVX+/9jIYDLqqdxd9+NcIvTt/OqEfAAAAAACos/LyC3T3i+9WGPrdM/ZyvR8dTugHACiFGX+AC5hsLPU5wL89S046wFV9usoU+yddyC9QUw9+5QEAAAAAgLrt9NkLuv25lfps675y+zx+x7V65s7rZTAYnFgZAKA+4FNwwMnOXcjXL7+dsDrO/n6ORegHAAAAAADqumPZuQp76i39uO83m+0Gg0EvzQjVrEnDnVwZAKC+4JNwwMl2HTymoiKL1fEggj8AAAAAAIBGa/+RU5rw1ze17/BJm+2eTdz11qO3647gQCdXBgCoTwj+ACfbvv+wzeNB3Ts5uRIAAAAAAADUBVt//U2hf3tLR7Nzbba3bt5U7z8RrusG9XRyZQCA+obgD3AyU9pRm8eDujPjDwAAAAAAoLH5YtuvujUmXqfPXbDZ3sG7lZKevltDenZ2cmUAgPqI4A9wMlPaEatjHX1aqZ2xpQuqAQAAAAAAgKusTk7V3S++q/yCQpvtvTq10dpn7lGPjr5OrgwAUF8R/AFOZLFYlGoj+Atkfz8AAAAAAIBG5bWkzXpoaaIsFovN9it7d9HHf7tL7b1bObkyAEB9RvAHONHhU6d1Mues1XGW+QQAAAAAAGg8ln7ynWa99nG57dcP6aV3509Xq+ZNnVgVAKAhIPgDnMjWbD+JGX8AAAAAAACNxRvrf9CDsWvKbZ8+apBW/OkWeXrw0S0AwH789QCcyHTAdvAXRPAHAAAAAADQ4L395VbNeOXDctv/ctM1WnTveLm5uTmvKABAg0LwBziRrRl/Tdzd1K9bOxdUAwAAAAAAAGdZnZyqe196r9w9/Z6/5wbNvi3EyVUBABoabh0BnMhkI/i7rFs7NWXpBgAAAAAAgAbr/U07dec//qeiItuh33OEfgCAWkLwBzjJhfwC7T543Oo4+/sBAAAAAAA0XB9/t1vTFq5SYVGRzfanw8doDqEfAKCWEPwBTrLn4HEVFFq/wWN/PwAAAAAAgIZp3Y+/6I7nEmx+JiRJ0VNG6Ylp1zm5KgBAQ0bwBziJrf39JCmwO8EfAAAAAABAQ/P5tn265dl45RUU2mx/7JZgPR0x1slVAQAaOoI/wEls7e8nMeMPAAAAAACgodlgOqCbnonThfwCm+0PTx6h5/9wgwwGg5MrAwA0dAR/gJOkHrAO/tp4tVAn39YuqAYAAAAAAACO8M2udE16+r86dyHfZvvMiUP14h8nEvoBAByC4A9wElsz/oICOvImDwAAAAAAoIHY8vNBhf7tLZ05n2ez/b5xV+qVmZP4PAgA4DAEf4ATHMvO1ZGsXKvjgSzzCQAAAAAA0CD8tC9T4598U6fPXbDZfud1Q7R01o1yc+MjWQCA4/BXBnACU9pRm8cDAzo4uRIAAAAAAADUtu37D+uGv/5H5jPnbbZPvTZIK/50C6EfAMDh+EsDOEHqgcM2jw/q0cnJlQAAAAAAAKA27Uw/qnFPvKFTp8/ZbL9lxAC99chtcnfno1gAgOPx1wZwglQb+/u5uRnUv1t7F1QDAAAAAACA2vDzoeO6PvoNncg5a7N90tX9tHLOFDVxd3dyZQCAxorgD3ACk43gr0/ntmre1MMF1QAAAAAAAKCm9v12UmPnr9DR7Fyb7eOv6KPV86bJowmhHwDAeQj+AAcrKCzUzvRjVscDu3d0QTUAAAAAAACoqbSjWRobvUK/nTpts33skF56L3q6mno0cXJlAIDGjuAPcLBfMk8qr6DQ6nhQQAcXVAMAAAAAAICaOHg8W2Pmr9DB42ab7aMCu+uD6HA182SlJwCA8xH8AQ6WesB6mU9JCgxgxh8AAAAAAEB98tvJHI2Zv0JpR7Nstl/T318fPXmnWjTzdHJlAAAUI/gDHMzW/n6SFMRSnwAAAAAAAPXG0axcjY1eoV8Pn7LZfnXfbkp86i61at7UyZUBAPD/CP4AB0u1EfwZWzaTXztv5xcDAAAAAAAAux03n9H10Sv086ETNtuv6NVZnzx9t7xaNHNyZQAAlEbwBziYrRl/QQEdZTAYXFANAAAAAAAA7JGde043PPGGdmYcs9k+qHtHrXvmD/Ju1dzJlQEAYI3gD3CgU6fP2tzoOTCggwuqAQAAAAAAgD0sFovufek9bT9geyuXAX7t9emz98q3dQsnVwYAgG0Ef4ADmdKO2jweyP5+AAAAAAAAdd5rSd/po827bbb17dpWn8Xcp3bGlk6uCgCA8hH8AQ5ka5lPqXipTwAAAAAAANRd2/b/pkdf/8RmW69ObfR5zH3q4NPKyVUBAFAxgj/AgVLLWQZioD9LfQIAAAAAANRVuecuaPqi1corKLRqa2dsqc9i7lXnNl4uqAwAgIoR/AEOZGvGX89OvmrVvKkLqgEAAAAAAEBVPLwsUT8fOmGz7c1HbpNfe2/nFgQAQBUR/AEOUlhYpB3p1nv8BbLMJwAAAAAAQJ0V/9U2vfX5TzbbHrslWOOv6OPkigAAqDqCP8BB9h85pbMX8q2Os78fAAAAAABA3bTvt5OKiv3IZtvQPl31zJ1jnVwRAAD2IfgDHCTVxjKfkhTUneAPAAAAAACgrrmQX6BpC1cp91yeVZtXi6aKnzNFnh5NXFAZAABVR/AHOEjqAYI/AAAAAACA+mL+m+v106+/2WxbOusm9ejo6+SKAACwH8Ef4CC2Zvy1bOap7h18XFANAAAAAAAAypP0/R699NE3NtvuG3elpoQEObkiAACqh+APcBCTjRl/gf4d5ObGyw4AAAAAAKCuyDxh1r3/fM9m22Xd2umlGaFOrggAgOojgQAcIOfseR04mmV1PJBlPgEAAAAAAOqMwsIi3fXC/3Qi56xVWzPPJkqYO1Utmnm6oDIAAKqH4A9wgB3pR20eDwog+AMAAAAAAKgrnnvna31tOmCz7cU/hiqQz3IAAPUMwR/gAKk2lvmUxJtFAAAAAACAOiJlR5qeTvjSZtut1wzUjPFXObkiAABqjuAPcABTWnnBXwcnVwIAAAAAAICyTuacVcQ/3lFRkcWqzb+9t5Y/dJMMBoMLKgMAoGaauLoAoCEypVkv9enf3lverZq7oBoAAAAAqF333XefPD2t97yaMWOGIiMjXVARAFSdxWLR/f96X4dOmK3a3N3cFD97Cp/hAACcbtmyZVq+fLnV8by8PLvGIfhDjXHBV5rFYrG51CfLfAIAAMAetXXRBzjCqVOnbB7Pzc11ciUAYL/YxM1as3m3zbZn7hyr4Zf5ObkiAACK30sfOWJ7NUF7EPyhxrjgKy3taJZOn7tgdTyoO8EfAAAAqq62LvoAR/D19bV5A2irVq1cUA0AVN22/b/psRVrbbaNGdxTs28NdnJFAAAUa9WqlTp2tM4R8vLyys1hbCH4Q41xwVdaarn7+xH8AQAAoOpq66KvLjl9+rSys7Pl7e2t1q1bu7oc1MCKFSs0dOhQV5cBAHbJPXdB0xauVl5BoVVbe++W+u+jt8vNzc0FlQEAIEVGRtpcRXHLli26+eabqzwOwR9qjAu+0kw2lvmUpCCCPwAAANihti76nG3jxo1KSUlRenq6MjIylJ6erpycnHL7e3l5yd/fX35+fvL391dwcLBGjhzpxIoBAI3FQ0s/1i+ZJ2y2vfXI7erow00pAID6j+APqGWpaUetjjXzbKJenX1dUA0AAADgWAcPHlRcXJxSUlJkMpms2i0WS4XPz8nJkclkKnlubGysJCkwMFDBwcGKiIhQt27dar9wAECjEvfVNv33i6022+bcFqJxl/d2ckUAADgGwR9Qy0w2lvoc4NdeTdzdXVANAAAA4BgrV65UXFxcqbDPVsjn7+8vqXhmn7e3tyQpOztbOTk5ys7Oltlstjl+amqqTCaTYmNjFRQUpIiICIWFhbFEKADAbnszT+jB2I9stl3dt5v+HjHWyRUBAOA4BH9ALTp7Pk97fztpdZz9/QAAANBQPPfccyWz8i4N+oxGo0aOHKmQkBANGjRIfn5+8vLyqvK4OTk5JUuDbt++XSaTSSkpKZKk7du3KzU1VXPmzFFUVJRmzZpFAAgAqJIL+QWavmi1cs/lWbV5tWiq+Nl3yKMJN2sDABoOgj+gFu3MOGbzLueg7gR/AAAAqN8++eQTzZ49Wzk5ObJYLDIajQoLC1NISIiCg4PtCvls8fLy0sCBAzVw4ECFhoaWHE9JSdHHH3+spKQkmc1mxcbGKi4uTk888YSmTZtW028LANDAPf7mp/rp199sti1/+GZ178jWLACAhoXgD6hFqTaW+ZSkoO6dnFwJAAAAUDtOnz6tyMhIpaSkyGKxlOy7d2k450jBwcEKDg7WokWLlJycrNjYWG3cuFFz5sxRYmKili5dyuw/AIBNiVv26OWPNtls++P4q3T7yEAnVwQAgOO5uboAoCFJPWA7+Av07+DkSgAAAICa27Fjh4YNG6bk5GSNHDlS69atU0JCgtNCv7JCQkK0atUqrV27Vtdcc402bNig4cOHa+fOnS6pBwBQd2WeMOvel96z2TbAr71evH+ikysCAMA5CP6AWmSyEfx19m2ttsaWLqgGAAAAqL6NGzdq/PjxkqSEhAQlJCRo4MCBLq6qWGBgoFatWqWlS5eqqKhI48eP19q1a11dFgCgjigsLNKd//ifTuactWpr3tRDCXOnqkUzTxdUBgCA4xH8AbXEYrHYXOozkP39AAAAUM9s3LhRU6dOVWhoqL799lsFBwe7uiSbwsLCtHnzZk2YMEEzZswg/AMASJIWvPO1Nuw4YLPtxT9O1ABWZgIANGAEf0AtyTyZo6zcc1bHgwII/gAAAFB/7NixQ1OnTlVUVJSWLVsmLy8vV5dUIS8vLy1fvlwzZ87UjBkzWPYTABq55B0H9PeEL2223TZyoP54w1VOrggAAOdq4uoCgIai3P39CP4AAABQj8yePVvR0dF64IEHXF2KXaKjo+Xv768ZM2bom2++cXU5AAAXOJqVq4jF76ioyGLVFtDBR8tm3SSDweCCygAAcB6CP6CWmGws8ylJQSz1CQAAgHpk9erVdX6WX3kiIiI0efJkV5cBAHCBvPwC3fHcSmWezLFqa+LupvjZd8i7VXMXVAYAgHOx1CdQS2zt7+fRxF19u7R1QTUAAABA9dTX0O+i+l4/AKB6/vLvJG3clW6z7dk7r9ewfn5OrggAANcg+ANqicnGUp/9u7WTpwcTawEAAAAAABzl9U+/19JPtthsG3d5bz16y0gnVwQAgOsQ/AG14EJ+gfYcOmF1nP39AAAAAAAAHGfzngw99NrHNtt6dPRV/Ow75ObGR6AAgMaDv3pALdiVcUyFRUVWx9nfDwAAAAAAwDEOn8rRbQtWKq+g0KqtRVMPvf9EuHxbt3BBZQAAuA5rEAK1wNb+fhIz/gAAANBwHDx4UCkpKZKkoKAgDRw40MUVAQAaswv5Bbp9QYIOnzpts/2Nv9zK5zIAgEaJ4A+oBbb295OY8QcAAICGYebMmUpKSrI6HhUVpccff9wFFQEAGrs/LUvUt3sybLbNvS1Et48MdHJFAADUDSz1CdQCWzP+2hlbqoN3KxdUAwAAAFRux44dmjdvnq655hpdc801evzxx3Xw4EGrfhMnTlRSUpIsFkvJMYvFIovFotjYWA0cOFA7d+50ZukAgEZu2dot+ve672223XBFbz1z5/VOrggAgLqD4A+oBSYbwV9QQEcZDAYXVAMAAABULD4+XhMmTFB8fLwyMjKUkZGhuLg4jRgxQgkJCSX9XnvtNaWmppY8vhj4GY3GksfZ2dmaMmWKDh065PTvAwDQ+HyzK11/WpZos61nJ1/Fz54id3c+8gQANF78FQRq6GhWro5ln7E6zjryAAAAqIt27NihuXPnlszguxjmXfxnzpw5Wrp0qSQpLi5OBoNBFotF4eHh2rRpkw4dOqSdO3fq0KFD2rRpkx544AFlZ2dr6tSprvy2AACNwG8nc3THcyuVX1Bo1daymac+eCJCPq2au6AyAADqDoI/oIZsLfMpSUE9CP4AAABQ98TExEhSSaC3cOFCbdq0Sbt27VJCQoKuueYaxcTEaOnSpUpPT5ckJSQkaOHChfLz8ys1lp+fn6Kjo/XNN98oKytLzz33nNO/HwBA43Ahv0C3LVipI1m5NtvffOQ2DfDv4OSqAACoe5q4ugCgvjMdKCf4Y8YfAAAA6picnBylpKSUPN60aVOpMC84OFjBwcGKi4vTvHnzZDAYFBoaquDg4ArH9ff312uvvabw8HDNmjVLrVu3dtj3AABofCwWi2a9tkbf/Wy9F60kzZ8ySreMGODkqgAAqJuY8QfU0PYDh62Oubu56bJu7VxQDQAAAFC+jIwMScWz/WzN4LsoIiJCEydOlCSFhIRUaeyQkBANHDhQH3/8ce0UCwDA75au3aI31v9os23iVX311PQxTq4IAIC6i+APqCGTjaU++3Ztq2aeHi6oBgAAACjfxaU7JVU6i++hhx6SxWIpNxy0JSgoSImJidWuDwCAslJ2pOnPy2z/benduY3efvR2ubvzEScAABfxVxGogfyCQu06eNzqeCDLfAIAAKAO8vLyKvm6W7duFfYNDAyUJJ0+fbrK4xuNRm3fvr16xQEAUMahE2bd8fxKFRQWWbW1bt5UH/w1Qt6tmrugMgAA6i6CP6AGfj50QvkFhVbH2d8PAAAAdZGPj0/J1zt27KjSc9asWVPl8dPT05WTk2N3XQAAlHU+L1+3xcTrWPYZm+1vPXqbLuvW3slVAQBQ9xH8ATWQamOZT0kK7N7ByZUAAAAAlRs4cKCMRqMkVWkvvvnz56uoyHqWRXl27NhRalYhAADVYbFYFBW7Rt/vzbTZ/tdpo3XjsP5OrgoAgPqB4A+oAVv7+0nM+AMAAEDd9eCDD8pisSg2NlaHDh2qsG9UVJSWLVtWpXHj4+OVnp4uf3//2igTANCIxSZu1luf/2SzLWxoPz057TonVwQAQP1B8AfUQOoB6+DPp1VzdW1rdEE1AAAAQOWioqI0cOBAWSwWTZkyRd98802Nxzx48KAWLFggg8Gg4ODgWqgSANBYbTAd0F/+/YnNtr5d2+rtx26XmxsfaQIAUB7+SgI1YGvGX1BARxkMBhdUAwAAAFTNO++8owceeEBeXl6aMmWKBgwYoI0bN1ZrrJUrV2rEiBEym82SRPAHAKi2jGPZmvJ8ggptLDPt1aKpPngiQl4tmrmgMgAA6o8mri4AqK9O5pxV5skcq+OB3VnmEwAAAHWbl5eXoqOjSx6npKTIz8/PrjFSUlI0c+ZMmc1mhYaGavDgwfLz89PIkSNru1wAQCNw7kK+bo2J13HzGZvt/330dvXt2s7JVQEAUP8Q/AHVlFrO/n6BAR2cXAkAAABQM9WZpefv76+lS5cyww8AUGMWi0Uzl3yon379zWb7U+FjNOnqy5xcFQAA9RPBH1BNJhv7+0nFS30CAAAADZ2fn5/dswQBALDllTXfKu6rbTbbbhx2maKnjHJqPQAA1Gfs8QdUk60ZfwaDQQP8mfEHAAAA1IakpCRdc801ri4DAOBAX6Xu12Mr1tpsu6xbO731yO1yc+MjTAAAqoq/mkA1mWwEf706+aplM08XVAMAAAA0PBkZGcrIyHB1GQAAB0k7mqUpzyeosKjIqs3YspnefyJCrVs0dUFlAADUXwR/QDUUFhZpR/pRq+OBLPMJAAAA1Jq0tDR5eXm5ugwAgAOcOZ+nW2PidTLnrFWbwWBQ3GN3qE+Xti6oDACA+o3gD6iGfYdP6nxegdXxoO4EfwAAAEBtOH36tDZu3OjqMgAADpBz9rwmPvmmtu0/bLP97xFjNPGqvk6uCgCAhqGJqwsA6iNb+/tJBH8AAADApT755BMlJycrIyND6enpys7OrvJzc3JyZLFYZDAYHFcgAMDpTp0+q4lPvqnv92babL9lxAA9fsco5xYFAEADQvAHVIPpQDnBH0t9AgAAANq4caPmzp1ban8+i8XiwooAAHXBsexc3fDEf8q9oXqAX3v95y+3ctMHAAA1QPAHVMN2G8Ff6+ZN5d/e2/nFAAAAAHVISkqKpk+fLun/wz6DwVCtD3EJCwGg4cg8Yda4J/6jPYeO22xvZ2yp95+IUKvmTZ1cGQAADQvBH1ANJht3pgUGdJCbG9tmAgAAoPHKycnRzJkzS5boNBgMslgsBHgA0MilHc3S9dFvaP+RUzbbO/u21mcx96lX5zZOrgwAgIaH4A+wk/nMeaUfy7Y6HsgynwAAAGjklixZIrPZXDK7z2KxKDAwUBERERo0aJD8/Pzk5eXl4ioBAM60N/OErn/iDR08brbZ7t/eW5/F3KuenQj9AACoDQR/gJ1szfaTpMDuBH8AAABo3JKSkkpm+RkMBi1btkyhoaGuLgsA4CI7049q3BNv6EhWrs323p3b6LOYe9WtnbdzCwMAoAEj+APsVF7wF8SMPwAAADRy6enpJUt8RkdHE/oBQCP2075MjX/yTZ3MOWuzfYBfe62PuVcdfVo7uTIAABo2NiQD7JR6oJwZfwEdnFwJAAAAUPdc3M8vPDzcxZUAAFzl290ZGhv9Rrmh3+U9O+vL5+4n9AMAwAEI/gA77cw4ZnWsewcfebVo5oJqAAAAgLojMDBQkuTl5aXWrfkwFwAao69T9+uGv/5H5jPnbbYP7+enz2LuVVtjSydXBgBA40DwB9jpqI116Xt3aeuCSgAAAIC65WLwl5OTo9OnT7u4GgCAs6378ReFPvWWzpzPs9k+KrC71j1zj7xbNXdyZQAANB4Ef4CdTuVaL1PRpnULF1QCAAAA1C1PPPFEydcbN26s8XgpKSmaOXNmjccBADjeB5t26qZn4nQ+r8Bm+/gr+ijxqbvVqnlTJ1cGAEDjQvAH2KGoqEhZudZLVfi25k41AAAAwMvLS88//7wsFotiYmJqPN6OHTuUlJRUC5UBABxp5dfbNeX5VcovKLTZftPw/nr/iXA1b+rh5MoAAGh8CP4AO5jPXpDFYrE6TvAHAAAAFIuIiND8+fOVlpampUuX1misrKysWqoKAOAoK9b/oLte+J8Ki4pstk+7dpBWz5uqph5NnFwZAACNE39xATucOm29zKck+bZiqU8AAADgoqioKKWlpZXM+qvucp0pKSny8vKqzdIAALVoycff6k/LEsttv2/clXrtwRvl7s7cAwAAnIXgrxImk0nbt29Xenq6zGazjEajfHx8NHDgQIWEhLi6PDjZqdPnbB73YcYfAAAAUMqiRYuUlJSkmJgYvfLKKxo0aFCVn5udnV3qGgwAUPcsejdZj7/5abntsyYN1z//OFFuboR+AAA4k0uDv9OnTys7O1ve3t5q3bq1K0uxEhsbqyVLlshsNlfYLzw8XA8++KD8/f2rfa7k5GQlJiYqNTVVGRkZJRe3fn5+mjx5ssLDw2t0sevo8RuT8oI/lvoEAAAA/t+OHTsUGRmpnJwcWSwWmc1mpaSkVPn5tpbXBwDUDRaLRU+v/ELPJHxVbp+5t4Uo5u5xMhgMTqwMAABITgj+Nm7cqJSUFKWnpysjI0Pp6enKyckpt7+Xl5f8/f3l5+cnf39/BQcHa+TIkY4us0R6erqmTZum9PT0KvWPj49XfHy8li1bprCwMLvOZTKZFBkZWXKuwMBABQUFKTs7WyaTqeSfmJgYLVy4UBEREXVq/MboVC5LfQIAAAAVSUlJ0fTp0yUVfzhcnQ99Lz7HYrFUeP0IAHAui8WiOW+s04sfbCy3z98jxmr+lFGEfgAAuEitB38HDx5UXFycUlJSZDKZrNoru3MzJyenJJCSimfeScWhVXBwsCIiItStW7faLltScVA2ZcqUSmf52RIZGWlX+BcXF6e5c+dKKp41GB0dXWrWndls1uzZs5WUlCRJmjt3rtLT0xUdHV0nxm+sspjxBwAAAJQrJydH06ZNk1Qc3l0a4AEA6reioiI9tPRjLf1kS7l9/nHfBP3lZufdwA8AAKzVWvC3cuVKxcXFlQr7bF3cXVwS08vLS97e3pKK92/IyclRdnZ2uaFbamqqTCaTYmNjFRQUpIiICIWFhdXqEqEpKSmlzh8eHq4777xTfn5+MhqNMplMSk9PLwk2y4qMjNSuXbsqXTYzOTm5JJSLioqyGbYZjUYtX75cM2bMKAnnYmNjNWjQoErDRUeP35idOl3OjL/WzPgDAAAAlixZIqn0jD2j0ajw8HANGjTIri0Stm3bpnnz5jmkTgCAfQoLi/THVz7QW5//VG6fJVGT9cDEq51YFQAAsKXGwd9zzz1XMivv0qDPaDRq5MiRCgkJ0aBBg+Tn5ycvL68qj5uTk1OyNOj27dtlMplKwrbt27crNTVVc+bMUVRUlGbNmlUrAWBaWlrJ1+vWrVNgYGCp9sDAQAUGBiosLEyJiYmaM2eOVVC5ZMmSSmfNzZw5U1Lxz6iyvosXLy4J5iRpzpw5lQZzjh6/MTuVa3vGn0+rZk6uBAAAAKh7UlJSZDAYSpb4jI6O1gMPPFCtsQYOHKjU1FQlJCTUcpUq2YLi0htS7dn3/OJ1YHZ2tqTi69eLN4wCQENjsVh038vv6+0vt9psd3Mz6PU/3aK7x1zu5MoAAIAt1Q7+PvnkE82ePbtks3aj0aiwsDCFhIQoODjYrpDPFi8vLw0cOFADBw5UaGhoyfGUlBR9/PHHSkpKktlsVmxsrOLi4vTEE0+ULClTXRkZGZKkhQsXWoV+ZV0MxyIjI0sdT0pKqjBsi42NLblInDVrVqU1GY1GRUVFlYSrZrNZcXFx5e7H5+jxG7tTNpb69GrRVE3c3V1QDQAAAFC3XLymMhgMioqKqnbod9HFUK62TZgwoVpbPFSkKls/JCcnKzExUampqcrIyJDZbJbRaJSfn58mT56s8PDwGoWHjh4fQOP0wvsbyw39mri76e3H7tAdwRV/jgYAAJzHzd4nnD59WtOnT1dkZKTMZrNGjhypZcuWaefOnVq4cKFCQ0NrHPpVJDg4WIsWLdLOnTu1cuVKXXPNNTKbzZozZ47Cw8N1+vTpao+dkZEho9FY5dArLCysVCgpFd85WtEF5MWlbyRZPbc8kydPLvU4MTHRZeM3draW+mSZTwAAAKCY2WwuWQmmKjciVsbb27ve7A9Y0c2jJpNJI0aM0LRp0xQfHy9JCgoKUmBgoMxms0wmk2JiYtS/f3/FxcXZfW5Hjw+g8fps6z49/tanNts8m7jr3fnTCf0AAKhj7Ar+duzYoWHDhik5OVkjR47UunXrlJCQUOWAqbaFhIRo1apVWrt2ra655hpt2LBBw4cP186dO6s1Xnp6ukaOtG8D4rKhmfT/d7mWlZiYWBIKGo3GKu9vUfYC0tb+gs4YH1KWjaU+fVs1d0ElAAAAQN1z6Z7utbEdQ1RUlHbt2lXjccqq7ZmE4eHh5V5/xcXFafz48UpPT1d4eLh27dqldevWadWqVVq3bp127dpV6pp67ty5iomJqfK5HT0+gMZr/5FTmrZwlYqKrG/AaN7UQ2v+dpcmXX2ZCyoDAAAVqXLwt3HjRo0fP16SlJCQoISEBA0cONBhhdkjMDBQq1at0tKlS1VUVKTx48dr7dq1do1xMTCzFeRVdu6qSk5OLvk6KCioRue5dCxnjQ/bS336tCb4AwAAACSVXCPm5OTUaDWWSzlyRRnp/2+avLine1X/uVR52z0kJydr7ty5kopDzEWLFlkttWk0GrV8+fJS4VxsbGyVVmJx9PgAGq8z5/N067PxNm+AdnMz6N3503X9kF4uqAwAAFSmSnv8bdy4UVOnTlVoaKgWL17s8Auv6rq4x+Bjjz2mGTNmaPny5ZowYUKVnms0GrVr1y679zuwdVenn5+fzb6XXliV16c8QUFBMplMJY9tzSp09PiQTuWy1CcAAABQnvnz5yspKUmStH37drtXVCnr4MGD1VqZpTIXr2nDw8O1aNEiu5+fnp6uESNGSCoO/cq7jpw5c6ak4uvNivaCl6TFixeX/Owkac6cOZXuGejo8QE0ThaLRfe//L5S047YbI+5a5zGX9HHyVUBAICqqnTG344dOzR16lRFRUVp2bJldTb0u8jLy0vLly/XzJkzNWPGDLuW/azOJue29vOzNY7ZbC7V195zBQQElHqcnp7u1PFR/MbX1ow/lvoEAAAAivn7++uBBx6QxWLRa6+9VuPxEhMTNW3atFqozLbKwrLyXFwq02g0Kioqymaf2NjYkmu0qux3WHYss9lc4X58jh4fQOP1wvsb9U6KyWbb7cGBmn1rsJMrAgAA9qg0+Js9e7aio6M1f/58Z9RTa6Kjo/Xcc89pxowZDj3P9u3bSz0ub7/DsjPoqrr/3kVlZ/BdOjvPGeNDyj2Xp4LCIqvjviz1CQAAAJSIjo7W9OnTlZycbPcWDGVlZWXVUlWl5eTkyGg0Vuvmz/T09JKZcxXNFlyyZEnJ1+VdJ5ZVduuJipbjdPT4ABqnz7bu0+NvfWqzLTCgg1b86RYZDAYnVwUAAOxR6VKfq1evrvOz/MoTERFh95599tqxY0epxw899JDNfmUDQns3k6/sv4Gjx4ftZT4lybcVS30CAAAAl1q0aJGys7Pt3oKhLJPJ5LBrFXv3Rb/o4my/wMDAcpfKTExMLJmNd3EPwaoou3dgSkqKS8YH0DjtP3JK0xauUlGRxarNp1Vzvf9EhFo283RBZQAAwB6VBn/1PRBydP2X3mUZHBxsdSF1UU5OTo3O4+PjU+pxdna2U8eHbC7zKUk+zPgDAAAAJEnPPfdcSSDl6+sri8WiGTNmKDAw0K6gLTs7WxkZGUpNTa3WrLyqjF+dfQNNJlPJbL/FixeX2y85Obnka3sDxsDAwFIrsCQnJyskJMSp4wNofM6cz9Mtz8YpK9f6sw83N4NWzpmiHh19XVAZAACwV6XBH8p36V2WkrRs2bJy+9Z0iZqyAWbZoM/R41dk165ddp2rS5cu6tKli13PqQvKC/5Y6hMAAAA1kZmZqczMzCr3t/f9tzMlJyeXWhXFYDDIYrEoNTW12tsJ1PQmR1vCwsKqFXbNnj1bUvHSmuXd9CmVXkKz7LYKlQkKCir1syq7rYMzxgfQuFgsFt3/8vsypR212b7grnEad3lvJ1cFAACqi+CvBhYsWFDy9cKFCyu8E/XSgFCq/ZmIjh6/ItHR0Xb1f+SRR/Too486qBrHYalPAAAAOMKqVav04osvurqMWhEeHq558+aVBH4Gg6FO7gVV0d585UlMTCwJzCq6BjKbzaWuz+ydsRgQEFDqcXp6ulPHB9D4vPD+Rr2TYvvmjNuDA/XYrcFOrggAANSEm6sLsEdSUpImTpzo6jIkFe/rcPECKTw8XBEREXY9v6Z3rVYW7Dl6/MaIGX8AAABAxS7dY/1i+FeTf+qSOXPmSJKioqIq3FOv7Ay6qu6/d1HZGXxlZ0o6enwAjctnW/fp8bc+tdkWGNBBK/50S528gQMAAJTP7hl/zz33nCZNmqSBAwc6op4KrVmzpk7cjWgymRQbGyupeF+/6twtai9vb+8KH9f18RuCbBvr3EsEfwAAAMBFXl5eJXvI+fv7KyIiQl5eXnZfX2RnZys1NVXx8fGOKdROMTExMpvNMhqNmjVrVoV9t2/fXuqxvd97ZTdhOnp8AI3H/iOnNG3hKhUVWd9o4dOqud5/IkItm3m6oDIAAFATdgd/r776qnx8fJwe/GVkZCgpKckhG7vbw2w2a8qUKZKKN0VftWqVU86bnZ1dZ8ePiYlR//79q9y/Pu7vJ5U/48+nFcEfAAAAqm/q1KkKDq76Mmq7du2ye7l9ZwoMDNSOHTu0atUqdevWrdrjhIeHKysrS2vXrq3F6uyXnp5ecuPnrFmzKr0mrenqKz4+PqUel71Wc/T4ABqHM+fzdMuzccqycZOzm5tBK+dMUY+Ovi6oDAAA1JTdwZ/RaFRWVpYjaqnQtGnTJDlmY3d7TJkyRWazWf7+/lq9enWVn1f24rCmF1dl79J09PgV6d+/v4YOHVqj89UHtvb4a9HUQ808PVxQDQAAABqKLl261Nub42wJCQlRQkJCrawiUnY/OleYO3eupOIlNaOioirtX9Pr5bLXYmWvgR09flXt2rXLrv4N7f9zoD6zWCy6/+X3ZUo7arN9wV3jNO7y3k6uCgCAxiMzM1OZmZlV7m/ve2+7gz9vb2+lpKTo8ccft/ep1TZx4sQ6scTnjBkzZDKZZDQatXbtWrtmH5a9q9Lei6uy/QcPHuzU8WF7xp9v6xYuqAQAAACou4KCgmSxWNS6desaj+Xt7e3Svf7i4uKUkpIiSZo/f36VnmM2m0s9ru2lNR09flXZO+v0kUce0aOPPuqgagDY44X3N+qdFNv7e94RHKjHbq36LHQAAGC/VatW6cUXX3TY+G7VeZLJZNLOnTtruxabpk+frtTUVJdvJDxnzpySpUbtDf0k64uxtLQ0u55f9q7OshuyO3p8SFm2gj+W+QQAAABK8fPz06ZNm2plrIiICK1bt65WxrKX2WzWggULJBUvXxoWFlatcWq6ak1lwZ6jxwfQsHy2dZ8ef+tTm22BAR30+p9ucflncAAAoGbsDv6ys7NlsVgUGRnpiHpKmT59upKTk13+hiMmJkbx8fEloZ+/v7/dYwwaNKjUY3uX4ix7MVe2BkePD9tLffq2JvgDAAAAyqqtGwm9vLycvr/8RbNnzy6ZXbd48WKnnbfsEqm1sWSqM8cHUHftP3JK0xauUlGR9Uxqn1bN9f4TEWrZzNMFlQEAgNpk91KfkmQwGJSenq4HHnhAr732Wm3XJEmaOXNmqdDPYrHIYDBUaU+F2hQXF1eykfvq1aurHYiVvfDdsWOHXc/PyMgo9TgwMNCp48P2Up8+LPUJAAAANDjJyclKSkqSJIWGhjr1+qim+7U7a/yYmBj179+/yv3Z3w9wrTPn83TLs3HKyrX+bMPNzaCVc6aoR0dfF1QGAEDjM3XqVAUHV31p7V27dtm11L7dwd/FOx4NBoMSExPl7e2t5557zt5hKjRz5kwlJiaWCv0kKTw83Kl7C8bFxZVs5J6QkFCjiz2j0Sij0Vjy87N3z8JLl+609T+Eo8eHdMrGm2OW+gQAAAAannnz5pV8be9edmW3hahp0FZ2KU5Hj19V/fv319ChQ2t0bgDOYbFYdN/L78uUdtRm+4K7xmnc5b2dXBUAAI1Xly5dHHpjnN1LfS5cuFDh4eElYVxcXJyWLl1aawXNmzfPKvQzGAyKiIjQ888/X2vnqUxiYmKp0C8kJKTGY44cObLUY5PJ9kbKtqSmppZ8XV4tjh6/MTt3IV/nLuRbHfch+AMAAAAalJiYmJIbKcPDw+1e9cXHx6fUY3v34Cvbf/Dg/2vv7uPbOuv7/7/t3DRNHcn2KHSESOUL+zJcyymwddSNzI97J3bNCitNIrcFOuLETcdWVieNy13BTZ2ObkCqxGEFSuTEGfeN3ISbsVVyE75lQGO53sYYi5RmFAq2juPepU30+yO1sKzjWLKlcyzp9Xw88pjOuc65zscZ6pXLn3N9rsst7R9A8fnsNwf0tbD574je7/Xob9/HC+AAABSTrBN/Pp9P3d3d2rdvXzL519XVpf379885mO3btysQCKSt9GtqarI06RcKhZJ7GPb09OQsEdbS0pJyHA6HM753chLP5/PZ0n8pMyuFIbHHHwAAAIrbiRMn7A7BUtFoNLnVg5T9aj8pfQXd5OoqmRgdHU05nrqtQ777B1Bcvv+zX+j2B75r2lZ36SX6x4+8N/l7OAAAUByyTvxNaGho0KFDh5LJuY6ODh06dGjWgWzfvl333Xdf2kq/5ubmnK4onEkkEtG6desknVvd2NzcnPG9hmEoGo0qGo2arrab2lcgEMio32AwmPzc1NSUVtrFqv5Lmdn+fpJUReIPAAAARWpsbEz19fXatGlT1nuIF6qJF0Clcy9EzmZutHLlypTjbEtxTl2RN3XFYb77B1A8fvnkiNZ19+ns2URaW1XFhfrGHT5dtGSxDZEBAIB8mnXiT5I8Hk8y+ZdIJLRhwwY9/vjjWfeza9eulKTfBK/Xa2nSLxqN6rrrrkseBwIBNTY2qr6+PvmnpqYm+WeiDuvEn5qamuR1k/uZbPIbo9FoVKFQaMa4du7caXq/Hf2XqpHxZ0zPV1cstTgSAAAAwDqJRELBYFCrV6/WmjVr5vSy53wXCARSXuCc7dxo6gq6bJOmsVgs5XjqXvP57h9AcXj6udN672cCphWMysvLtH/LWv2fS6ptiAwAAOTbnBJ/0rlJwr59+ySdmxQ2NjZmlfzr7e1VV1dXWtKvoaEh2a8VotGoVq9eLcMwkucikYgikUhyFV80GpVhGMk/s9He3p7yRuXWrVvP29fkyWd3d/eMb2Pmu/9SNd2KP0p9AgAAoFg5HA6tWrUq+aJnJBLRhg0bdNlll2n37t06deqU3SHmjGEYyT3epdmv9pMkp9OZcu/EfoGZmly60+tN33cr3/0DKHyJREI3fe6bihz/tWn7XTe8S+98w2stjgoAAFhlzok/KTVJl0gkdN111+mJJ56Y8b7e3t6UydXE/ZOTiVYwDCMt6ZdPhw4dSk7UJhKOZqVB/X5/8u+nvb1dra2t86L/UjRyapoVfyT+AAAAUMT6+vp05MgRrV+/PpkANAxDXV1dqqmp0e23314U+wDedtttKcc333zznPpbtWpVyrHZfGw6g4ODyc/T7Tef7/4BFLbPfnNAXwub/3fh/V6P/vZ9JP0BAChmOUn8SanJP8MwtHbt2vO+Adrf359MOk1e7VdXV6eHHnooV2FlJBaLZZX0m3jDcuqfyc7Xn9Pp1NGjR9XU1CTpXHJuoqTohg0btHbtWtXU1Kirq0uS1NPTk1WZmXz3X4rMSmNIlPoEAABA8XO5XNqxY4eGh4e1bds2OZ3OZBIwEAiovr5ePp9PjzzyiN2hzkooFFJ/f3/y2Ov1zrkSSktLS8pxOBzO+N7JSTyfz2dL/wAK10M//k/d/sB3TdvqLr1E//iR96ZV3QIAAMVlYS47m0j+rV+/XtFoVGvXrk2ZQE0Ih8Nqa2tL+YdGIpGQ2+3WgQMHchlSRjwej06ePGnpM51Op/bs2aNIJKK9e/dqYGBA8Xhc/f39crvdqqurU3Nz86xX4eW7/1JDqU8AAACUOofDofb2drW3tysYDOq+++5LJpFCoZBCoZBcLpc2b96sdevW2Rxt5jZu3Jhy3N7ePuc+m5ubU44DgUBG/QaDweTnpqamacuN5rt/AIXp0f88oevu3q+zZxNpbVUVF+obd/h00ZLFNkQGAACslLMVfxMmkn+JREKDg4NpbxCGw2GtX78+5dxE0u/QoUNatmxZrkOa1zwej3bs2KEjR45oeHhYJ0+e1JEjR9TX15eTpFy++y8VZqU+Fy1cwD+YAQAAUJKam5t16NAhHT58WGvWrEmuAIzFYuro6NBll12m7du3z/t9ALu6ulKqtbjd7pyVv5xcVSUajSoUCs14z86dO03vt6N/AIXlv07+Vld/6qt65vkX0trKy8u0f8ta/Z9Lqm2IDAAAWC3niT8pNfkXCoW0adMmSdLQ0JDWrVunRCKRstpvIunncDjyEQ4wZyMmpT6rKy6kPAYAAABKWm1trfbs2aPh4WFt2rQpZR9Av9+vmpoabdq0SUNDQ3aHmiYSicjv96ecy+XLke3t7SklQ7du3XreLSECgUByBWV3d/eM5Ubz3T+AwvHr0XGt/vhX9Nux9JeWJWn7je/WO9/wWoujAgAAdsk68bdmzZqM9uBraGjQ7t27lUgkFAwGtX79eq1evVrS7/f0SyQScjgc6uvryyjp19/frzVr1mQbMjBnoyalPinzCQAAAJzjcDjU2dmpJ554QnfffbfcbncyCRgMBrV69Wo1NTXNq30Ab7vttrRzud7z7tChQ8lymtFoVKtXr07ZY2+C3+/Xli1bJJ1L6GWagMx3/wDmv1PPPK/mTz6g//n1qGn7Te/6E330vassjgoAANgp6z3+BgcHdezYsYwScM3Nzdq9e7c2btyocDicstIvkUjI6XTq0KFDWrFiRUbPjsVippMYIN9GxtPfmqtettSGSAAAAID5rbW1Va2trWn7AA4ODmrt2rXzYh/ASCSSNrf0+Xw53/PO6XTq6NGjuu2229Tf369oNKrGxka53W7V1tZqbGxMg4ODyZV6PT09afv32dk/gPnthRfP6Nrt+/TT//5f0/amP32d/De3UK0IAIASk/WKP6fTed7yIVNNJP+mS/q5XK6M+xodHaUcKGwxYrLir6qCFX8AAADAdGbaB3DFihXavn27Tpw4YXlsHo9HJ0+eTPmzY8eOvDzL6XRqz549Onz4sHw+n9xut+LxuPr7+xWLxVRXV6fu7m6dPHlyVkm5fPcPYH5KJBL68Oe/pe//7Bem7X/2uhXav2WtFi5YYHFkAADAblmv+KusrFQsFsvqnskr/8rKyuR0OnXgwIGskn6SWO0H25gl/ij1CQAAAMxsYh/AsbExfeELX9C+ffuSL5P6/X75/X41Nzfr5ptvVm1trc3R5o/H48lbctGK/gHML50PfE97f/gz07b/u/xlevDj1+uiJYstjgoAAMwHWSf+JCkcDmv79u3yer0Zbwi+cuVKtbe3y+/3q7W1VU6nM+M3Ow3D0MGDBxUOh3NeegWYyQsvntGpZ59PO19dQalPAAAAIFMT+wB2dnYqEAho165dikajkqRgMKhgMCiPx6NbbrkluT88ACDdfQePqvvrIdO2V1RW6KFP3aiXOS+yOCoAADBfzCrxl0gkkm9mzsZc7h0bG5vVfcBsjY6nr/aTWPEHAAAAzNbEPoChUEh+v18DAwOSzlV52bBhgxwOh2655Rb5fD4tW7bM5mgBYP74xiND+sieftO2igsXq/9TN+rVl1RbHBUAAJhPst7jT5LKysqS+zNk+0fSnO4FrGZW5lMi8QcAAADMVUNDg/r6+nTkyBGtX78+OfczDENdXV2qqanR7bffbss+gAAw34SHjuv6v/ua6e/IFi4o19e3+fSG17zShsgAAMB8MqvEn3Qu+Wf1H8AOI+PPmJ6votQnAAAAkBMul0s7duzQ8PCwtm3bJqfTmUwCBgIB1dfXy+fz6ZFHHrE7VACwxePRX+vPP71Xz7/womn7l/76fXrnG15rcVQAAGA+mnXib7ar9ubyB7ADK/4AAAAAazgcDrW3t+vxxx/X7t275fF4kvPBUCiktWvX6qqrrtL+/fvtDhUALHPiqbjWfOIBxZ9+zrS9+4ON8r31cmuDAgAA89as9viTJK/Xq4aGBrlcrlzGYyoWiykUCikcDuf9WcBUJP4AAAAA6zU3N6u5uVlDQ0P6/Oc/r4ceekjSuflhR0eHBgcHtX37dpujBID8Gh1/Vk2feEBP/NYwbb/l6iv10feusjgqAAAwn2Wd+IvH4/J4PJa/Yblp0yY1Njbq8ccft/S5wOg0pT6rl1HqEwAAAMi32tpa7dmzR7FYTHv37tWuXbskiaowAIrec6df0Hs/E9Djsd+Ytv/Fqlrd++E1bI8DAABSzKrUZ11dXa7jyMjKlStteS5K27Qr/ipY8QcAAABYxeVyqbOzU0888YQ6Ozt16aWX2h0SAOTNmTNndcNnv67Q0HHT9rfUvloP3PoXKi+f9S4+AACgSGW94s8wDDmdznzEMiMmdrDDyKn0FX/l5WVyLL3AhmgAAAAAbNq0ye4QACBvEomEbv3Hh/SNR4ZM22vdr9A37/BpyeJFFkcGAAAKwaxeC6qqqsp1HBlZtmwZ5VxgudHx9M2zqyou5K06AAAAAACQc/d8I6ydB4+atr3qZU71f+pGVVKFCAAATCPrFX9PPPFEPuLISGtrq1pbW217PkrTiMkef5T5BAAAAAAAubb3hz/T7V/5rmlb5UVL9NCnbtSrXmZPJS4AAFAYWLIEzGDUZI+/6mVLbYgEAAAAAAAUq+/99L/0l5/7pmnbBYsW6jsfv16XuV9hcVQAAKDQkPgDZjBikvirYsUfAAAAAADIkZ/+4qSu3b5PL545m9ZWVlamwG3v16rLLrU+MAAAUHBmTPydOnXKijjyptDjh/1MS30uI/EHAAAATGffvn3MxQAgQ798ckRNn3xA48+eNm3/fFuz3lt/mcVRAQCAQjVj4q+xsVH79++3Ipac6+3t1Zvf/Ga7w0ABO3v2rEbHn0s7T6lPAAAAYHp79+5VTU2NDh06lNN+T5w4oYGBAQ0NDeW0XwCwy1PG01r9sa/oN/GnTdu3XvsWtTfzuy0AAJC5hTNdsHv3bq1evVrHjx/X7bffbkVMOXHXXXdp165d2rdvn92hoIAZzzyvRCKRdr6aUp8AAADAeSUSCT388MNavXr1nPvavn27/H5/2vnm5mbdfPPNqq2tnfMzAMBqTz93Wi2f+qp+8avfmbbf8PY36DM3vNPiqAAAQKGbccWfx+PR7t27dd9998nn8xVEuZaNGzdq165duvvuu+X1eu0OBwVs5FR6mU+JPf4AAACA86msrFRZWVlO+rrqqqvk9/uVSCTS/gSDQa1evbqgXlIFAOncyxGtf/dPevTnT5i2v/tNf6Q9t1yTs/+WAgCA0jFj4k869xblvn379PDDD+vKK6/MebmWXBkYGNBll12m/v5+7d69Wz6fz+6QUOBGTj1rer6KPf4AAACAvNu+fbui0agSiYTKysrSfgE+kQAMBALM/wAUlN2HHtWDP/p307Y3vfaV+qet67Ro4QKLowIAAMVgxlKfExoaGnTo0CFdd9112rBhgxoaGrRt2zZddpn9mwufOHFCXV1d6u/vl8Ph0L59+1jph5yYLvFXTeIPAAAAmJbD4ZAkxeNxPfTQQzp27Jgkye126+qrr9ayZcsy6ue+++5LSfYlEgl5vV41NDTI4XBocHBQwWBQhmEoFApp06ZN2rVrV+5/IADIof86+Vt13G/+Uv1r/rBaBz9xoyouvMDiqAAAQLHIOPEnnSv7+aMf/UgbNmzQww8/rFAopIaGBrW3t+uqq67KV4zTGhgYkN/vVzgcViKRkMfj0YEDB5KTTGCuRsbNS31WVyy1OBIAAACgsCQSCfX396u/vz/l/JYtW9Ta2qrt27ef9/5YLJbSV1lZmbq7u1NW9vl8PnV3d8vv9+uuu+5SMBhUa2urLfNTAMjEi2fO6MZ7v65nnn8hre1i50V66FMf0CuqKmyIDAAAFIuMSn1O5nA41NfXp927d2vZsmV6+OGHtXbtWl122WXavn27hoaG8hFn0tDQkLZv367LLrtM69atUygUUiKRUHd3tw4dOkTSDzk1yoo/AAAAIGsTSTuzffkmSnM2NTWdt49oNJr8XFZWpqampmnLeba3t2v37t1KJBJqa2vL3Q8CADnW/bWQ/t9/njBte+DWa/XaV/6BxREBAIBik9WKv8mam5vV0NCgL3zhC9q1a5cMw5Df75ff75ekZPkVl8slj8ejFStWZP2MEydOKBKJ6NixY4pEIgqHw8m2RCIh6dwbnp2dnST8kBcjp6ZZ8beMFX8AAACAmd7eXkUikbQSnZMlEgkNDg5mVJpzYrVfS0vLea9rbm7WmjVrdOjQIR06dEirV6+e/Q8BAHnwk1+c1J37f2jatqnpz/TuN/2RxREBAIBiNOvEn3Ru9V9nZ6duueUWPfjggwoEAskVf+FwOCVRN/meyspKOZ1OVVZWyuFwaGxsTPF4XIZhKB6Pa2xszPR5E5NFt9ut1tZW+Xw+En7Iq5Fx8xV/VRVLLI4EAAAAKAx33XVXMumXSCTkdDq1atUqud1uud1uDQ4OanBwUJFIRMFgUJs3b85o73iPxzPjNZ2dnXrooYcUCARI/AGYV559/gXd+Nmv6cUzZ9Pa/uiVf6DuDzbaEBUAAChGc0r8TXA4HGptbVVra6uGhoa0d+9eDQwMpJRmmWAYxrSJvQlT3waVziX7Vq1apeuvv161tbW5CBuY0YhJqU/H0gu0cMECG6IBAAAA5rehoSEZhqGysjIlEgl1dnZq06ZNKddMlOsMBALaunWrOjo60vYBNFNZWTnjNW63W+vXr9f+/ftnFT8A5EvnV7+nfz/xVNr5BeXleuCj1+qiJYttiAoAABSjnCT+JqutrVV3d7ckaWxsTMeOHVM4HFY0GlUsFlMsFpNhGOftw+PxyOVyye12a+XKlfJ6vazsgy3MSn1S5hMAAAAwN/nlz/3798vr9U57bWtrq8bGxrR9+3Y98sgjuuqqq87b97JlyzKKobm5Wfv379fQ0BAvjQKYF3547L/1ue8cMW27/f1v0Z+9LvvtcQAAAKaT88TfZA6HQ16v13SyN7HqLx6PJ9/cJLmH+WbUpNRndcWFNkQCAAAAzH/Hjh2TJLW3t5836Tehvb1d9913n4LB4IyJv0xdfvnlSiQSisViJP4A2C4+/qw+9A/fMG1702tfqTvWvtXiiAAAQLHLa+LvfCaSfCT7MJ+ZlfqsWkbiDwAAAJhOWVlZRkm/CXV1dQqFQjl7/sQcMx6P56xPAJitj/QEdeKp9MpXSxYv1AMfvVaLFrKVCAAAyK1yuwMA5rORcUp9AgAAAJlyu92SpJUrV2Z8j8PhUCwWy1kME9VlZtpbHgDy7RuPDCnwL4+Ztm2/8d16/YqXWxsQAAAoCST+gGkkEgnTFX+U+gQAAADM1dXVScputd3Q0JDp+amJu1OnTmXU30QSkeoyAOz0q5ExbbrvO6Ztb1/5Gm2++s0WRwQAAEoFiT9gGuPPntaLZ86mna+m1CcAAABgyuPxKJFITJvMmyoWiykajUqSHnnkkbS2yTJNJkajUZWVlSX3kgcAqyUSCX3489/S78bSqwg5L1qi+//6vSov51dyAAAgP/hXBjANszKfklRdQalPAAAAYDrr16/XZz7zmYyubWtrk3Tul+Rr165NSf4FAgGVlZUljzNNJu7cuVPSuSQkANjhi9/9sQ79289N2z6/8WqtuLjS2oAAAEBJIfEHTMOszKckVbHiDwAAAJjWDTfcoGg0qqamJj3++OOm1wwNDWnNmjWKRCIqKytTe3u7Vq9erbVr12rNmjW67LLLkisBy8rKlEgk1NXVNeOz+/v7FYlE5HA4tGLFipz+XACQif/+1e/0t/94yLTtfVfVyvf/Zb4HKgAAwGwstDsAYL6aLvFHqU8AAABgerW1tVq1apUGBgbU2Ngol8slj8ejyspKxeNxRSKRtDKeDQ0N2rZtm+rr6xWJRJRIJCSdWwlYVlampqYm9ff3a9OmTdq1a5fpcwcGBtTR0aGysjJdffXVef85AWCqM2fO6gP3fl1PP3c6re2Sqgrtuvk9KSuZAQAA8oHEHzANSn0CAAAAs9PT06Mrr7xSp06dUjQaTUn0TST1ysrKVFZWJo/Ho1WrVkmS9u/frzVr1mhsbCzl2nvuuUdOp1P79u1TJBLRzTffrFWrVqmyslLRaFSBQEC9vb3JROHNN99s8U8MANI93wjryL/HTNv+8SPv1R84+H0CAADIP0p9AtNgxR8AAAAwO06nUwcOHJDD4Uhrm0j4TST1enp6km1ut1t9fX1asWJFsv3uu++Ww+HQHXfcIUmKRqPq6OhQfX29ampqtHr16pSkX3t7O2U+AVjusV/+rz65759N2zY0/qlW/8nrLI4IAACUKhJ/wDRGSfwBAAAAs+bxeHTo0CGtWbNGiUQi7Y/X69UjjzySlqTzeDw6cuSIjhw5ouHhYfl8PkmSw+HQpk2bUsqATvyZ4PV6dfvtt1v3QwKApOdOv6Ab/u5reuHFM2ltr/nDat1z02obogIAAKWKUp/ANKYr9VlVQeIPAAAAyITL5dKePXs0NjamY8eOKRaLyeVyaeXKlaarAafeO1VnZ6cikYgGBgZSzicSCd18880k/QDY4mN7f6DHY79JO19eXqYHbr1WFRdeYENUAACgVJH4A6ZhVupz6QWLtGTxIhuiAQAAAAqXw+GQ1+vNSV99fX2KxWKKRCLJRKLX650xkQgA+fBw5H/0999+xLRty1806MrXp7/EAAAAkE8k/oBpjJxKX/FXvYyNuAEAAAC7uVwu0xWBAGClsWee0wf//uspJYcnvOE1f6iPr3ubDVEBAIBSxx5/wDRGx9NX/FVT5hMAAACwzL59+7R161a7wwAAU3+9p1/R38TTzl+waKEeuPVaLV7E+/YAAMB6JP6AaZiV+qxeRuIPAAAAsMrevXvV29trdxgAkObbR4f1wA9+atrWdcM7dZn7FRZHBAAAcA6JP2AaZiv+qij1CQAAAExrbGxMK1as0EMPPTTnvsLhsCKRiCTp0KFDc+4PAHLl16PjavvCt0zb/j/Pq/WR99RbHBEAAMDvkfgDpjFCqU8AAAAga4lEQrFYbE59xGIxbdy4UWVlZZKkBx98MBehAcCcJRIJbfjCt/TbsWfS2hxLL9CX/uZ9Ki/n120AAMA+WRcbX79+vVwul+rq6uRyubRy5UotW7YsH7EBtnn2+Rf07PMvpJ2n1CcAAAAws0AgoI0bN87q3rGxMa1bt06GYaisrEyJREKhUCjHEQLA7Hzp+z9R8NH/MG37h7ZmuV9eZXFEAAAAqbJO/IVCIZWVlaXss+BwOOR2u9XS0jLryR0wn5iV+ZSkakp9AgAAADOKRqPav3+/1q1bl9V9Y2NjWr16taLRaDLpV1ZWpt27d+cpUgDI3C+fHNGtX+w3bfvzK2t0w9veYHFEAAAA6bJO/E1IJBJqampSZWWlJCkej+v48eM5Cguw18gp88RfFaU+AQAAgIx0dHTI6/XqVa96VUbXT5f027dvn7xeb56jBYDzO3PmrD5479c1/uzptLZXVFZo9+Y/T5YnBgAAsNOsE38333yzbr/99lzGAswbI+PptfolSn0CAAAA5+NwOLR79+7k/nxtbW3q7zdfHTMZST8A89293xrQwHDUtG3PX12ji50XWRwRAACAuawTf06nU2NjY1q5cmU+4kEBuummm7R48eK08xs2bFBbW5sNEc0dK/4AAABgt56eHu3Zsyft/OnT6atN5pPm5uZk8m9wcFC33367tm/fPu31JP0AzHeP/ucJfTzwA9O2m971J2q+4o8tjggAAGB6s17x53A4chkHCtjIyIjp+fHxcYsjyZ2RU6z4AwAAgL3Gx8f15JNP2h3GrDQ3N+vuu+/W1q1bFQgEVFdXZ7rfH0k/APPdsV/+Sms+8YBOv3gmre3Vr6jSZ/9yjQ1RAQAATG/Wib+Jvf2A6upq0xV/FRUVNkSTG6Pj5iv+qiuWWhwJAAAASlVFRYUuueSStPOnT5+e9uW7+aS1tVWStHXrVnV0dKiurk6XXXZZsp2kH4D5bjj2G73rji+Z/o6grKxMX7n1L7Rs6QU2RAYAADC9WSf+gAn333+/rrjiCrvDyKnpSn2y4g8AAABWaWtrMy2d/+ijj+qaa66xIaLstba2KhqNateuXbruuut09OhRLVu2TKdOnSLpB2Be+6+Tv9U7O+/Xb8fMKwLd9j6vVl12qbVBAQAAZKDc7gCA+cis1OeihQt00ZL0lY0AAAAAptfZ2ak1a9YoHo9r48aNOnHihN785jcrFouR9AMwL/3PkyN6R+eX9OSo+RYma/70dbqz9R0WRwUAAJCZrBN/EyU+nU5nrmMB5o0RkzIe1RUXqqyszIZoAAAAgMK2Z88e1dbWKhQKqb6+XoZhSNKMSb9wOKyNGzdaHS6AEnbiqbje0fklPfFbw7T9HW94rb52+zotWrjA4sgAAAAyw4o/wMSoSalPynwCAAAAs3fgwAEtW7ZMkjJe6Tc0NKT+/n4rwwRQwn41MqZ3bPuSjv961LT9LbWv1rc6fVqyeJHFkQEAAGRu1om/gYEBnTp1KpexZMSOZ6L0jIynl/qsXrbUhkgAAACA4uB0OnXgwAElEgklEglJmrG85/Hjx+VwOKwKEUAJ+018XO/s/JJ+8avfmbbXv96lBz9xvZayBQgAAJjnZp346+joUE1NjVasWKE1a9Zo69at2rdvX14Tgv39/aqpqclL38BkIyYr/qoqWPEHAAAAzIXH41FPT4/KysrU19c3455+AwMDFkUGoJSNnHpG777jy/r3E0+Ztv/JHy1X8JM3quLCCyyODAAAIHsLZ3vjxBuakjQ4OKhIJKLe3t7kOYfDIbfbrbq6OtXV1cnlcmnlypXJ0i6zEY/HJZ1b9TeXfoCZmCX+KPUJAACAUrNr1y4FAoGc9+twOLRly5bzXhOLxZRIJNhfHkBeGU8/p8aPfVmDx580ba+79BIduvMDcl60xOLIAAAAZmfWib8JZWVlyc+Tk4GGYWSUEKyrq5Pb7c4okTc2NjbXcIEZvfDiGZ169vm089UVlPoEAABAaXE4HIpGo8k9+XKlrKxMhmFkdC3zQAD5cuqZ59X0iQf0k1/8r2l7jevl+l7Xh9j6AwAAFJRZJ/6ampo0NjamwcFB0wnbbBKCK1eulMvlmjYh+Nhjj802XCBjo+Ppq/0kVvwBAACg9Fx99dXJlXmT53i5kEl/uUw2IrduuukmLV6cvtfZhg0b1NbWZkNEQHaeee60Wu78qo7+R8y0/Y9e+Qf63mc+qIudF1kcGQAAKFU9PT3as2dP2vnTp09n1c+sE3933HGHVqxYIencG5ixWEzHjh3T4OCgYrHYrBKC4XBYkkxXCBqGkXzTlDKfyCezMp8SiT8AAACUHofDIY/Ho6GhIZJwSDEyMmJ6fnx83OJIgOw9d/oFXdPVq9DQcdP2V7+iSj+46yb9YbXD2sAAAEBJGx8f15NPmpcfz0bWib+JffYmczgcqq2tVW1trXw+X0rb0NCQjh07pmg0qkgkolgspmg0mtbHTCsEAauMjD9jer6KUp8AAAAoQV6vV0NDQ+rp6ZHH41FlZWVenzcx5xwcHNSWLVso9TlPVVdXm674q6iosCEaIHOnX3hR127frx/87Bem7SsuduoHd92kV72M/UUBAIC1KioqdMkll6SdP3369LQv3pmZ8x5/M5lICE41NDSkaDSqY8eOzSohCOQLK/4AAACA35vYkqGpqcmS5zkc51bYuFwuhUIh7d+/35LnIjv333+/rrjiCrvDALLywotntG7HAT304/80bf/D6mX6/mc+pEtfUWVxZAAAAFJbW5tp2fxHH31U11xzTcb95D3xN52JhODUyWMsFlMkEkmuEpxIEAJWIfEHAAAA/J7H45HTac/Kl3yvLgRQOs6cOasb7/26vn102LT9YudF+t5nPqQ/Wv4yiyMDAADIrVkn/gzDSO7xl0sulyvtbdKxsTE9+OCD2rp1a86fB0w1Ok2pz+pllPoEAABA6XG5XLYl/lwuF5VfAMzZ2bNn9Zef/6YOhMy3kqledqG+95kPqcb1cosjAwAAyL1yuwPIhMPhUGtrq9avX293KCgB0674q2DFHwAAAEqTXeU2W1tb9cQTT9jybADFIZFI6Gb/g/rqP//MtN2x9AId/vQHVffq9P10AAAAClHWiT/DMCSdK8lptVe/+tWWPxOlZ+RU+oq/8vIyOZZeYEM0AAAAAABgNhKJhG794kPac/jHpu0VFy7WQ5/6gN702uUWRwYAAJA/s17xF4/HcxhGZiY2eQfyaWQ8fcVfVcWFKi8viAWyAAAAAACUvEQiodu/8l19/sEjpu0XXrBIBz9xg658vcviyAAAAPJr1pmMQCCg8fHxXMYyo5UrV8rl4h9kyC+zUp+U+QQAAECpOHXqlN0hzEmhxw8gN+7c90Pd842wadsFixbq2x9rVUMtlaUAAEDxmXXiLxKJ6PWvf702bdqkffv26cSJE7mMy1Rtba0eeeSRvD8HpW3UpNRn9bKlNkQCAAAAWK+xsdG2Pf3mqre3V29+85vtDgOAzbq/9rDu3P9D07ZFCxfoa9vW6R2Xv9biqAAAAKyxMNsbVq1apRMnTigajUqSDh48qIMHD6qsrExer1f79u3LeZCAlaYr9QkAAACUgt27d2v16tU6fvy4br/9drvDydhdd92lXbt2MScFStznvvOItj3wPdO2BeXl2t9xnZr+9I8tjgoAAMA6WSf++vr6Uo5jsZii0ahisZgqKytzFRdgG9NSn8tI/AEAAKA0eDwe7d69Wxs3btTQ0JB2796tZcuW2R3WeW3cuFH9/f26++675fV67Q4HgE2+ePjHuvWLD5m2lZeXae/fXqtr6i+zOCoAAABrZZ34m8rlcrHvHorGmTNnFX/6ubTzlPoEAABAKWlubta+ffu0fv16XXnllbrnnnu0evVqu8NKMzAwoLa2No2NjWn37t1qamqyOyQANtn3r8e06b7vTNv+jx95r65rqLMwIgAAAHvMeo8/oBgZzzynRCKRdr6aUp8AAAAoMQ0NDTp06JDOnj2rDRs2yOfz6fHHH7c7LEnSiRMntHHjRq1bt06StG/fPpJ+QAn79tFhfeDer5vO5yVp1+b36Ma3v9HiqAAAAOxB4g+YZNRkfz+JUp8AAAAoTR6PRz/60Y901VVX6eGHH1ZjY6N8Pp8eeeQRW+IZGBjQ+vXrVV9fr2AwqNraWh09epTynkAJ++5P/kvruvt05uxZ0/a//3CTNjReYXFUAAAA9plzqU+gmJjt7ydJVZT6BAAAQIlyOBzq6+tTMBhUR0eHHn74YYVCITkcDrW2turqq69WbW1t3p4/NDSkgwcPKhAIaGxsLLmip7u7Wz6fL2/PBTD/hYb+R++7q1enXzxj2t51w7v0V++ptzgqAAAAe5H4AyaZLvFHqU8AAACUuubmZjU0NOgLX/iCdu3aJcMw5Pf75ff7JUler1cNDQ1yuVzyeDxasWJF1s84ceKEIpGIjh07pkgkonA4nGybSPj5fD51dnbK4XDk5gcDUJB+/PMn1PKpvXr2+RdM27de+xZtff9bLI4KAADAfiT+gElGxp8xPU+pTwAAAODc6r/Ozk7dcsstevDBBxUIBDQ0NCRJCofDKYm6yfdUVlbK6XSqsrJSDodDY2NjisfjMgxD8XhcY2Njps+bSPa53W61trbK5/OR8AOgwf95Uqs//hWdevZ50/bNV1+pz9zwToujAgAAmB9I/AGTjE5X6pMVfwAAAEDSRJnP1tZWDQ0Nae/evRoYGFA0Gk271jCMaRN7EyYSfJO53W6tWrVK119/fV5LiQIoLD8/+Vu9+2Nf0ui4+fz9g+98k/7+w2tUVlZmcWQAAADzA4k/YJKRU9Ot+GOPPwAAAMBMbW2turu7JUljY2M6duyYwuGwotGoYrGYYrGYDMM4bx8ej0cul0tut1srV66U1+tlZR+ANMd/Pap3dn5Jv4k/bdr+fq9HPZv/XOXl5RZHBgAAMH+Q+AMmGZnmjcGqiiUWRwIAAAAUHofDIa/XK6/Xm9Y2seovHo+rsrIyeT0AZOJ/fzemd3Z+SU/81vxFguYr/lhf/ei1WrCApB8AAChtJP6ASUZMSn06ll6ghQsW2BANAAAAUDwmknwk+wBk6ynjab37Y1/WL58cMW1/++Wv0YGta7VoIXN3AAAAXoMCJjEr9UmZTwAAAAAA7BEff1arP/5lDcd+Y9p+VY1b37qjVUsWL7I4MgAAgPmJxB8widnm4NUVF9oQCQAAAAAApW382efV/Mmv6mf//SvT9je99pU6+IkbdNGSxRZHBgAAMH+R+AMmMSv1WbWMxB8AAAAAAFZ69vkX9OefDujof8RM2y9zvVwPfeoDcl60xOLIAAAA5jcSf8AkI+OU+gQAAAAAwE6nX3hR7797v/5l8Jem7a/9wz/Qdz/zQb3MeZHFkQEAAMx/JP6AlyQSCdMVf5T6BAAAAADAGmfOnNX1n/2aHvrxf5q2uy6u1Pe7PqQ/rHZYHBkAAEBhIPEHvGT82dN68czZtPPVlPoEAAAAACDvzp49qw9/4Vv6+sCQafslVRX63mc+KNfLK60NDAAAoICQ+ANeYlbmU5KqKyj1CQAAAABAPiUSCX2kJ6gHfvBT0/Y/cCzVdz/9If3R8pdZHBkAAEBhIfEHvMSszKckVbHiDwAAAACAvEkkEtr2wPfk7/9/pu2OpRfo0J0fUO2lr7A4MgAAgMJD4g94yXSJP0p9AgAAAACQP9v/6V+14+sh07alFyzSwU/coDe9drnFUQEAABQmEn/ASyj1CQAAAACAtT73nUf0sb0/MG1bvHCBvvWxVq267FJrgwIAAChgJP6Al7DiDwAAAAAA63zx8I916xcfMm1buKBc/3T7Or3j8tdaHBUAAEBhI/EHvGSUxB8AAAAAAJboe3hQm+77jmlbWVmZvvrRa3X1n73e4qgAAAAKH4k/4CXTlfqsqiDxBwAAAABArjz04//Ujfd+TYlEwrR9zy1/rusa6iyOCgAAoDiQ+ANeYlbqc+kFi7Rk8SIbogEAAAAAoPgMPH5c7797v148c9a0/XNtzfrQu/7E4qgAAACKB4k/4CUjp9JX/FUvW2pDJAAAAAAAFJ/Hfvm/arlzr559/gXT9q4b3qXNV19pcVQAAADFhcQf8JLR8fQVf9WU+QQAAAAAYM5+fvK3avzYV2Q8/Zxpe8dfNGjr+99icVQAAADFh8Qf8BKzUp/Vy0j8AQAAAAAwF0/81tC77/iynjKeNm3/cOOf6q4b32VxVAAAAMWJxB/wErNSn1WU+gQAAAAAYNZ+azytd9/xZcWeipu2X+v16L5NLSorK7M2MAAAgCK10O4AgPlihFKfAAAAQE6cOHFCgUBA0WhUkUhE8XhclZWVcrvdcrlcuvTSS9XU1KQVK1bYHSqAPBp75jk1ffIB/ccTT5m2v/tNf6Sv3voXWrCA99IBAAByhcQfIOnZ51/Qc6dfTDtPqU8AAAAgO1u3blVvb2/yOJFISJIMw1AsFkue7+rqksPhUEtLi3w+n2pray2PFUD+PHf6BV3z6YD+7b9OmrbXv96lr92+XosX8aspAACAXOKVKkDmZT4lqZpSnwAAAEDGNm7cqN7e3mSyb6pEIpFsSyQSMgxDgUBAq1evls/n0+OPP25luADy5IUXz2htd5/+NfI/pu11l16iBz9xgy5astjiyAAAAIofr1VlyDAM7dy5U729vTp69KicTqfdISGHzMp8SlIVpT4BAACAjPT39ysYDCb36UokEnI6nXK5XHK5XJKksbExxeNxxWIxGYaRvE6SQqGQQqGQmpubtWvXLnt+CABzdvbsWf3l576pg//vP0zbX/OH1Tr06Q8w3wYAAMgTEn8ziEajuu+++1JK1cTj8Zwk/kKhkILBoAYHB5MT34mJ8US5m7k8J9/9F5ORU+aJP0p9AgAAAJl58MEHk5+9Xq/a29vl9XqnvX5sbEzHjh3T0NCQQqGQwuGwJCkYDCoSiaivr0+vetWr8h43gNxJJBL6my8+pMC/PGba/srqZfrupz+oS6qWWRsYAABACaHU5zQikYg2bNig+vr6lKRfrvqur6/XunXrkn3X1dXJ4/HIMAxFIhF1dXWppqZGgUBg3vVfjEanWfFHqU8AAAAgM0NDQyorK5PX69X+/fvPm/STJIfDIa/Xq02bNmn//v0aHh7Wtm3b5HK5dPz4cTU2NuqJJ56wKHoAufDp/T/UzoNHTduql12ow5/+oF59SbXFUQEAAJQWEn+TGIYhv9+v+vp6NTY2qr+/P+fPCAQCamxsVDQalc/n0/DwsA4fPqy+vj4dPnxYw8PDampqSl6/ZcsWdXV1zZv+i9W0e/xRegQAAADISDQalSR1d3fP6n6Hw6H29nY98sgj2rZtm+LxuNauXZvLEAHk0RcePKJP7fuhaVvFhYvV/8kbdZn7FRZHBQAAUHpI/Olcwm/t2rWqqalRV1dXcsLq8/l05MiRnJXDDIVC2rJliySpvb1dO3bsSOvb6XRqz549Kck5v9+vYDBoe//FbPoVfyT+AAAAgEw4nU45HA6tWLFizn1NJACPHz+u7du35yA6APn01X/+mf56j/nL04sXLtC37mjVFa+b+38bAAAAMDMSfzo3QZ3YT8LpdKqzs1PDw8PasWOH3G63Kisrc/KcjRs3pjzjfO65556U446ODtv7L2bT7/FHqU8AAAAgE1dddVXO5k6S5Ha7tXv3bvn9fp06dSpn/QLIre/8aFh/+blvmraVl5dp/5a1etvK11gcFQAAQOki8feSpqYmdXd3a3h4WO3t7Skr5RwOx5z79/v9MgxDkrR58+YZr3c6nWpvb08eG4Zx3v348t1/sTMr9blo4QItvWCRDdEAAAAAhaelpUWxWCynfTY3NyuRSJR8hRJgvvqXwV9qXfcBnTl71rT9i3/1Xv35lTUWRwUAAFDaSPy9ZM+ePWptbc1b/zt37kx+nlxm83xaWlpSjs832c13/8VuxKTUZ3XFhSorK7MhGgAAAKDwNDc3y+FwaP/+/Tnt1+126+DBgzntE8Dc/dt/PaE///RePf/Ci6bt9354jT7wjjdaHBUAAAAW2h1AKQgGg8nVeE6nU263O6P7PB5PyvFEOVKr+y8FoyalPtnfDwAAAMjO7bffro6ODlVWVmr16tU56TMajSoej+ekLwC58e8nfqM1n3hA48+eNm2/Y+1b9ZH3XGVxVAAAAJBY8WeJUCiU/FxXV5fVvVOTc5P7sqr/UjAynl7qk/39AAAAgOy0trbqqquu0oYNG+Tz+fT444/Pqb+JlxPHxsZyER6AHIj+ZlTvvuPL+t1Y+jxaktqb/kyf9L3d4qgAAAAwgcSfBSaX0HS5XFndOzWRZ7ZnRr77LwUjJiv+qipY8QcAAABkq6+vT5dddplCoZAaGxt11VVXaf/+/Tp16lRW/Zw4cUIbN26UlJt91wHM3a9Hx/Wuzi/r5O/Mk/Hr3rJSn2trZtsMAAAAG1HqM88Mw0iW4ZTOleLMxqWXXppyHI1GLe2/VJgl/ij1CQAAAMzOP/3TP6mxsVGxWEyxWEwdHR3q6OiQy+WSx+NRQ0ODXC6XKisr5Xa7tWzZMknnkn3RaFTBYFC9vb1KJBIqKyvTypUrbf6JAMTHn9Xqj39Zv/jV70zbm/70dfry37xP5eW8Yw4AAGAnEn95NnUFXab7702YuoIvEolY2n8peOHFMzr17PNp56srKPUJAAAAzIbD4dCRI0fU0dGhffv2Jc9Ho1HFYjH19/fP2EcikUh+bm9vz0ucADLzzHOn1XLnXh37nydN2xtqL9WBreu0aOECiyMDAADAVLyGlWfHjh1LOa6srMzq/plK2uS7/1IwOp6+2k9ixR8AAAAwVzt27NC+fftUW1srScnyf4lEYsY/E9avX69Vq1bZEj8A6fQLL+ra7fv1yLB5haA3vuaV+vbHrteFFyyyODIAAACYIfGXZ3PdhL6qqirlOB6PW9p/KTAr8ymR+AMAAAByoaGhQYcPH9a+fft02WWXJZN6ZWVl0/6ZaL/55pvV3d1tZ/hASTtz5qw+8Pff0OGf/Ny0/XWvepkeuvMDcl60xOLIAAAAMB1KfebZ6OjonO6fuiJvaqIv3/1nYnh4OKvrly9fruXLl2f9nHwZGX/G9HwVpT4BAABggZMnT+rkyZMZX5/tv7/ni4aGBjU0NGhoaEgPPvig+vv7U/YYn0j4Tf7s9/vl9/vlcrnkdDqTFU4mz2Mmzk28xDg2NiaPx6Pbb789vz8QUOQSiYT+quegDoQGTdtXXOzU4Ts/qIudF1kcGQAAAM6HxF+eGYaRcpzr0pr57j8TnZ2dWV1/66236qMf/WieoskeK/4AAABgp76+Pt177712h2GZ2tpa1dbWatu2bcn9/h577DENDAykzW8mTN3b/HwSiYSOHTtG4g+Yo48HfqDdDz1q2vYyx1J999MflOvlldYGBQAAgBmR+LPYXEtzzpTYy3f/xYjEHwAAAGAPl8ulTZs2JY/HxsZ07NgxDQ0N6fjx44rFYhocHJw2ITjZ5BWDY2NjOnHihFasWDHjfYZh6ODBg6qsrJTD4UjbDmHyHGnyfGt0dDR57PF45Ha7Z3wWUCj+/lsDuuvAv5q2LbvwAh268wN63asutjYoAAAAZITE3zw3UbZmuuP53n8hGJ2m1Gf1Mkp9AgAAAFZyOBzyer3yer1pbWNjY4rFYopGo4rFYhodHU1+HhsbSykbmkgkFA6HtX79+hmfeezYMW3ZsmVOcXd2dqq9vT3j60OhkILBoAYHBxWLxWQYhpxOp1wul1paWuTz+eR0OmcdT777R3H78vd/or+9/5Bp25LFC/Wdj1+vN752/mzfAQAAgFQk/ua5iX0q5nP/XV1dqqmpyfj6+bS/n3SeFX8VrPgDAABA/q1du9Y00TWd4eHhrMvtFwOHw5EsEzqdsbExxeNxRaNRrVy50sLoMhOJRNTW1pZMUno8HtXV1SkejysSiST/dHV1qbu7W62trfOqfxS/bx15XBu+8C3TtgXl5erbslZv8bza4qgAAACQDRJ/eTb1Lcq5JtqmluLMd/+ZqKmp0RVXXDGn59pp5FT6ir/y8jI5ll5gQzQAAAAoNcuXL593L8cVKofDIYfDIZfLZXcoaQKBQHJloc/nU2dnZ8p8zjAM3Xbbberv75ckbdmyRdFoNOMkb777R/H758f+W+t3HNDZswnT9i/9zft09Z+93uKoAAAAkC0Sf3k2dX+IbPfgm3r95Zdfbmn/pWBkPH3FX1XFhSovL7chGgAAAABWmjynam9vT+4nOPmlyqnzpqkvXM6UaAyFQsmkXHt7u2myzel0as+ePdqwYUMyOef3+7Vy5Uo1Nzfb2j+K36P/eULXfCag0y+eMW3/XFuzWt96ubVBAQAAYFZI/OXZ1BV0x48fz+r+0dHRlOOpE8p8918KzEp9UuYTAAAAKC1OpzNvq982btyY8TPuueeeZGJOkjo6OmZMzOW7fxS34dhv1PTJB/T0c6dN2z+x/m3afPWVFkcFAACA2WJJU55N3Vci21KcU98sdbvdlvZfCkZNSn1WL1tqQyQAAAAA7FJZWZmXfv1+f3IV4ebNm2e83ul0qr29PXlsGIYCgYBt/aO4Hf/1qN59x5dMX4iVpFuuvlIfW/c2i6MCAADAXJD4y7OpK+iGhoayuj8Wi6UcezweS/svBdOV+gQAAACAudq5c2fyc1NTU0b3tLS0pBwHg0Hb+kfx+vXouN59x5f1vyOnTNt9b71c9354jcrKyiyODAAAAHNB4i/PnE5nyobq0Wg0q/snl+70er2W918KTEt9LiPxBwAAAJSSqdso5EIwGEyuxnM6nRlXWJn6QmY4HLalfxSv+PizWv3xL+sXv/qdaXvzFX+s+z/yXpWX82sjAACAQsO/4CywatWqlONIJJLxvYODg8nPDQ0NtvRfzM6cOav408+lnafUJwAAAFBa8lHqMxQKJT/X1dVlde/U5NzkvqzqH8XpmedOq+XOvTr2P0+atr+l9tXq27JWixYusDgyAAAA5AKJPwtMLaOSzduUk5N4Pp/Plv6LmfHMc0okEmnnqyn1CQAAAJSE0dHRvPU9uYTm1G0aZjI1kTd1mwYr+kfxOf3Ci7p2+349MmxeLeiNr3mlvv3xVl14wSKLIwMAAECukPjLwNjY2Jzub25uTjnOdOP0yZO4pqamlJKeVvZfzKbbwJxSnwAAAEBpyXWpT8MwkmU4JWU937r00ktTjqdu65Dv/lF8zpw5qw/8/Td0+Cc/N21/3atepofu/IAcS5dYHBkAAAByicRfBuLxeMrxbBKBnZ2dyc/RaDSjMiqTN2mffL8d/RerkVPPmJ6votQnAAAAUFIml/qMRqPq6upSY2OjampqtHz5ctXU1KixsVF+vz+jJNnUFXSZ7r83YeoKvqlbOuS7fxSXRCKhv+o5qAOhQdP2FRc7dfjOD+pi50UWRwYAAIBcI/E3g1AolPIWpSTt3bs3637a29tTJmJbt25N63eyQCCQnHh1d3fPOInLd//FamR8mhV/lPoEAAAASk40GtXatWtVX18vv9+vSCSSnFcZhqFIJKKuri7V19ero6PjvH0dO3Ys5TjbPQRnWoGY7/5RXD4R+IF2P/SoadvLHEv13U9/UK6XV1obFAAAAPJiod0BzCeRSEThcFijo6MyDEOxWMx0v7ze3l4NDAyotrZWbrdbVVVVqq2tVUNDw3n7P3TokK688koZhqFoNKrVq1erp6cnbVN1v9+vrq4uSecSeq2trRnFn+/+ixGlPgEAAIDSNlHRJRgMqre3N+P7ent7NTg4qAMHDpiW2ZzrlhFVVVUpx7moRJNN/ygef/+tAXUd+FfTtmUXXqCH7vyAXveqi60NCgAAAHlD4m+ScDicTIjNJBqNppR3aWpqmjHx53Q6dfToUd12223q7+9XNBpVY2Oj3G63amtrNTY2psHBweQbpT09PWn799nZfzEanabUZzWlPgEAAICSMjFP8ng8amlpkcvlksPh0NjYmEKhkILBYFpVlUgkora2NvX19aX1Nzo6Oqd4pq7Im5roy3f/MxkeHs7q+uXLl2v58uVZ3YO5+/L3f6K/vf+QadsFixbqOx+/Xm96Lf9/AQAAsNLJkyd18uTJjK/P9t/eJP4maW9vV3t7e16f4XQ6tWfPHkUiEe3du1cDAwOKx+Pq7++X2+1WXV2dmpubZ70KL9/9FxtKfQIAAAClbfJKt+7ubtO5UnNzs3bs2KGuri75/f6UtnA4rEAgkHbf1CRhrktr5rv/mWS7T/ytt96qj370o3mKBma+fXRYG77wLdO2BeXlOrB1rd7iebXFUQEAAKCvr0/33ntv3von8WcTj8ejHTt2FGz/xWJ0msRfZcUSiyMBAAAAYBen06kDBw6kbZMwVWdnp6qqqtIqxdx1110zvlw519KcMyX28t0/Css/P/bfWtfdp7NnE6btX/qb9+nqP3u9xVEBAADACuV2BwDYyWyPP+dFS7RwwQIbogEAAABgtdbWVg0PD8+Y9JvQ3t4ut9udcm5in/VcqqysPO/xfO8f9vnxz5/Qe7sCOv3iGdP2f9jQpNa3Xm5tUAAAALAMK/5Q0kZM9viroswnAAAAgPO4++67tW7dupRz4XA4LSE4F5NLkObDXPvv6upSTU1Nxtezv581/uPEU2r65AMaf/a0afsn1r9Nt7TUWxwVAAAAJlu7dq28Xm/G1w8PD2dVap/EH0qaWalP9vcDAAAAcD4NDQ1yu90pq/ymrvhzOp0px3NNtE0txZnv/mdSU1OjK664Yk7PRG49OXpKaz7xFf1uLP0FV0nafPWV+ti6t1kcFQAAAKZavnx5Xl+Mo9QnSppZqc+qZST+AAAAAJxfbW3tedurqqpSjrPdg2/q9Zdffrml/aOwnHrmeV39ya8q+pu4abvvrZfr7z+8RmVlZdYGBgAAAMuR+ENJGxlPfxOyetlSGyIBAAAAUEimlvWcejx1Bd3x48ez6n90dDTl2OVyWdo/CscLL57Rdd379dP//l/T9uYr/lj3f+S9Ki/nV0AAAAClgH/1oWQlEgnTFX+U+gQAAAAwk6kr7qYmzlauXJlynG0pzqkr8qYmFvPdPwpDIpHQpvu+o+/+5L9M26+qcatvy1otWrjA4sgAAABgFxJ/KFnjz57Wi2fOpp2vptQnAAAAgBlMXTHX0NCQcjw1ETg0NJRV/7FYLOXY4/FY2j8Kw6f3/1Bf/v5PTNte96qX6Vt3tOrCCxZZHBUAAADsROIPJcuszKckVVdQ6hMAAADA+RmGkfzc1NSU1u50OuV0OpPH0Wg0q/4nl+70er2W94/570vf+zd9at8PTdteUVmh/k/eqD9wML8FAAAoNST+ULLMynxKUhUr/gAAAICiFo1GVV9fn5K8y9bAwEDy8y233GJ6zapVq1KOI5FIxv0PDg4mP09dTWhV/5i/Dv/k59q48zumbRctWayDn7xBr76k2uKoAAAAMB+Q+EPJmi7xR6lPAAAAoLhVVlYqGo2qq6trVvdHo9HkCjufzzdtmcyWlpaU43A4nPEzJifxfD6fLf1jfvrpL07q/dv368zZ9K0rFpSX68DWtXrTa5fbEBkAAADmAxJ/KFmU+gQAAABKk9PpVFNTk3p7e7MukSlJW7ZskSS53W51dnZOe11zc3PKcSAQyKj/YDCY/NzU1JRS0tPK/jH/HP/1qJo/+VU9/dxp0/Zdm9+j1X/yOoujAgAAwHxC4g8lixV/AAAAQOlqbW2V9PskXqb8fr/C4bCcTqcOHTo0Y9JscmIwGo0qFArN+IydO3ea3m9H/5g/Rk49o6ZPPKBfx8dN2z++7m266V1/YnFUAAAAmG9I/KFkjZL4AwAAAEpWQ0ODnE6nwuFwxiU/u7q61NXVJbfbnVHST5La29vldruTx1u3bj3v3oKBQCBZhrO7uzvlXjv6x/zw3OkXdM2nA/qPJ54ybf/AO96oj69/m8VRAQAAYD4i8YeSNV2pz6oKEn8AAABAKZgolen3+1VTU6Ouri6FQqHkHn6RSETBYFAdHR2qqamR3++Xz+fTkSNHskqYTU4SRqNRrV69OmWPvQl+vz+5ArG9vT25KtHu/mGvs2fP6obPfl0Dw+Zlad/5htdq9+Y/V1lZmcWRAQAAYD5aaHcAgF3MSn0uvWCRlixeZEM0AAAAAKx2/fXXq7e3V5JkGIb8fr/8fr/ptV6vV52dnfJ4PFk/x+l06ujRo7rtttvU39+vaDSqxsZGud1u1dbWamxsTIODg8mVej09PWn799nZP+x12/2H9Y1HhkzbLv8/f6iv3b5eixYusDgqAAAAzFck/lCyRk6lr/irXrbUhkgAAAAA2MHj8Wh4eFi9vb0KhUKKxWKKx+MyDENut1sul0sNDQ1qamqac0lMp9OpPXv2KBKJaO/evRoYGFA8Hld/f7/cbrfq6urU3Nw861V4+e4f9viHbz+if/jOI6ZtrosrFfzkDVq29AKLowIAAMB8RuIPJWt0PH3FXzVlPgEAAICS4nQ61d7ervb2dkue5/F4tGPHjoLtH9b52kBEf3v/IdO2youW6KE7b9QfVjssjgoAAADzHXv8oWSZlfqsXkbiDwAAAABgr/DQcd342a8rkUiktS1euEDf/tj1ev2Kl9sQGQAAAOY7En8oWWalPqso9QkAAAAAsNG/n/iNrvlMQM+/8KJp+1f/9lp5ay+1NigAAAAUDBJ/KFkjlPoEAAAAAMwjvxoZU9MnHjDdmkKSPvuXa3TtKo/FUQEAAKCQkPhDSXr2+Rf03On0tycp9QkAAAAAsMOpZ57X1Z/6qqK/iZu2f+Q99frrP7/K2qAAAABQcEj8oSSZlfmUpGpKfQIAAAAALPbCi2f0/rv362f//SvT9vddVau/u2m1xVEBAACgEJH4Q0kyK/MpSVWU+gQAAAAAWCiRSGjjzm/rez/9L9P2VTVuffWjf6Hycn6FAwAAgJnxr0aUpJFT5ok/Sn0CAAAAAKx0574f6is/+Klp2x+/6mJ962OtWrJ4kcVRAQAAoFCR+ENJotQnAAAAAMBu93/v33Tn/h+atl1SVaH+T93IPBUAAABZIfGHkjRdqc9qSn0CAAAAACxw6N/+U5t2fse07aIli3XwEzfo0ldUWRwVAAAACh2JP5SkUUp9AgAAAABscvgnP9f7uvbpzNmzaW0Lysv1T7ev0xtfu9yGyAAAAFDoFtodAGAHSn0CAAAAAOwQfPQ/dO1d+3T6xTOm7bs2v0eNb/q/FkcFAACAYkHiDyXJrNTn4oULtPQCNkwHAAAAAOTHt48Oa213n16YJun38XVv003v+hOLowIAAEAxIfGHkjRiUuqzetmFKisrsyEaAAAAAECx+/rAkHz3HNCLZ9LLe0rSTe/6E318/dssjgoAAADFhsQfSlLcZMUfZT4BAAAAAPnQ9/Cgbvjs10z39JPOJf12b34PL6MCAABgzkj8oSSNjKfv8VddcaENkQAAAAAAitneH/5MH/qHb+js2YRp+8Y1V+gLG69WeXm5xZEBAACgGJH4Q0kyK/VZSeIPAAAAAJBDX/rev2nDF76tRMI86XfL1Vfq7zc0sdIPAAAAOUPiDyVpuj3+AAAAAADIhT2HH9Wmnd+Ztv3Wa1Zpx4caSfoBAAAgp0j8oeS88OIZnXr2+bTz1RXs8QcAAAAAmDt/8Ee6ZffBadu3/EWDum58F0k/AAAA5ByJP5Sc0fH01X4SK/4AAAAAAHP3ue88olu/+NC07Xesfas+6Xs7ST8AAADkBYk/lByzMp8SiT8AAAAAwNz83TfC2vLlw9O2f8r3dt2x7m0WRgQAAIBSQ+IPJWdk/BnT81WU+gQAAAAAzNL2f/pX3fHV70/bfteN79KWa99iYUQAAAAoRST+UHJY8QcAAAAAyJVEIqFP7/+hPrXvh9Nec8+HVuvW966yMCoAAACUKhJ/KDkk/gAAAAAAuZBIJPTxwA9014F/nfaaf9jQpFta6q0LCgAAACWNxB9Kzug0pT6rl1HqEwAAAACQmUQiodu/8l3d843wtNfsbG/RpjV/ZmFUAAAAKHUk/lBypl3xV8GKPwAAAADAzBKJhD76jw/pc985YtpeVlam3Zvfo798959aHBkAAABKHYk/lJyRU+kr/srLy+RYeoEN0QAAAAAACkkikdBHeoK6L/gj0/aysjLd/9fv1Y1vf6PFkQEAAAAk/lCCRsbTV/xVVVyo8vJyG6IBAAAAABSKs2fP6mb/g9pz+Mem7eXlZfrK3/yFfG+93NrAAAAAgJeQ+EPJMSv1SZlPAAAAAMD5nDlzVm07v60vf/8npu0LyssVuO39er/XY3FkAAAAwO+R+EPJGTUp9Vm9bKkNkQAAAAAACsGZM2f1oX/4hgL/8php+8IF5drXcZ3ed1WttYEBAAAAU5D4Q8mZrtQnAAAAAABTnTlzVjfe+3Xtf/iYafuihQv0T7evU8ufvd7iyAAAAIB0JP5QckxLfS4j8QcAAAAASLfjG6Fpk34XLFqor29brzV/+jqLowIAAADMkfhDSTlz5qziTz+Xdp5SnwAAAACAqaK/GdVn+v7FtG3J4oX61h2tetcb/8jiqAAAAIDpkfhDSTGeeU6JRCLtfDWlPgEAAAAAU/ztPx7Sc6dfTDu/9IJF+s7Hr9fbVr7GhqgAAACA6ZXbHQBgJbMynxKlPgEAAAAAqX7w2C/0zSOPp50vKysj6QcAAIB5i8QfSsrIqWdMz1dR6hMAAAAA8JLTL7yoj+wOmrZ96J1vIukHAACAeYtSn5izm266SYsXL047v2HDBrW1tdkQ0fRGxqdZ8UepTwAAAMwzPT092rNnT9r506dP2xANUFp2HvyR/uOJp9LOV160RF03vsuGiAAAAIDMkPjDnI2MjJieHx8ftziSmVHqEwAAAIVifHxcTz75pN1hACXnVyNjunP/D03b7mx9hy52XmRxRAAAAEDmSPxhzqqrq01X/FVUVNgQzfmNTlPqs5pSnwAAAJhnKioqdMkll6SdP3369LQv3wGYu61f/q5OPft82vm6Sy9R25orbIgIAAAAyByJP8zZ/fffryuuKIzJD6U+AQAAUCja2tpMS+c/+uijuuaaa2yICCh+jwxHFfiXx0zbPrexWQsXLLA2IAAAACBL5XYHAFhpulKflRVLLI4EAAAAADCfnDlzVn+1+6Bp27q3rFRD7astjggAAADIHok/lJQRk1KfzouW8NYmAAAAAJS4L373x3rsl79KO3/RksXq/uC7bYgIAAAAyB6JP5QUs1KflPkEAAAAgNL2u7Fn9LG93zdt+9jat2r5y5wWRwQAAADMDok/lJRRk1Kf1ctI/AEAAABAKfvY3u+bbg3xf5e/TB95T70NEQEAAACzQ+IPJWVkPL3UZ9WypTZEAgAAAACYD376i5Pac/jHpm3/sKFZixcttDgiAAAAYPZI/KGkmL3BSalPAAAAAChNiURCH+kJKpFIpLW1vPn1eveb/siGqAAAAIDZI/GHkpFIJDRqtscfpT4BAAAAoCQF/uUxHfn3WNr5CxYt1L1/ucaGiAAAAIC5IfGHkjH+7Gm9eOZs2vkqVvwBAAAAQMkZe+Y5bfnSYdO2jr/w6tWXVFscEQAAADB3JP5QMsz295Ok6gr2+AMAAACAUvPp/f+iX8fH0867X16pjvc12BARAAAAMHck/lAyzPb3k6QqSn0CAAAAQEn59xO/0ecfPGLa9nd/uUZLlyy2OCIAAAAgN0j8oWRMl/hjjz8AAAAAKB2JREIf6QmabgXxjje8VtdcWWNDVAAAAEBukPhDyaDUJwAAAADgm0ce1z8/9t9p5xcuKNfnNjSrrKzMhqgAAACA3CDxh5LBij8AAAAAKG3PPHdaf/uPh0zbPvKeev3xiostjggAAADILRJ/KBmjJP4AAAAAoKR1fz2k2FPxtPOXVFXojrVvtT4gAAAAIMdI/KFkTFfqs6qCxB8AAAAAFLtfPjmie74RNm3r/tBqOZYusTgiAAAAIPdI/KFkmJX6XHrBIi1ZvMiGaAAAAAAAVrr1i/16/oUX085fVeOW7/9baUNEAAAAQO6R+EPJGDmVvuKvetlSGyIBAAAAAFjp0L/9pw7+v/9IO19eXqbPb2xWWVmZDVEBAAAAuUfiDyVjdDx9xV81ZT4BAAAAoKg9/8KL+ps9/aZtGxr/VJf/n1daHBEAAACQPyT+UDLMSn1WLyPxBwAAAADF7HPfOaL/+t/fpZ3/A8dSffr6d9oQEQAAAJA/C+0OALCKWanPKkp9AgAAAEDWbrrpJi1evDjt/IYNG9TW1mZDROZO/tbQZ/r+xbTt09e/k+0fAAAAMG/09PRoz549aedPnz6dVT8k/lAyRij1CQAAAAA5MTIyYnp+fHzc4kjOr+PLh/X0c+m/KHnja16pv3zXn9gQEQAAAGBufHxcTz755Jz7IfGHkvDs8y/oudMvpp2n1CcAAAAAZK+6utp0xV9FRYUN0Zh7OPI/6nt40LTt8xuv1oIF7H4CAACA+aOiokKXXHJJ2vnTp09P++KdGRJ/KAlmZT4lUdYFAAAAAGbh/vvv1xVXXGF3GNN68cwZfaTnoGnbDW9/g658vcviiAAAAIDza2trMy2b/+ijj+qaa67JuB9eb0NJMCvzKUlVlPoEAAAAgKKz+6FHFTn+67Tzyy68QNs/8G4bIgIAAACsQeIPJWHklHnij1KfAAAAAFBcnjKe1icCPzBt+6Tv7bqkapnFEQEAAADWIfGHkkCpTwAAAAAoDZ0PfE/xp59LO1/jerlubn6zDREBAAAA1iHxh5IwXanPakp9AgAAAEDR+PHPn9CXvv8T07Z/2NCsRQsXWBwRAAAAYC0SfygJo5T6BAAAAICidvbsWf3V7oNKJBJpbe+7qlZvv/w1NkQFAAAAWIvEH0oCpT4BAAAAoLh95Qc/1aM/fyLt/IUXLNLf3bTahogAAAAA65H4Q0kwK/W5eOECLb1gkQ3RAAAAAAByKT7+rLY98D3TttuvfYtcL6+0NiAAAADAJiT+UBJGTEp9Vi+7UGVlZTZEAwAAAADIpQXl5br+bW/QwgWpv+b4P5dU66PvXWVTVAAAAID1SPyhJIyalPqkzCcAAAAAFIdlSy/QPTet1mM7b0nZy+/eD6/RksVUegEAAEDpWGh3AIAVzEp9VldcaEMkAAAAAIB8ef2Kl+u7n/6gvnnkcX3/Z79Q8xV/bHdIAAAAgKVI/KEkmJX6rFpG4g8AAAAAik1ZWZned1Wt3ndVrd2hAAAAAJaj1CdKwsg4pT4BAAAAAAAAAEBxI/GHonf6hRc1/uzptPOU+gQAAAAAAAAAAMWExB+K3uj4c6bnqyn1CQAAAAAAAAAAigiJPxQ9szKfklTFij8AAAAAAAAAAFBESPyh6I2OP2t6vqqCPf4AAAAAAAAAAEDxIPGHojdyyjzxR6lPAAAAAAAAAABQTEj8oeiR+AMAAAAAAAAAAKWAxB+K3ug0e/xVL6PUJwAAAAAAAAAAKB4k/lD0pl3xV8GKPwAAAAAAAAAAUDxI/KHojZxKX/FXXl4mx9ILbIgGAAAAAAAAAAAgP0j8oeiNjKev+KuquFDl5fzPHwAAAAAAAAAAFA8yHyh6ZqU+KfMJAAAAAAAAAACKDYk/FL1Rk1Kf1cuW2hAJAAAAAAAAAABA/pD4Q9GbrtQnAAAAAAAAAABAMSHxh6JnWupzGYk/AAAAAAAAAABQXEj8oaidOXNW8aefSztPqU8AAAAAAAAAAFBsSPyhqBnPPKdEIpF2vppSnwAAAAAAAAAAoMiQ+ENRMyvzKVHqEwAAAAAAAAAAFJ+FdgeA/AmFQgoGgxocHFQsFpNhGHI6nXK5XGppaZHP55PT6bQ7zLwaOfWM6fkqSn0CAAAAAAAAAIAiw4q/IhSJRFRfX69169apt7dXklRXVyePxyPDMBSJRNTV1aWamhoFAgGbo82vkfFpVvxR6hMAAAAAAAAAABQZEn9FJhAIqLGxUdFoVD6fT8PDwzp8+LD6+vp0+PBhDQ8Pq6mpKXn9li1b1NXVZWPE+UWpTwAAAAAAAAAAUCpI/BWRUCikLVu2SJLa29u1Y8eOtFKeTqdTe/bsSUn++f1+BYNBS2O1yug0pT6rKfUJAAAAAAAAAACKDIm/IrJx40ZJ55J7nZ2d5732nnvuSTnu6OjIW1x2otQnAAAAAAAAAAAoFST+ioTf75dhGJKkzZs3z3i90+lUe3t78tgwjKLc72+6Up+VFUssjgQAAAAAAAAAACC/SPwViZ07dyY/Ty7jeT4tLS0px8VY7nPEpNSn86IlWrhggQ3RAAAAAAAAAAAA5A+JvyIQDAaTq/2cTqfcbndG93k8npTjcDic89jsZlbqkzKfAAAAAAAAAACgGJH4KwKhUCj5ua6uLqt7pyb/JvdVDEZNSn1WLyPxBwAAAAAAAAAAig+JvyIwuUSny+XK6t6picJYLJaTmOaLkfH0Up9Vy5baEAkAAAAAAAAAAEB+kfgrcIZhJMt8SudKfWbj0ksvTTmORqO5CGveGDFb8UepTwAAAAAAAAAAUIRI/BW4qSv0Mt3fb8LUFYKRSGTOMc0XiUTCPPFHqU8AAAAAAAAAAFCESPwVuGPHjqUcV1ZWZnW/w+HIYTTzy6lnn9eZs2fTzldT6hMAAAAAAAAAABQhEn8FbmxsbE73V1VVpRzH4/E59TefmK32kyj1CQAAAAAAAAAAitNCuwPA3IyOjs7p/qkr/maTSBweHs7q+uXLl2v58uVZPydbI6eeMT1fxYo/AAAAzCMnT57UyZMnM74+239/AwAAAABKB4m/AmcYRsqxHaU7Ozs7s7r+1ltv1Uc/+tE8RfN7I+PTrPhjjz8AAADMI319fbr33nvtDgMAAAAAUAQo9Vlk5lr6s5j2/Juu1GfVRST+AAAAAAAAAABA8SHxV+IqKyvPe1zIRlnxBwAAAAAAAAAASgilPktcPB6fcx9dXV2qqanJ+Hor9veTpCWLF+r/Ln+ZRk49o5HxZ3X2bEISiT8AAADML2vXrpXX6834+uHh4azL7QMAAAAASgOJvwLndDpTjueayJtNqc+amhpdccUVc3puPtz49jfqxre/UZJ09uxZjT3zvEbGn9XLnRU2RwYAAAD83vLlyy17OQ4AAAAAUNxI/BW4qqqqlONs9/ibev3ll18+15DmpfLyclVWXKjKClb7AQAAAAAAAACA4sQefwVu6gq948ePZ3X/6OhoyrHL5ZprSAAAAAAAAAAAALABib8Ct3LlypTjbEt9Tl3x53a75xoSAAAAAAAAAAAAbEDir8BNXaE3NDSU1f2xWCzl2OPxzDkmAAAAAAAAAAAAWI/EX4FzOp1yOp3J42g0mtX9k0uDer3eXIUFAAAAAAAAAAAAi5H4KwKrVq1KOY5EIhnfOzg4mPzc0NCQs5gAAAAAAAAAAABgLRJ/RaClpSXlOBwOZ3zv5CShz+fLWUwAAAAAAAAAAACwFom/ItDc3JxyHAgEMrovGAwmPzc1NaWUDAUAAAAAAAAAAEBhIfFXJDo7O5Ofo9GoQqHQjPfs3LnT9H4AAAAAgGQYht0hAAAAAEBWFtodAHKjvb1dgUBA0WhUkrR161YdOnRo2lV8gUAgWeazu7tbbrfbslgBAAAAYD6KRCLau3evgsFgStLP6XTK5XKprq5ON99885znT6FQSMFgUIODg4rFYjIMI/mMlpYW+Xy+OVVkyXf/AAAAAOYvVvwVkcmJvmg0qtWrV6fs4TfB7/dry5Ytks4lDFtbWy2NEwAAAADmE8MwtGHDBjU2Nqq3tzdtpZ9hGIpEIurt7VV9fb06OjpmtRowEomovr5e69atU29vrySprq5OHo8n+Yyuri7V1NRkvIWDlf0DAAAAmP9Y8VdEnE6njh49qttuu039/f2KRqNqbGyU2+1WbW2txsbGNDg4mJyg9vT0pO0PWGxOnjypvr6+5PHatWu1fPlyGyMCigPfLSA/+G4B+cF3C+cTjUa1bt26ZPWUTPT29mpgYOC8VVamCgQCyRcwfT6fOjs7U+41DCM5l5OkLVu2KBqNZrwtQ777LxR834H84LsF5AffLSA/Sv27ReKvyDidTu3ZsydZomZgYEDxeFz9/f1yu92qq6tTc3NzyazyO3nypO69997ksdfrLakvOJAvfLeA/OC7BeQH3y2cz0QCbILP51Nzc7NWrlwpSTp27JjC4bD8fn/KfdFoVG1tbSm/UJhOKBRKqbpilmybmMtt2LAhmZzz+/1auXLljC9s5rv/QsL3HcgPvltAfvDdAvKj1L9bJP6KlMfj0Y4dO+wOAwAAAADmtXA4LOncLwN6enrSVvA1NDSooaFBLS0tuu6661JKfIbDYUUiEXk8nvM+Y+PGjZLOJd9mWmF3zz33JBNzktTR0TFjYi7f/QMAAAAoHOzxBwAAAAAoSRN7ons8HvX19Z23bKfH49Hu3bvTzk8kDqfj9/uTycLNmzfPGJPT6VR7e3vy2DCM8+7Hl+/+AQAAABQWEn8AAAAAgJI0kbS75557Mrq+oaFBTU1NKeeOHz9+3nt27tyZ/Dz13um0tLSkHAeDQdv6BwAAAFBYSPwBAAAAAErSY489JqfTOWOpzskaGhpSjs+3SjAYDCZX4zmdTrnd7oyeMTWe6VYV5rt/AAAAAIWHPf4AzCs9PT0aHx9XRUWF2tra7A4HKBp8t4D84LsFFLZYLCafz5fVPS6XK+X4fMm2UCiU/FxXV5fVczweT7IU6URfU5OO+e4fsAJjKZAffLeA/OC7hUJA4g/AvLJnzx49+eSTuuSSSxg8gRziuwXkB98toLAdPnw463tisVjK8dVXXz3ttZNLaE5NGM6krq4uJTE39blW9A9YgbEUyA++W0B+8N1CIaDUJwAAAAAAGRocHEx+bm9vn7bUp2EYyTKc0vlLgpq59NJLU46j0ail/QMAAAAoTCT+AAAAAADIgGEYyVV2Ho9HnZ2d0147dQVdpvvvTZi6gm/y6jwr+gcAAABQmEj8AQAAAACQgdtuu02GYcjtduvAgQPnvfbYsWMpx5WVlVk9y+Fw2No/AAAAgMJE4g8AAAAAgBl0dHSov79fHo9Hhw4dmrG05tjY2JyeV1VVlXIcj8ct7R8AAABAYVpodwAoPE8//XTK8fDwsE2RzGxqbPM5Vpxz+vTp5P999NFHbY4G0+G7VXj4bhUGvluFh+9WYSi279bU+Kf++xxzM7FvntPplGEYCofDuuuuuxSNRpMr/TLZT290dHROcUxdkTc10Zfv/qea+r+zhx56KKvv0sUXX6yLL7448wBnqdi+76WAsbQw8N0qPHy3CgPfrcLDd6swzPfv1lNPPaWnnnoq4+uPHz+ecjzTHLAskUgkZhMYStdXvvKV8+5lAQAAAMA6XV1d+sAHPmB3GEVjw4YN6u/vP+81Ho9HLS0tam9vn/aajo4O9fb2Jo/379+vhoaGjOOIRqOqr69PHrvdbh05csSy/qdiHggAAADMDzPNASn1CQAAAADASwYGBiSdS4R5vV41NTXJ7XanXBOJRNTV1aWamhqFQqGM+p1rac6Z9uTLd/8AAAAACgOlPgEAAAAAeMnmzZvl8/lMy3l2dXXJ7/cnjw3D0Lp167JebZeJysrK8x7P9/4BAAAA2IPEH7L2zne+M+XY7XbroosusikaAAAAoLQ8/fTTikajyeOp/z7H3JyvfGdnZ6e8Xq/WrVuXcn7jxo053zckHo/ntL+59j/xv7N4PK54PK5LLrlES5Ysyfh+q/b4AwAAAOa7bPf4e+655/Tkk0+qsrJSlZWVM84BSfwha8uXL2cPEQAAAAAlqaGhQU1NTSn7ABqGoWAwqObm5uS5qSsG55rIm1qKM9/9T8U8EAAAACgM7PEHAAAAAEAW7rnnnrRzU/f6q6qqSjnOdg++qddffvnllvYPAAAAoDCR+AMAAAAAIAtOp3PGFXdTV9AdP348q2eMjo6mHLtcLkv7BwAAAFCYSPwBAAAAAJClqYmyysrKlOOVK1emHGdbinPqijy3221p/wAAAAAKE4k/AAAAAACyNDXRd+mll6YcT00MDg0NZdV/LBZLOfZ4PJb2DwAAAKAwkfgDAAAAAJScYDA4p/unrrDzer0px1PLgUaj0az6n1y6c2rfVvQPAAAAoDCR+AMAAAAAlJRoNKq2trY5Jf8mr5jzeDymK+ZWrVqVchyJRDLuf3BwMPm5oaHB9Jp89w8AAACg8JD4AwAAAACUFLfbLY/Ho507d87q/kgkIsMwksf33HOP6XUtLS0px+FwOKtnTPD5fLb0DwAAAKDwkPgDAAAAAJQcr9erSCQyq1V/t912W/Jze3v7tPvjNTc3pxwHAoGM+p8cU1NTU0pJTyv7BwAAAFB4SPwBAAAAAErOxGq5tra2rPbHCwQCydVyPp9PnZ2d571+cns0GlUoFJrxGZNXItrdPwAAAIDCUpZIJBJ2BwEAmJ8Mw9DBgwdVWVkph8OhqqqqlHaHw5H8PDY2lvw8OjqaPPZ4PHK73dYEDMwzhmFo586d6u3t1dGjR1lRAeTIXL9bjG+YsHz5ckmS0+nUjh070lbQTeX3+9XV1SXp3Eq/TJNm9fX1yeSi2+3WoUOHpv3fbSAQ0JYtWyRJ3d3dam1ttb1/AKWDMRKYG+aAQH4wB8wOiT8UpVAopGAwqMHBQcViMRmGIafTKZfLpZaWFvl8PgZeIAOhUEjr1q2bUx+dnZ1qb2/PUURAYYhGo7rvvvvU29ubPHfkyJGc/AORMQ6lLFffLcY3TKipqUnZq8/j8Wjbtm1auXJlyn9LQ6GQ7rrrLkUiEbndbt19991qaGjI+DmGYejKK69MPsvtdqunpyetROhsE4v57r8QMD4CucEYCcwOc0AgP5gDzs5CuwMAcikSiaSU6vF4PKqrq1M8HlckEkn+6erq4u1WAEDORSIRfeELX1B/f39e+maMQ6nK53cLpW3VqlUp/7uKRCLT/kLA6XTOerLvdDp19OhR3Xbbberv71c0GlVjY6Pcbrdqa2s1NjamwcHBZOKup6dnxtWHVvY/nzE+AgDsxBwQyA/mgHND4g9FY3LJmom9Nia/7WIYRnIiLElbtmxRNBotqrdcAQDWMwxDvb29CgQCWe0RlQ3GOJQiK75bwJ49e2QYhsLhsB588EHFYrG0N+nr6urU3Nyc1Qo/M06nU3v27FEkEtHevXs1MDCgeDyu/v5+ud3u5HNm+0u7fPc/HzE+AgDswBwQyA/mgLlD4g9FIRQKJQfD6UrWTEyEN2zYkBwU/X6/Vq5cWTRvuwK5NrnedXt7e/It8Xg8njw/ue711DZJcrlceYsPsJNhGGpra1M4HE457/P5dPPNN2v16tUp5eNmizEOpcaK7xbjGyZzOp1qbm627L+XHo9HO3bsKNj+5wvGRyA/GCOB6TEHBPKDOWDusccfisLE3hxOp1PDw8PnvdYwDNXU1CSPM7kHKFWRSESNjY18T4BpLF++XNK5sWTz5s0peyvU19envKE22/0dGONQivL93WJ8Awof4yOQH4yRwPkxBwTygzlgbpXbHQAwV36/P5mh37x584zXO53OlH05DMNQIBDIW3xAMaisrLQ7BGBeampqUnd3t4aHh9Xe3p5SesXhcMy5f8Y4lKp8f7cmML4BhYnxEcg/xkjAHHNAID+YA+YWiT8UvJ07dyY/NzU1ZXRPS0tLynEwGMxpTACA0rBnz5687pXEGIdSle/vFoDCxvgIALALc0AgP5gD5haJPxS0YDCYfAvG6XRmvMTX4/GkHE+tHwwgVS7frAGQGcY4IP8Y34DCw/gIWIMxErAeYxyQf6UyvpH4Q0ELhULJz3V1dVndO3VQnNwXgFSlsgwemE8Y44D8Y3wDCg/jI2ANxkjAeoxxQP6VyvhG4g8FbfLSdZfLldW9UwfQWCyWk5iAYjI6Omp3CEDJYowD8ofxDShcjI9AfjFGAvZhjAPyp9TGNxJ/KFiGYSSXv0tK2fAzE5deemnKcTQazUVYQFEqlWXwwHzBGAdYg/ENKCyMj4B1GCMBazHGAdYolfFtod0BALM19c2VTOteT5j65kwkEplzTECxmrwMPhqNKhAIKBwOKxaLyTAMOZ1OuVwutbS0qKmpKevvI4BUjHGANRjfgMLC+AhYhzESsBZjHGCNUhnfSPyhYB07dizlONv6vKWS3QdyJRqNasuWLaabRBuGoUgkokgkoq6uLvl8Pu3YscOGKIHiwBgHWIfxDSgcjI+AtRgjAeswxgHWKYXxjVKfKFhjY2Nzur+qqirlOB6Pz6k/oBhNfM+CwaDq6+tNB0Qzvb29amxsTClTASBzjHFAfjG+AYWJ8RHIP8ZIwB6McUB+ldr4xoo/FKy5bsg59U2YuQ6wQDGbGNw8Ho9aWlrkcrnkcDg0NjamUCikYDCYNgBGIhG1tbWpr6/PjpCBgsYYB1iD8Q0oLIyPgHUYIwFrMcYB1iiV8Y3EHwrW1C8gS9qB3Jv8hlh3d7daW1vTrmlubtaOHTvU1dUlv9+f0hYOhxUIBEzvAzA9xjggvxjfgMLE+AjkH2MkYA/GOCC/Sm18o9QnisZc32RhQAXMOZ1OHT58eMaBrbOzU52dnWnn77rrrnyFBpQMxjgg9xjfgMLH+AjkB2MkYD/GOCD3Sml8I/GHkjV1k9xsN80FSkFra6uGh4fl8Xgyur69vV1utzvlnGEYikaj+QgPwDQY44DzY3wDShPjIzAzxkigMDHGAedXauMbiT+ULDa5BfLj7rvvTjuX6Ya5AHKDMQ7IPcY3oPAxPgL5wRgJ2I8xDsi9Qh7fSPyhYDmdzpTjuQ5wLIEHcqOhoSHtjZhCeRsGmC8Y44D5h/ENsB/jIzA/MUYCc8cYB8w/hTy+kfhDwaqqqko5zrb29dTrL7/88rmGBOAltbW1docAFDTGOGB+YnwD7MX4CMxfjJHA3DDGAfNToY5vJP5QsKa+uXL8+PGs7h8dHU05drlccw0JwEumvg0z9RjA+THGAfMT4xtgL8ZHYP5ijATmhjEOmJ8KdXwj8YeCtXLlypTjbJfAT30TplC+tEAhmPqmGv/gBLLDGAfMT4xvgL0YH4H5izESmBvGOGB+KtTxjcQfCtbUL9nQ0FBW98disZRjj8cz55gAnDP1TbOGhgabIgEKE2McMD8xvgH2YnwE5i/GSGBuGOOA+alQxzcSfyhYTqczZePbbDfWnLxk3uv15iosAJIMw0h+bmpqsjESoDAxxgHzE+MbYC/GR2D+YowE5oYxDpifCnV8I/GHgrZq1aqU40gkkvG9g4ODyc+FkqkHrBCNRlVfX58ysGVrYGAg+fmWW27JRVhAyWGMA3KL8Q0oDoyPQO4xRgLzA2MckFulPL6R+ENBa2lpSTkOh8MZ3zt58PT5fDmLCSh0lZWVikaj6urqmtX90Wg0+Waaz+ejvAQwS4xxQG4xvgHFgfERyD3GSGB+YIwDcquUxzcSfyhozc3NKceBQCCj+4LBYPJzU1NTylJ6oNQ5nU41NTWpt7c369ISkrRlyxZJ5zaS7uzszHV4QMGYurl6thjjAHOz/W4xvgHFgfERyD3GSCA3mAMC+cEcMHsk/lDwJn/potGoQqHQjPfs3LnT9H4A57S2tkr6/QCXKb/fr3A4LKfTqUOHDvGPTZS0eDyecjybf6gyxgHp5vLdYnwDigPjI5B7jJHA3DEHBPKDOWD2SPyh4LW3t8vtdiePt27det66vYFAILn8vbu7O+VeAOc0NDTI6XQqHA5nvBy+q6tLXV1dcrvdBTkgArkUCoXSxqK9e/dm3Q9jHJBqrt8txjegODA+ArnHGAnMDXNAID+YA85OWSKRSNgdBDBXhmHoyiuvTP5HwO12q6enJ63urt/vT37B29vbeQsGOI+Ojg719vZKOrc03ufzyev1Jv8ROTY2lnz7LBgMyjAM+Xw+7dixw86wActFIhGFw2GNjo7KMAzFYrFp92Jwu92qra2V2+1WVVWVamtrZ9x4nTEOpSpf3y3GN6A4MD4CuccYCWSGOSCQH8wBc4fEH4qGYRi67bbb1N/fnzw38R+AsbExDQ4OJgfMnp6etLrZAFJFIhE1NjZmdK3X61VnZ2dBbXIL5MrkyVa2mpqatGfPnhmvY4xDKcrXd4vxDSgejI9AbjFGAplhDgjkB3PA3CHxh6ITiUS0d+9eDQwMKB6PyzAMud1uuVwuNTc3J+v6ApiZYRjq7e1VKBRSLBZL+041NDSoqamJUhKARRjjgNxgfAOKC+MjkDuMkcD8whgH5EapjW8k/gAAAAAAAAAAAIAiUG53AAAAAAAAAAAAAADmjsQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAAAAAAAAAAUARI/AEAAAAAAAAAAABFgMQfAAAFKhKJqL6+XoZh2B1KXhiGocbGRkUiEbtDAQAAAADbMQcEAGSCxB8AAAUoGAyqsbFR7e3tcjqddoeTF06nUy0tLWpsbFQoFLI7HAAAAACwDXNAAECmSPwBAFBgQqGQ2tra1N7ertbWVrvDyav29na1t7dr3bp1TPwAAAAAlCTmgACAbJQlEomE3UEAAIDMRCIRNTY2yuv1qq+vz+5wLLNhwwb19/fr8OHD8ng8docDAAAAAJZgDsgcEACyReIPAIACYRiGrrzySknS0aNHi7a8i5lS/tkBAAAAlKZSngeV8s8OAHNFqU8AAApEW1ubDMPQjh07Sm7S43Q6tXv3bhmGoba2NrvDAQAAAIC8Yw7IHBAAZoPEHwAABSAYDCocDsvr9aq5udnucGzR0NAgr9ercDisYDBodzgAAAAAkDfMAZkDAsBsUeoTAIAsGYahnTt3qqWlxZK9BiZKnBiGUfL7G0zsb+F0OjU8PGx3OAAAAABKAHNA+zAHBIDsseIPAIAMRaNRdXR0qKamRn6/X9Fo1JLn7ty5U4ZhyOv1lvSET5I8Ho+8Xq8Mw1BXV5fd4QAAAAAoYswB7cccEACyx4o/AAAy1NjYqEgkkjweHh7O+z4LhmGopqZGkrR//341NDTk9XmFIBgMJvd4OHnypM3RAAAAAChWzAHnB+aAAJAdVvwBAJChWCyW/OzxeCzZXP3gwYOSzm1szoTvnObm5uTffSAQsDkaAAAAAMWKOeD8wBwQALJD4g8AgAwZhpH87PV6LXnmxKTG5/NZ8rxCMbG5PZM+AAAAAPnCHHD+YA4IAJkj8QcAQAYml3eRrJn0RSKR5HNbWlry/rxCMvHmayQSsWyfDQAAAAClgzng/MIcEAAyR+IPAIAMTJ1YrFy5Mu/P3Lt3b/JzqW/oPtXkSTdvfAIAAADINeaA8wtzQADIHIk/AAAyMHlvB7fbbcneDgMDA5KsKylTSJxOZ/L/B+Fw2OZoAAAAABQb5oDzC3NAAMjcQrsDAACgEDz22GPJzy6XK+/PMwwj+YbpXDd0j0aj6u/vVyAQ0P79++V2u1PaAoGAwuGwYrGYDMOQ0+lUXV2dmpubdfXVV89qghsMBhUKhRSLxRSLxRSNRuV0OuVyueRyudTQ0CCv15sSS7ZWrVql/v7+tBI8AAAAADBXzAGzwxwQAOYPEn8AAGRg8tueVpRcOXbsWPJztpPMSCSiY8eOaXBwUAMDAyklasbGxpKfQ6GQ1q1bl3a/YRgKh8MKh8PasmWL2tvb1dnZmdGzA4GA/H5/cpJXV1enVatWyeVyKRaLJfes6O/vl6Ss+p6qoaEh2U8oFJrz5BgAAAAAJjAHZA4IAIWKxB8AAOcRDAa1c+fOlDcKe3t71d/fr3g8LsMwJEnd3d1qbW3N2XMnly7JZpLZ1dUlv98/43XBYFBtbW0Z9en3+xUOh3XgwIHzvvnZ0dGh3t5eSdP/fUQiEXV1deWkNMvkPTbC4TCTPgAAAABzxhyQOSAAFDoSfwAAmOjq6lJvb29yUjeZYRhp53O90fvkNzSzKYXS2tqqlpYWjY6OKhwOm04AA4GAtmzZIo/Ho9bWVnm9XlVWVioejysajSoYDCYnbxMikYiuu+46HT582PS5k+/p7OycdgLs8XjU19entWvXKhwOq6qqKuOfbarJb8FO/vsCAAAAgGwxB2QOCADFoiyRSCTsDgIAgPlm8tudx44d05YtW5LH+/fvT5us5Lr0S2NjYzKGkydPzrqfmpqalAmq1+tVOBye8e1UwzB03XXXpe2d4PP5tGPHjrTr6+vrkxOvI0eOzDhRjUajqq+vn/NbssuXL5d07u9/ugkpAAAAAMyEOSBzQAAoFuV2BwAAwHzk8XiSf6aeb2hoSGnPx34PE/tJzGZT9cmm7g0RDofV09Mz40TL6XTq8OHDaZO33t7etDcrJ29CL0mVlZUzxjWXDd3N+pm8/wYAAAAAZIs5IHNAACgWJP4AAJjB4OBg8rPX67XkmRNvaGYygTqfqff7fD41NzdnfP+2bdvSzgUCgZTjqROuyZvSn09nZ2fOyuOYleMBAAAAgNlgDpiKOSAAFBYSfwAAzGDypC/X+ziYmTyBcTgcOe07mwnfxPVT32aduin71Bg3btyY0X4L7e3tc35TNtd/PwAAAADAHJA5IAAUMhJ/AADMYPIeB/ko6XI+c33bc6rZbKQ+tSTM1Lc7p5ZsMQxD9fX12rBhg4LBYF7fxJz898MbnwAAAABygTkgc0AAKGQL7Q4AAID5bOpbi7nal+B84vF48vN8eJtx6huuZpMrn8+n3t7elHP9/f3q7++XdO7vbdWqVaqrq5PX683L32M8Hp/zfhgAAAAAShtzQOaAAFDoSPwBAHAek9/0tGpvh8lvMI6NjVnyzPOZujm82YRtx44disViaSVgJkSjUUWj0eTE0O12q729fcYN5mcyeYKc6zdjAQAAAJQe5oDMAQGg0FHqEwCA8wiFQsnPVpd4kVInNfPF1EnghL6+PnV3d2f0xmU0GtWWLVvU2Ng4p/IskyfFvOkJAAAAYK6YA6ZjDggAhYXEHwAA52H1pu5S6uRlPrztOXXi2dDQMO21ra2tGh4e1v79++Xz+WYs5xKJRNTV1ZWz2AAAAABgLpgDMgcEgEJHqU8AAM7Dzk3dpfkxqZm6x0VTU9OM9zQ0NCQnh4ZhKBwOKxQKmW703tvbq87Ozlm9rTnRF296AgAAAMgF5oDMAQGg0LHiDwCAadixqfuEiQnmXEqg5MrkPRs8Hk/Wfw9Op1PNzc3asWOHhoeH1dPTk3bNsWPH5hTjdKVnAAAAACBTzAHPYQ4IAIWNxB8AANOY/KanlRM+aX5NYvr7+5Oft23bZnrNhg0bUv6+zqe5uVmdnZ0p52ZTzmbyhHg+/X0BAAAAKEzMAc9hDggAhY3EHwAA05j8BmJtba2lz548yZz61qmVAoFA8vler9d0bwfDMNTf359VnFNLxcxmUh2LxeZ0PwAAAABMxhyQOSAAFAMSfwAATGNyeROzSUVHR0fGbzhma/Im8vl6Ribuuuuu5Ofu7u7zXpvNXhST3+50Op2z2jtj8iTT6/VmfT8AAAAATMYckDkgABQDEn8AAExjujIvkUhE9fX1isViedvsffIkZq57H0zW1taW8VuZGzZskGEYcjqd2r9//7RvVE5M9kKhUMZxPPjgg8nP05WOmcnkvxezt1ABAAAAIBvMAZkDAkAxIPEHAICJqROjwcFBRSIRdXR0qLGxUa2trerr68vb851OZ3KSlcu3PaPRqFavXq1AIHDeaxobG9Xf36+mpiYdPXr0vJOqib+r/v5+BYPBGWOIRCLy+/2Szk1uW1tbs/wpft+PpLxNvAEAAACUDuaAzAEBoFgstDsAAADmo6kTrd7eXvX29ibffLTi7cJVq1YpGo2mlJvJBcMwtGXLFt11111atWqVLr/8cjkcDo2NjSkUCikcDsvpdKqnp0fNzc0z9jd5n4W2tjb5fD7dfPPNaW+HGoahnTt3Jid8TU1N2rNnz6x/jom/F0q8AAAAAJgr5oDMAQGgWJD4AwDAhMPhSDvX1NSke+65R06n05IYrr/+evX29ko6NwnNMcdeygAAA9FJREFU9VuNExuy9/f3p5zP9uec+mbsxARZOlcex+FwKBaLyTCM5Llt27ZlNKGczuSSMrN9WxQAAAAAJjAHZA4IAMWCxB8AACYaGhrk9Xo1ODiouro6tbe3W76HgMfjkdvtVjQa1YMPPpiTSd/hw4cVjUYVCAQUi8UUj8dlGIbcbrdqa2vV2tqa9c/Z2dmp1tZWhcNhhUIhxWKx5CQvGo3K6XTK5XLJ6/XK6/Xm5O9xopzMxN8RAAAAAMwFc8DMMQcEgPmtLJFIJOwOAgAAmPP7/erq6pLT6dTw8HDW969duzalTMzhw4eLYj+EmpoaGYah7u5u3vYEAAAAUDSYA5pjDggAmSu3OwAAADA9n88n6VxJlsmlTUpZKBRKloy5+uqrbY4GAAAAAHKHOWA65oAAkB0SfwAAzGNOpzM58ZvYEL3UTfw9tLe3W7bXBgAAAABYgTlgOuaAAJAdEn8AAMxznZ2dkqRwOJy2iXqpiUQiCofDcjqd2rx5s93hAAAAAEDOMQf8PeaAAJA9En8AAMxzTqdT3d3dkqSuri6bo7HXxM+/bds23vQEAAAAUJSYA/4ec0AAyB6JPwAACkBra6s8Ho/6+/tLdp+HYDCocDgsr9fLZu4AAAAAihpzQOaAADBbJP4AACgQBw4ckNPp1MaNG+0OxXKGYaijo0NOp1M9PT12hwMAAAAAeccckDkgAMwGiT8AAAqE0+nU7t27ZRiGNmzYYHc4lrrttttkGEZy4gsAAAAAxY45IHNAAJgNEn8AABSQhoYG9fT0qL+/P6O9HuLxeP6DyrOuri719/erp6dHHo/H7nAAAAAAwDLMAZkDAkC2SPwBAFBgmpub1d3dLb/fr0AgcN5rx8bGUo6j0Wg+Q8u5QCAgv9+vnp4eNTc32x0OAAAAAFiOOSAAIBsL7Q4AAABkr7W1VS6XSxs3btTVV1+dUvrEMAzF43GFw+G0SV4gEJDb7ZbL5Zr35VIMw5Df79fhw4d5yxMAAABASWMOCADIVFkikUjYHQQAAMiNjo4O9fb2Znz98PDwvJ/8AQAAAADMMQcEAEzFij8AAIpIc3Oz6urqVFlZKUlyOBwp7RNlXyb2fWDCBwAAAACFizkgAGAqVvwBAAAAAAAAAAAARaDc7gAAAAAAAAAAAAAAzB2JPwAAAAAAAAAAAKAIkPgDAAAAAAAAAAAAigCJPwAAAAAAAAAAAKAIkPgDAAAAAAAAAAAAigCJPwAAAAAAAAAAAKAIkPgDAAAAAAAAAAAAigCJPwAAAAAAAAAAAKAIkPgDAAAAAAAAAAAAisD/D2whRL9PU+zlAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAKyCAYAAAAdJqksAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xlc1NX+x/H3sLkhA+6GAprmCthmZoKVLSpk2eYCLbdFFG25lUtR997uvVhmt25lpLbdCkPbM1ArbQGzskUF3MoNlNyFQdzY5vcHwU+YYRmYheX1fDx8OPM93znfzygzzHfe33OOwWw2mwUAAAAAAAAAAACgSXNzdQEAAAAAAAAAAAAAGo7gDwAAAAAAAAAAAGgGCP4AAAAAAAAAAACAZoDgDwAAAAAAAAAAAGgGCP4AAAAAAAAAAACAZoDgDwAAAAAAAAAAAGgGCP4AAAAAAAAAAACAZsDD1QWg6cnJydGXX35ZcT8wMFDt2rVzYUUAAAAATpw4oaysrIr7V199tfz9/V1YEZoizvcAAACAxsXWcz2CP9jsyy+/VFxcnKvLAAAAAFCLO++809UloInhfA8AAABo/Go612OqTwAAAAAAAAAAAKAZIPgDAAAAAAAAAAAAmgGm+oTNAgMDK92Pj4/XwIEDXVRN7bZs2VJpqprGXi+ku+++W8eOHVOHDh30+uuvu7oc1IDXV9PEa6zp4DXWNPEaazqa22us6vOp+rkdqIumdL7X3F7DLQG/I5sWXmNND6+xpoPXV9PEa6zpaG6vMVvP9Qj+YLOqC7sPHDhQQ4cOdVE1tmtq9bZEXl5eFX/zf9W08PpqGniNNV28xpoGXmNNV3N7jVX93A7URVM+32tKtbZU/I5s2niNNX68xpouXl9NA6+xpqu5vcZqO9djqk8AAAAAAAAAAACgGSD4AwAAAAAAAAAAAJoBgj8AAAAAAAAAAACgGSD4AwAAAAAAAAAAAJoBD1cXAABVTZkyRQUFBfL29nZ1KUCzxGsMcCxeYwAAWMfvSMCxeI0BjsVrDE0FwR+ARicmJsbVJQDNGq8xwLF4jQEAYB2/IwHH4jUGOBavMTQVTPUJAAAAAAAAAAAANAMEfwAAAAAAAAAAAEAzQPAHAAAAAAAAAAAANAMEfwAAAAAAAAAAAEAz4OHqAgBH8/f310MPPVTpPgD74PUFOBavMcCxeI0Btbv77rvl5eVlsX3KlCmKiYlxQUX/j9cw4Fi8xgDH4fUFOFZTfY0tWrRIixcvttheWFhoUz8Ef2j2/P399fDDD7u6DKBZ4vUFOBavMcCxeI0BtTt27JjV7QUFBU6uxBKvYcCxeI0BjsPrC3CspvoaKygo0IEDBxrcD8EfAAAAAACwqkOHDlZH/Hl7e7ugGgAAAKD58vb2Vrdu3Sy2FxYWVntBnjUEfwAAAAAAwKrXX39dQ4cOdXUZAAAAQLMXExNjdTr99evXa/z48XXux82eRQEAAAAAAAAAAABwDYI/AAAAAADgVCaTSYmJiZo4caL8/f1dXQ4AAADQbDDVJwAAAAAAcKjU1FSlpaUpIyND6enpMplMri4JAAAAaJYI/gAAAAAAgEMlJCQoLS3N1WUAAAAAzR5TfQIAAAAAAIdaunSpcnJylJOTo6SkJFeXAwAAADRbBH8AAAAAAMBpwsPDZTQaXV0GAAAA0CwR/AEAAAAAAAAAAADNAMEfAAAAAAAAAAAA0AwQ/AEAAAAAAAAAAADNgIerC0DTd/fdd8vLy8ti+5QpUxQTE+OCigAAAIDma9GiRVq8eLHF9sLCQhdUAwAAAABoTAj+0GDHjh2zur2goMDJlQAAAADNX0FBgQ4cOODqMgAAAAAAjRDBHxqsQ4cOVkf8eXt7u6AaAAAAoHnz9vZWt27dLLYXFhZWe1EeAAAAAKBlIPhDg73++usaOnSoq8sAAAAAWoSYmBirU+qvX79e48ePd0FFAAAAAIDGguAPjZ7JZNKCBQuUkZGh7OxsZWVlyWg0ytfXVyNGjNBtt92m4OBgV5cJAAAAALCTrKwsJSYmKi0tTdnZ2TKZTDIajQoJCVFkZKSio6NdXSIAAADQKBH8odHKyspSfHy8UlJSLNpMJpNMJpOysrK0ZMkSRUREaPHixS6oEgAAAABgT7NmzdKSJUsstptMJqWlpSktLU0JCQlatGgRF4ECAAAAVRD8oVE6+0QvIiJCgYGBMplMys7Orhj1d7aUlBTFx8crLi7OFeUCAAAAAOxg4sSJSktLq3W/rKwsjR49WklJSQoPD3dCZQAAAEDTQPCHRqc89DMajVq5cqUCAwMt9klNTdWcOXMqBYAJCQmaMWOGjEajM8sFAAAAADSQyWRSTEyM0tLSFBYWpujoaAUHB8vX11fZ2dlKS0vTggULZDKZKj1u0qRJWrdundXzRgAAAKAlcnN1AUB1ZsyYUe3JW3h4uFauXGkR8n322WfOKA0AAAAAYEflod+8efO0dOlSRUZGKjAwUEajUcHBwYqNjdX333+vsLAwi8fOnj3bBRUDAAAAjRPBHxqt2NjYGtuNRqMee+yxSttSU1MdWRIAAAAAwAHS0tK0bt06RUdHV7uP0WjU0qVLLS4QTUtLs1gOAgAAAGipCP7Q6EyfPl1JSUl12ve6666rdD8zM9MRJQEAAAAAHCguLq7O03Vau0g0JSXF3iUBAAAATRLBHxqdwMDAOi/ObjQaK033mZeX56CqAAAAAACOEhUVVed9o6OjLZZ92Lhxo50rAgAAAJomgj80WRkZGUpMTKy0repC7wAAAACAxq9qkFebyMjISvezs7PtWQ4AAADQZHm4ugCgLjIyMpSWlqaNGzcqMzOT9RsAAAAAoAULCgqqdD8/P981hQAAADQyP2zL1ntpGXJ3c9M1F/TVqNDecnNjDFhLQvCHRisjI0MvvfSS1q5dazGSLzAwUAEBAQoODlZKSgpBIAAAAAC0IAEBATXeBwAAaGl2HTim2W+s0kfrNldse+7jtTrPv5Omjh2qO0ZdIF/vNi6sEM5C8IdGx2QyaebMmRaLs0dERGjcuHEKCwurNA1MWlqas0sEAAAAALhQYGBgpfs+Pj4uqgQAAMC1TCdOa+6yb/Ti8nUqLC6xaP8t54geenWFHn/7S02+PFTTIi7RkN7nuKBSOAvBHxoVk8mkMWPGVBrBFxERofnz59u85gMAAAAAoHnKzc2tdH/IkCGuKQQAAMBFiktK9NrnP+sfS9bosOlErfufPFOk1z7/Wa99/rMu7R+gaRGX6OYRg9XK0zUxkdls1o4/jmrNpp06lFegi/r20NXn95Gnh7tL6mlOCP7QqMTExFQK/cLCwrR48WIXVgQAAAAAaGyys7Mr3Y+IiHBRJQAAAM73xa+/a+brK5WZdbBej/9+W7a+35ath19bobuvuUhTxlyswC5+dq7S0rHjJ/XVpl36csPv+nLDDmUdyqvU3smnrSaEhyjqiiEael4PGQwGh9fUHBH8odHIysqymLZz0aJFLqoGAAAAANBYpaenV9wODAy0mPoTAACgOdq297AeeX2FVv78m136O2w6oaff/1bPfJiqiIv7adrYYbr6/HPl5uZml/4Li4r1w/a9+nLDDq3esEM//Z4js9lc7f5H8k/q5eQf9HLyDzq3ewdFXT5Eky8PVV//Tnapp6Ug+EOjUTX0i4iIYHpPAAAAAICFtWvXVtyOjY11YSUAAACOdzT/pJ58d40WrlivktLSGvd1czNoyuiLddnAIL226id9m7m71v5LS8367Mdt+uzHberTvaOmjh2qO6++UH7ebWyq02w2a/u+I1q9cYe++PV3fZOxWydOF9rUR7md+4/pn0lf6Z9JX+mSfj01+fJQ3RoWrC6+3vXqryUh+EOjkZ+fX+m+r69vvR4HAAAAAGi+kpOTK5aICAwMVHR0tIsrAgAA9VFaWqqco/nybddG7du2cnU5jVJhUbFeWfGj/vnuV8o7cbrW/a+5oK+evXuMBgV2lSRNvjxUm7MO6pUVP+qdrzao4FTtIdyO/Uf1yOsr9UTiak0MD1FsxCW6oI9/tfsfMZ3Qmk07tXrjDn25YYf2HjbV/QnW0Y/b9+rH7Xv10KsrdM0FfRR1xRBdf8kAtW3tZfdjNQcEf2g0fHx8Kt2vumaDNbNmzaq0JiAAAAAAoHmbO3euJMloNCopKcnF1QAAAFv9lnNE8z9M1dJv03XyTJEkyc+7jYK6+iqgs6+CuvopsIuvAruU/R3U1U++7Vq3qPXezGazPlu/TbNeX6nf/zha6/4DenbWs/eM1egLz7NoGxTYVQumjdNTd1yrxK83KCHlR23JPlRrn6fOFOnNL3/Rm1/+okv69dS0iEt0y4jBMhgMWrc1W6s37NCXG37Xrzv31zh9pz2VlJZq5c+/aeXPv8m7jZduGDZQUVcM0ZWhveXh7u6UGpoCgj80GqGhoZXup6WlKSsry+paDSaTSTNnzpSvr68CAwMJ/wAAAACgCTGZKl8JnpycrMjIyFofFx8fr6ysLBmNRi1btoy1/QAAaEJ+2ZGjee+n6qN1my2CotyCU8otOKUNO/dbfWz7Nq1qDAY7+bS1SzBoNptVVFyi00XFOl1YrFOFRRV/FxaVqKNPWwV09pWnh+NCpk279uuR11boq/Rdte7b0aet/jF5lKaMubjW4Kt921aaFjFMU8deotTMPUpI+UGffL9FxSU1Tx0qnT3iLkWnC4srAtuG6NHJqKvP76Orz++jjj5ttSw1XR+szVT+yTN1enzBqUIlfr1RiV9vVDc/b00MD1XUFaE6/9xzWlRIbA3BHxqNgIAAi22TJk1SUlJSpZO5xMREJSQkKDY2VtHR0Ro+fHilx5hMJtYGBAAAAIAmJCYmRlFRUZo+fXq1Yd6sWbO0ZMkShYWFadGiRZz3AQBwliOmE/p5R4627T2sdq29NGJQoAb07OLqsmQ2m/V1+i7N+yBVqzfsqHc/x0+dUcaeg8rYc9Bqe9tWngrs4quALr4K6lI2QvB0UbFOnSkq+7uwWKcLi3SqsFhnzrpdEe6dtW9pac2j19zcDOrZyaheXf3Uq1uHKn/7qauvd72CpwO5x/W3d1brjS9/qXUEnaeHu2ZEDlPcxCtsXofPYDBoZHAvjQzupT+O5uu1z3/Sq6t+0h/Hjtf62GPHT9l0rLO1a+2lkcG9dM35fXT1+X3Vr0enSv9OVw3po5emXqfk9dv17jcbteLn31RUXFKnvg/kFui/n36n/376nfr36KyoK0I1aWSoenXrUO96mzKCPzQaRqNRcXFxio+Pr9iWlZWl4cOHKzg4WJKUkZFRcWVn+ba8vLxK/UyYMEHjxo2Tj48Paz0AAAAAQCNTdbRfuSVLlmjJkiUKDg5WSEiIgoKCJEl79uzRkiVLJElxcXGKjY11VqkAADRKeQWn9MuOP/TLjhz9/HuOfv59n7IO5VnsF9qrmyaODNWE8GAFdvFzao2lpaX69IeteuaDVK3/bZ/Dj3fyTJG27j2srXsPO/xYpaVmZR3KU9ahPH2TsduivW0rTwV19asIBHt381NQVz/1/jMc9G5TeT3D04VF+u8n6/TU+9/UaQ2+64cN0Ly/jFZf/04Nfi7ndPTR3yaP0qO3Xq5Pf9iqhSt+1Nd1GGlYFwaDQRf1OUdXX9BXVw3po0v795SXZ82RVGsvT908YrBuHjFYx46f1PtrM/Xu1xu1dkvdZ/zbtu+wnnhntZ54Z7VGDAzUpMtDdcuIYHX0advQp9RkEPyhUYmNjVVqaqrS0tIqbc/IyJAkq1d2Vj1pzM7O1oIFC2QymXTddddxFSgAAAAANCLlF28ajUbNmDGj4vytXEZGRsU5YLnAwEAtWrSo4gJQAABaioJTZ7Rh5379/Ps+/bwjR7/8nlOnNd8kadPuA9q0+4Ae/d/numxgoCaGh+jmEYPVxdfbYfUWFhXr3W/TNf+DVG3b5/gQrjE6eaZIW7IPVbuOXmdju4pQsEcnH32wNtNqcFvVkN7d9ew9Y3VFSG87V1w2grA8cNuSfUgLV/yot9ds0PFTdZt2s1xAZ9+y6Tsv6KMrQ85tUNjWoX1bxYwZqpgxQ7XnYK6Svt2kxK822vRztXZLltZuydKDi1P0v7/erIkjQ+pdT1NC8IdGZ+nSpUpOTlZiYqKys7Mr1m+IiopSXFycxf45OTkuqBIAAAAAUB/5+fkKDAysWNYhNjZWycnJWr58ubKzs5WdnV2xhENAQICio6OZzQUA0CKcOlOkTbv365ffc/Tzn6P5tu49XOu0j3Xx3ZYsffdnAHJlaG9NHBmq8ZcOlLFdaztULp04XajXP/9Zz32yVnsPWx/dX1UrTw9FXzFEPm1bKetQnrIP52nPwVwdyT9pl5oaq8OmEzpsOlHnkZBdfb31r9uv1p2jLpC7u5uDq5MGBnTRi1OvU/zt12jJNxv1SsqPysyyPsWqdxsvXRHSW1cP6aOrL+irvud0dMj6ekFd/fTorZdrzi0jtWHnH1ry9SYtTd2kA7kFdXp8UXGJhvbrYfe6GiuCPzRKkZGRdVrYHQAAAADQtAQHB2vdunWVtnEOCABoaQqLipWRdVA//142iu+XHTnKzDqo4pJShx63pLRUX27YoS837FDsy59q7MX9NDE8RBEX91ObVp4293fs+Em9nPyDXvrsex2tY2DXvk0rTYu4RA9cP1zd/NpbtJ84XfjnVJq52nMoT9mHygLB7EN52nMot85hT1PXytNDD42/TLNvHqn2bVvV/gA7a9+2laaOvUQxY4Zq7eYsLV61Xj9s26tuft66MvRcXTWkj4b17ylPD3en1WQwGHRBH39d0Mdfz9w1Wl+l79KSrzfqo3WbdeJ09dOkXto/QL1b0Hp/BH8AAAAAAAAAADjQ8ZNn9P22bK3dvEdrN2fpx9/26nRhsUtrOlNUrI/XbdbH6zarfZtWun7YAE26PFSjQs+tNczJOWLS8598p8WrfqoxcDlbF992emDcZZo6dqh8vdtUu1+71l4aGNBFAwO6WG0/XVik7MMmZZUHgofPDgbzlHM0v2KUZGsvD7X29FCbVp5q7emh1l4eauPlWfF3q0r3PdTay/PP/T3U2tNTbVp5qNWfj3d3c9MfR/O168Ax7T6Yq90HjinrUJ5DwtoJ4SF66s5rnL42ozUGg0Fhg4MUNjjI1aVU4u7uVjat6Pl99HLsOC3/cauWfL1RX/y6QyWllf9Poq4IdVGVrkHwBwAAAAAAAABo0kpLS7X+t306XVisPud0lH9HH4dMOVhXB3MLtHZLWci3dvMebdy9X6WlDZ+ysyoPdzeFBHXTRX39dWFffw3p3V2ZWYe09NtNWrNpZ52PefzUGSV+vVGJX29UJ5+2unnEYE0MD9VlAwPk5vb/00v+lnNE8z9M1TtfbVRRcUmd+g7q6qdHbhyhO6+6sF6jCqtq7eWp8/w76Tz/Tlbbi0tKVFRcqtZeHg7/GSguKVHO0XztPpCrXQeOac/BXO06kPvn38d0MM+20YmX9Oup/9wzVpcOCHBQxc1Tu9ZemjQyVJNGhupQXoHeT8vQkm826cfte+Xh7qZbRrSsdaIJ/gAAAAAAAAAATdamXft127PvaXP2oYpt7Vp7qZ9/J/Xr0Vn9epT93b9HZ/U9p6Ndwqezmc1m7TpwTGl/hnzfbcnSbzlH7HoMSXJzM2hQQBdd2MdfF53XQxf18VdwUFe19qr8fC7q20N3XnWBDuYW6IO1GVqamq51W7PrfJwj+Se1cMV6LVyxXj07G3VrWLDCB/fS22s26KN1m+u85uDgwK6adXO4JoQHy8PdedNBeri7O+14Hu7uCuzip8Aufro8pLdF+4nThdpzMLdihODug5UDwvLRkr26+umft12tieHBlYJW2K6Lr7emX3eppl93qX7POaL1v+1TJ2M7V5flVAR/AAAAAAAAAIAmx2w2640vf9H9Cz+zmDbzxOlC/brzD/26849K2w0GgwK7+JaFgf5loWD/P8PBbn7t6zRCrKSkVBlZB7R2c5bS/gz69h87btfnZjAY1M+/ky7s66+L+vjrovP8NaRXd7Vt7VXnPrr6/X8Asudgrt5Ly1DSN5uUvudAnfvYe9ik/3y0Vv/5aG2dHzN8QIBm3zJSYy86r8WHWO1ae2lQYFcNCuxq0WY2m3XYdEInzxQpoLOxxf9bOUJf/07qW83I0OaM4A8AAAAAAAAA0KScOF2o6QnL9c5XG2x6nNls1p6DZVMxfv7L75XafNq2Uv8enXWefyf179m5bLSgfyf17GzUpl0H9N2WsqBv3dYs5Z88Y8+no97dOuiivv5lU3b28dcFfc6RT9vWdus/qKufZt0crlk3h2tLdtlUoEtT07Vz/zG7HWP0hedpzi0jNWJQoEunWW0qDAaDuvh6u7oMNEMEfwAAAAAAAACAJmPr3kO69akkbTlrak97yD95Rut/26f1v+2za79VtWvtpUsHBGjEwEAN6x+gC/ucow7t2zr0mGcbGNBF/7ztaj0ZfZV++m2flqam6720jHqNWnRzM+iWEcGafXO4Qnt3d0C1AGxF8AcAAAAAAAAAaBISv96oaQs+0ckzRa4upc46G9tpxKAghQ0K1GUDAzWkd3enrnlXHYPBoKH9empov56af9cYpW7eo6RvNumjdZuVW3Cqxsd6ebjrzqsu0CM3henc7h2dVDGAuiD4AwAAAAAAAAA0aqfOFOnBxcl67fOfa9xvyuiL1dnYTttzjmj7vsP6LeeozhQV1/gYe+vdrYNG/BnyhQ0K0nn+nRr91Jfu7m66IqS3rgjprQXTrtPnv/6upanpWv7D1koha/s2rTR17FA9cP1wde/g48KKAVSH4A8AAAAAAAAA0Gj9nnNEE55O0qbdB6rdx9iutV5/4EaNHz6o0vaSklJlHc7T9n2HtX3fEW3bd1i//fn3wbyCBtdmMBgUHNhVIwYFasSgII0YGCj/TsYG9+tKXp4euu6SAbrukgE6cbpQyeu3aeOu/Qrq6qcJYcHy9W7j6hIB1IDgDwAAAAAAAADQKL2/NkP3vvCxjp86U+0+F5x7jpY9Okm9u3WwaHN3d1Pvbh3Uu1sHjbmoX6W2vIJT2p5TFgJu33u4LBTMOaLf/ziq4pJSq8fy8nDXxef10IiBZUHf8AEBzToIa9faSxPCQzQhPMTVpQCoI4I/AAAAAAAAAECjcqaoWLPeWKUFn31f437TIi7Rs3ePUWsvT5uP4evdRpf066lL+vWstL2ouES7D+ZWjBLcf+y4uvi20/ABgbr4PP96HQsAnIXgDwAAAAAAAADQaOw5mKuJTyfpp99zqt3Hu42XFs0Yr4kj7T8SzdPDXef5d9J5/p103SV27x4AHIrgDwAAAAAAAADQKCz/cav+8twHyjtxutp9goO6atmcSerXo7MTKwOApoHgDwAAAAAAAADgUkXFJXr87S/17EdpNe531zUX6oUpkWrb2stJlQFA00LwBwAAAAAAAABwmX1HTJo0b6nWbc2udp82rTz1cuw43THqAidWBgBND8EfAAAAAAAAAMAlPv/ld93+n/d0JP9ktfv079FZy+ZM0uCgrk6sDACaJoI/AAAAAAAAAIBTlZSU6sl312jue9/KbDZXu9+kkaFaOON6ebdp5cTqAKDpIvgDAAAAAAAAADjN/mP5ip7/nr7J2F3tPq08PfTfmAjde+3FMhgMTqwOAJo2gj8AAAAAAAAAgMOZzWZ98v0WTU9YroN5BdXud273Dlo2Z5LOP/ccJ1YHAM0DwR8AAAAAAAAAwKG+2rRTcW99ofW/7atxvxuHD9JrD9woY7vWTqoMAJoXgj8AAAAAAJoQk8mktLQ0ZWdnKzc3V4GBgfL19VVkZKSrSwMAwMJPv+1T3NtfaM3GnTXu5+nhrmfvHqPpkcOY2hMAGoDgDwAAAACAGqSmpio5OVnp6enKzs6WyWSS0WhUQECAxo0bp6ioKBmNRqfUMXfuXGVkZFS7T0REhOLi4hQYGOjwegAAqMnWvYf0xDur9fG6zbXuG9jFV0tnT9TQfj2dUBkANG9uri4AAAAAAIDGKCMjQ8OHD9ekSZO0ZMkSSVJISIiCg4NlMpmUkZGh+Ph4DRw4UImJiQ6tZcqUKZo0aZIyMjIUFhampKQkbdmyRTk5OVq3bp3i4uJkNBqVkpKi4cOHO7weAACqk3UoV3f990OFTH+xTqFfxMX99PML0wn9AMBOGPEHAAAAAEAViYmJmj17tiQpKiqqIlgrZzKZNHPmTKWkpEiSZs+eraysLMXFxdm1DpPJpAkTJlSM8ouLi1NsbGylfQIDAxUbG6uIiAiNGTNGJpOpovbo6Gi71gMAQHUO5RVo7rJvtGjlehUWl9S6f49ORv0japTuGHW+3NwYnwIA9kLwBwAAgGapsKhYe4+YlHUo788/uco6lKfsP+8fzCvQud076NFbL9eE8BBXlwugEUlNTa0IzmJjY62GeUajUYsXL9aUKVMqwr+EhASFhobada29mJiYGkO/swUGBmrhwoWaNGmSpLIwMiwsjGk/AQAOZTpxWs99vFbPf/KdTpwurHX/Tj5t9eitl2vq2KFq7eXphAoBoGUh+AMAAECTdPJ0obIOl4V4ew7mlgV6h/8/2Pvj2HGZzeYa+8jYc1BR899T21aeuu6SAU6qHEBjN3XqVEll4V5tI/jmz59fEfxJ0qxZs+wW/CUmJiotLa2ilppCv3Lh4eEKDg6uCAtjYmK0atUqu9QDAMDZTp0pUkLKD3r6/W917PipWvdv36aVHhp/mR684TL5tG3thAoBoGUi+AMAAECjZTabtf63fVq/fW/FyL3sw2VB35H8k3Y7xoOLU3TVkD5q04orjoGWLiEhQSaTSZI0Y8aMWvcvD+QSEhIklU3NmZiYaJcpNufOnVtxuy61lIuOjq4YsZiRkaGMjAwFBwc3uB4AACSpqLhEb67+Rf9O+lo5R/Nr3b+Vp4diIy7RnFtGqpOxnRMqBICWjcmTbVB+8gcAAADH25J9SMMfXqjhDy/Ug4tT9Pwn3+mjdZv18+85dgv9yu05mKvnP1lr1z4BNE0LFiyouB0REVGnx4wbN67S/eTk5AbXkZycXOkcdPDgwXV+7HXXXVfp/jvvvNPgegAAKC0t1dJv0xUc+4KmLfi01tDPzc2gu665UNsX/1XP3jOW0A8AnIQRfzXIyMjQO++8Y3HCZTQaFRAQoJCQEE2fPr3B6yWkpqYqOTlZ6enpys7OlslkqjjGuHHjFBUVVWkR+cbWPwCgacgrOKX31mbom/TdatfaU8MHBOry4F4K6uong8Hg6vKACiUlpfrvp9/piXdW60xRsdOO+9R73+r2UReoRyc+FwEt1dnnfkajsc7nelVH05VPz9kQy5cvr3TflvNOo9Eoo9FY8VySk5P1zDPPNLgmAEDLZDabteqX3/T4219q4679dXrMzSMG65/RV6lfj84Org4AUBXBnxUmk0kzZ86stE5D1fby6VKWLFmiqKgoxcXF2RyeZWRkKCYmRllZWZLKThZDQkKUl5dX0X9GRobi4+M1b948m6eKcXT/wG85R7Rx134Vl5TKw91N7m4Gubu5Wblddr/ybfca9/f1bq1WnrxFAQ1VUlKqLzfu0NtrNuiT77dUClHe+OIXSVJAZ19dHtJLI4N7VwSBgKvs+OOo7vrvh/puS5ZD+m/l6aGAzkYVnC7U/mPHK7WdPFOkR//3ud555FaHHBtA45eamlpxOyQkxKbHnr2uXnlf4eHh9a4lMzOz0n1bLzgNCAioqMdkMlVcAAoAgC2+35qtR//3udI276nT/tdc0Ff/vv1qXdjH37GFAQCqxbfqVWRlZWnSpEkVYVldLFmyRGvXrtXKlSvrfCKVmJhYseaCteCwavg4e/ZsZWVl1bqwvLP6R8t18nSh3lubqVdXrtcP2/c67DitPD10w6UD9dr949W2tZfDjgM0V1uyD+ntNb8q8euNFuFGVdmH8/T2mg16e80GSVJgF1+NDO6ly0PKgsDALgSBcLzS0lItXLFes99cpZNniurdj3cbLwV29lVAF18FdfWruB345/0uxnZyc3PT+u17denDCy0e/+43mzQt4hINH9CwGR0ANE1nT9EZEBBg02NDQkIqBX/Z2dkNqsWWc1Jrzg7+JGnTpk0NCiIBAC3Py599rwcWp8hsNte676X9AxR/xzUaGdzLCZUBAGpC8FdFeQBWLioqSpGRkQoNDZVUdrKUlpZWsXB7uaysLMXExGjp0qW1HiM1NbUilIuNjbUathmNRi1evFhTpkypCOcSEhIUGhqqyMhIl/aPlmlL9iEtXrle73y1QXknTjv8eGeKirUsNV1nior1wWOTmYYQqINjx09q6bfpenvNr/rp95x695N1qHIQGNTVTyODe2lkcC9dEdxbAV187VQxUCbrUK7u+e9H+ip9V637+nm3UVBXXwV09lVgF7+zbpfd79C+TZ1+Zwzt11N3XHWB3lr9q0XbXxen6Pv/TJWbG8thAy1J+ai4craOjgsKCqp0v6HBXVUZGRkWU4rWJD8/v8b7AADU5JPvt9Qp9Bsc2FX/uv1qXTe0P9/dAEAjQfBXRflaDGFhYVq0aJHFyV54eLjCw8M1btw4TZgwodKJYVpaWp1OxqZOnSqp7ESythF28+fPrzTl6KxZs2oN5hzdP1qO04VF+vC7zVq8cr3WOmjKtdp88v0WffBdpm4ZUfcvOYCWpKi4RJ//+rveWv2rktdvU2Fxid2PsedgrvYczK0ISHpVBIFlIwIJAlFfZrNZb375ix56dYWOnzpT7X4Gg0EPXj9cj0+8Qr7ebex2/Pjbr9aH32Wq4FRhpe0//56jt9Zs0F+uvtBuxwLQ+FUdoVefqTXPdvZoO3vIysqyKfhLT0+vdD8vL8+u9QAAmq8NO//Qbc++V2Po16urn/4RfZUmhYfI3Z0L5gCgMSH4O0v5iVlwcHCtI/eCg4O1cOFCTZo0qdL2tLS0Gk/GEhISKsLCGTNm1FqT0WhUbGxsxQhDk8mkxMTEatfjc3T/aBl+yzmixSvX6+2vNuho/klXl6P7F36mUaHnqkP7tq4uxSl2HzimV1b8qPyTZxTau7siL+6nnp19XV0WGpn03Qf01upf9e63G3Uo74RTj737YK52H8zV//4MAnt361AxInBU6Lk6p6OPU+tB0/TH0XxNeeljrfz5txr3692tg9548CaFDQ6yew3dO/gobsIVevR/n1u0xb31hW66bJB82ra2+3EBNE6bNm2qdN/X19emx/v42Pf3n9ForHShaWpqqk0XaZ79WIkRfwCAutl/LF83/Cux2un3u/p66/GJV+ieay+SlydfLQNAY8S781nKR/vNnz+/TvuHh4crIiKi0oi5PXv21PiYBQsWVNyOiIio03HGjRtXaWrR5OTkaoM5R/eP5quwqFif/LBVi1eu19d1mGrNmQ7lndAjr6/UGw/e5OpSHO6drzZo2suf6tRZH7BnSArt1U2RQ/srYmh/XdzXv0VMP1dw6oxOnC5SVz9vV5fSaBw2nVDSN5v01ppftXHXfpsff06H9rrtyvN126jzZWzbWt9m7ta3GWV/fss5Uu+6dh04pl0HjunNL3+RJF1w7jmKHNpfkZf01wXnnsN0L6jEbDYr6dt03b/wM+UWnKpx32kRl+jpO6+Vd5tWDqvngeuH67XPf9LO/ccqbT+YV6D4pd9o3l2jHXZsAI1LQ4MxP7/Ka+I2dITdiBEjKp1rLlmyxGLt9upUXZpCsn3NQgBAy3PqTJFu/PcS7Ttisto+86YwPTHpSrVr7eXkygAAtiD4O8vGjRtlNBptmj4lPDy80slYTSdhycnJFVddGo3GOk8dU7We8oDS2f2jedp14JheXfWT/rf6F5tHDYX26qYpY4bqgnPPUUmpWSWlpSopNau4pPTP26V/3jZXc7vsfulZbVmH8vTi8nUWx3pr9a+aNDJUV5/fx15PvVE5U1Ssh15N0cIV6622b9p9QJt2H1D8sm/Uxbedxl7UT5FD++vq8/s49AtxVyguKdFjb32hFz5dp+KSUoUNClLC9Os1MKCLq0tzicKiYqX8tF1vf7VBK37aruKSUpse39rLQzdcOlB3jLpAo0LPrTQFy6SRoZo0smwN25wjJn2buUffZuzStxm79fsfR+td8687/9CvO//QP5O+0jkd2itiaH9FDu2vUaHnqk0rz3r3C/sxm83a8cdRtWnlKf+OPk4LZw+bTij25U/10brNNe7Xs7NRrz1wo64a4vj3/FaeHnr2nrEa/69Ei7YXlq/T3ddepPP8Ozm8DgCul5ub26DHVx3x19Agcdy4cZXONaWyCz1rW86hfL/a6qurLVu22LS/v7+//P3963UsAIDrmM1m3fXfD7X+t31W2+8dfbGeuvNaLuwEADvIyclRTk5Onfe39TM5wd9ZsrOzFRUVZdNjql41WVPYlpqaWnE7JCTEpuMEBwdXWiMiNTVV4eHhTu0fzUdRcYk+W79Ni1eu15cbdtj02DatPDUhLFhTxgzV0PN62P0Dn9ls1o79R7Xip+0WbVMXfKL0l+9vdleWZR/K04Snk6r9cF3VobwT+t/qX/W/1b/Ky8Ndl4f0VuTF/RR5SX8FdvGrvYNGrLCoWFHz36sUCqRt3qNL/pqgl6aN0x2jzm8xJxkHcwv09Pvfask3G+s15e5lAwN125Xn69awYBnb1T5VoX8noyZfHqrJl/9/EPhNxv+PCNyxv35B4B/HjuvVVT/p1VU/qU0rT40KPbdsNODQfuregSlBXeHbjN26f+Fnysw6KKksZLs8uLeuCO2tK4J7O2zNxo/WbVbsy5/qsKnmi0zuvOoCPXdvRJ1+bu3luj8vpKj6O7GouESPvLZCy/9+u9NqAeA6VafGtPfUnbaKjIy0mO4zISFBoaGh1U75aTKZFBMTY/FcJNvXLCxXl6DxbA899JAefvjheh0LAOA6/0r6Su+lWV+f9sqQ3npp6nUt5nwcABxt6dKleu655xzWP8HfWVatWmXzY6ouAH/ddddVu29ycnLFbVunWQkJCakUzFU9rjP6R9OXdShXr3/+s9748hftP3bcpscOCuiiKWOGKvqKIfL1buOgCiWDwaCE2HEKjn1Rx0+dqdS252Cu/vbOav3n3rEOO76zrd64Q5OfWVbvtRQLi0v0xa+/64tff9f9i5IVHNRVEReXja4ael6PJrXA9unCIt36VJJSrIS+J88U6e7/fqivN+3Uy7Hjmt0ox6rWb9+ryCfftvnnomdno26/8nzdduX56tvAEUr+nYyKumKIoq4YIknad8SkbzN265s/RwRWnRaxLk6dKVLy+m1KXr9NknRRX/8/Q8D+GtK7OyeRDpZXcEpz/ve5Xl31U6Xtew+b9M5XG/TOVxskSed276DLg3vr8pDeuiKkV4MD2tyCU7p/4Wd695tNNe7Xzc9bi+4br8ih/Rt0vPowGAx67t4IDZnxkkpKK4+qTflpu1b98ptGX3ie0+tqioqKS5R9OE+5BafUp3tHh35msJei4hK9teZX3XnVBfJwd3d1OWhEGjpizx7BobV15WNiYhQVFaXp06dXCvOSk5M1a9YsmUymSuu4l7N1zUIAQMuxLDVdT777ldW2vud01LJHJ8nTg89JANBUEPw1UHp6esXt2NjYaqf6NJlMla66rMu6DGcLCgqqdD8rK8up/aPpKS0t1d4jJm3de1jb9h7W6o07tOqX32U2m+vcRytPD908YrCmjL5Ylw0MdNqX8j07++qpO6/RjFc+s2h78bN1mhAerKH9ejqlFkcpLS3V0+9/q78lrrHp/6Q2GXsOKmPPQT39/rfq5NNWYy/up4iL++uaC/rIp63zRs/Y6uTpQo2PX6LVtYxATfx6o9b/tk9LZ09UaO/uTqrOub5O36Ub/vWOCk4V1mn/tq08dePwQbp91AW6IqSXw9Z/7FElCNx7OK/S1KD1CQJ//j1HP/+eo38sWaMenYyKuLhsCtsrQ3urtZf9pgQtKi7R0eMndcR0suzv/BMynTitc7t31LD+PdWqBSxI/8n3WzTjleV1uuhj5/5j2rn/mF7/4mdJUv8enXVFaO+yMDC4lzoZ29X5uCt/3q4pL36sP2o57sSRIXox5jp19Glb577tbWBAF8VGXKKXPvveou2hV1M0KvRcvuyQVFJSqj+O5Wv3wVztOZinPQeP/Xk7V7sP5irnaL5KS8t+r7Vt5anZN4dr9i0jG+2/3bqtWZq24FNlZh3UydNFuv/64a4uCU1Y1WDNHkFbeHi41RBvyZIlWrJkiSRVGhVoNBq1atUq5ebmVnpMYGCgzeeIAICWYf32vbrrvx9abfNt11rL/367OrR33ed0AIDtmv83XQ5kMpkqRtkFBwfXOAVK1RF0tk6zUnUE39mj85zRPxqvwqJi/f7H0T8DvkPatu+Itu07pO37jujkmaJ69XmefydNGX2xbh91gcu+hI0ZM1RLv03X2i2VQ+jSUrPuffFj/fTfWHk10S/rcwtO6c7nPqgY9WRN21aeeiEmUqVms5LXb9PqjTt1ysb/zyP5J/X2mg16e80GeXq4K3xwkK77c3RVr24dGvo07Ob4yTMa98+3lZq5p077/5ZzRJc+vFD/uXespo4Z2qxGiS3/casmPr1UZ4qKa9135OBeum3U+br5ssFq39b5IyB7dvZV9BVDFP1nEJh9KE8rf/lNyeu36atNO3W6sPbncLZ9R0xatHK9Fq1cr7atPHXV+X0UObS/Ii7up25+7Sv2Kywq/jO8K/tzNL8syDtWZdvR/BM6evyUjuSfUP7JM9Ue95wO7fXwjWG6d/TFzW4aYUk6kHtc9y9M1offZda7j237DmvbvsN6JeVHSVJIULeyIDCkt8IHBVkd0ZV/8rQeeW1lRXhYnY4+bfVy7DjdMqLu6ys70t+jRundbzdZjLbdvu+IElJ+0APXX+aiypzHbDbrsOmEdh/M1e4DZYHenkNlod6eA7nKOpynouKSOvV18kyR/r5kjT78brNee/BGXdin8az5lVtwSo9WGQH7ROKXuvGyQerRiXAE9ZOXl+eQfuPi4hQYGKjZs2dbbS8P/QIDA5WUlKTAwEAlJlZetzQiIqLex4+Pj9fAgQPrvD/r+wFA07H3cJ7G/zvR6vmbu5ub3nt0MutdA4ADTJw4UWFhYXXef8uWLTZNwd80vzVvJGbOnCmTyaTAwEAtW7asxn03bao8vZWtV3/WNk2Mo/uH65lOnNa2fYe1de9hbd93WFv3HtK2vYe160CuxbRk9eHp4a7xlw5UzJihGhncy+VhipubmxbdN17n3/eSCqt8wZiZdVDPfJCqxydd6aLq6m/jrj90y9wk7TpQ/eio8/w76YPHJmtQYFdJ0j3XXqxTZ4r0dfoupfy0Tcnrt2vfEct1W2pSVFyiNRt3as3Gnfrrqyt025VD9EJMpMtHAeYVnFLE39/SD9v32vS4M0XFmpGwXF9v2qXF993QJKaSq82SrzfqL89/WOPruVdXP90+6nxFX3m+ejei8FaSArr4KmbMUMWMGaqTpwu1etNOJf+4TSk/bdOB3AKb+jp5pkjLf9iq5T9slSQN6NlZpwqLdTT/pMUUwA31x7Hjevi1FZr73jd6YNxwTY8c1ix+nsxms9788hfNfH2l8k6ctmvf6XsOKH3PAb3w6Tq5uRl0wbnnVKwROGJgoNb/tk93//cjZR/Oq7Gf64cN0CvTb1BXP2+71tcQft5t9M/oqzQ9YblF25PvfqXJlw9RZxtGPDZ2R/NP6r21Gdqafahi1N6eg7n1vnCoOul7DujShxbqkRtH6G+Tr7TriF5bmc1mJX2brodfS9GhvMrrTRacKtQDi5L1YZxta36j+ag6Iq6hQZ49z7Gio6N13XXXacmSJVq+fLmys7MrzkUDAgIUGRmp6Ojoiv3PXv9dksaNG1fvYw8cOFBDhw6t9+MBAI1TwakzuuFfidWer7007TqNGnKuk6sCgJbB39/foRfMEfzV06xZs5SSkqLg4GAtW7as1mlTGro+hJ+fX6X7VU9CHd1/c/D666/btb9BgwZp2LBhNe7zww8/aPPmzTb1W1xSohOni3SqsEinzhTpVGGxThUWVVxd/8bWmkfRtPWQJvat+0u7laeHuvh6q4uxnTw9TmjnT19r509fV9pn6NChCg6ueTTGmjVrtGfPnjoftzZt27bVpEmT9MSkK/TEO6st2uOXfaNRA7pryy/r7HZMSbriiivUu3fvGvdZvny5Dh8+bHPfh00ntOvAMV3uZ9blfv//f3TolFnJe8r+f8cPH6Q3HrzRIpDbn7NX+9PX6oJW0vkjOujkmfbKLTilvILTKjhdjyDkjwxd9fAuJTw0WRf17VHtbklJSTp5sn7rD1oTFBSkUaNGSSr7wnn0E2/q151/VNpnUAc3XdLVTe5ubvLv6KOco/nVh2HHtunxuc+q7zkda1z3b+LEiWrXruYv6135HnEg97j2HMzVHf3cJFlO1Wls11r+HX3Uvk0rGU7t0dcpe/S1ZXeSpLvvvrvGY544cUJLly6t47Oom6rvEW1be2ncJQM07pIBKi0t1S87/lDKys+Ve/iATp6p2xSmleWW/dVBKv/ocqJIWraj5vfDLm0Migyq6/SChdrzyzeasyFVXf281d2vvdWpCR35HlGdzp071/qF7a5du/T112U/FacLi7TrQK7yT57WjQFSdR/33AwG+bVvqxOnz1i9wjd5T4kOnap5KuJberurncdBHdt6UB9u/V4fyiDJrKs6Sepk/bjubm4K6uqnTj6nlfxR5Qunzn6PqE5GRobWr19f4z62Ovs94t5rL9aiFeuVvudApX1uCijWfxck2C10d9TniNrcfffdMpvNWrRyvR55faXFaPK2HtJdA+x7ivDjwVJtPlaqeR+k6pMftui1B27U8AGVZ6dw1OeIs+3446imv7K8Ylrps98jyj9fffL9Fi3/cavGXTLAbrWg6ah6TmTrOVbV/YcMGdLQkioxGo2KjY1VbGxsrfuuXbu20uNq+ywPAGhZSktLdft/3tfGXfuttt933aWKGcNFHwDQVBH81eLstRJMJpPS0tI0d+5cZWVlVYz0q8taCbm5uQ2qo+rVolVPKh3df022bNli07EcnWZXZ9++fXbtr0eP6sOSciaTqUHH9ZTk6Sb5tJashQHWuBukHt62rPFVKvOpfB08Vf3/eV2m9jl27Jhd/43bty+b2m/mTeF6Py3T4gvYwuIS/fvd1RrazvZ1xWpy6tSpWvc5fPhwvZ+rfzuDpKqjKUvl7uamp++8Vn8df5nV0ZanTp2yekxfD8nXpv/v//dFdr5GzFysp++8Vg9cP9zqcffv36/jx2tfE6yuyt9rDuYW6JrH31Bm1kGLfdp7/v/PcOmpfHVvK9X881+qvKOHlVfDHiUltU9L54r3iLy8vIrj1vy6LVT+sSNq2CUeZUpKSuz+XGt6j3Bzc9PF5/XQnk0+2pK3Tx087bMGYX5h7WtjernZ+n74pzMFOnjA+lWvjn6PqK+q7xE+bpJPXZ576Sm18VLZP1YVXm61v266tzPIx6vqe0ftI8bPHM9VznHLzy51GR1TUFBg93/fs98j3N3d9N+YSF356GuV9unh7SYVn9S+ffa5GMIZnyOs9nnitKa89LE+WGt9+lfbP0fUbsux/794Y/u+Iwqf9apmRA5T/B3XVEyx66jPEVLZFMHPfpSmfy/9ptJUytbeI4KDuqqbb+MZhZqTk6OcnJw672/r53JUVvU9yNYwuuo5WdXlFJwlIyOj0vrvM2bMcEkdAIDG6/G3v9Snf86wUtW1F/bVs/eMcXJFAAB7IvirxcyZM5WSkmK1LSsrSwMHDlRwcLDGjRtX45WXZ594SfafWtPR/dfElrllJemhhx7Sww8/7KBq0Nx4erjr1QfG69KHF6q0tPIX/ZlZBzV0oOumC7MXT3d3fRl/p0YG93L6sYuKS/Twayu0ZtNOvfngTerkhCnsco6YdPXjb2j7viNW233atpJUt/WjmjKz2azvtmTxixh2sedQwy4Asmb2rSP1/e5cfZ2+S/uP2e8CgKZgZHAv3TxicLXhWFN24f0LtPug/X9ebGE2m/XSZ98ref02LbpvvEOnkErN3K3Ylz/V1r01j8Jt28pTf588Sg9cP9zqaF9XWbp0qZ577jlXl9FihIaGVrpv6ywoVS+etHXddXuJj4+vVENdRggCAFqOt9ds0LwPUq22DQzooqRZE+Xh3ng+DwEAbGffy3mbofIpUgIDAxUWFqaIiAiLE7iMjIyKBc+rrqVQnYZOzVlbsOfo/tF4eTWiL6vs5aK+PfTXGy5zdRkOExzUzSWh39lW/LRd59/3kr7N2O3Q45w4XajL57xWbegX0NlXsRE1T33XHJSUlGray5/q59/rPooDdWNs11q9u3XQ0PN6aFj/nnbvf+9h29bXdLTThUWKe+sLPfrmF3bv+7qh/fXOI7dq71uztWXhg1oQO043jxisTj5t7X6sxmjeX0artVfzi+ZdHfqdbffBXF3z+BuKeenjiinN7aXUbNY9L3ykK+a8VmvoJ0kZCQ/okZvCGlXoB+erOkIvM9O28D87O7vSfVdMr5mRkaG0tLSK+4899pjTawAANF5rN+9RzEsfW23r5NNWn/7tNhnbtbbaDgBoOprftxl2NmPGDEVFRVmdzjM+Pl4JCQkV900mkyZNmqSkpCSFh4fbtQ5fX98a7zf2/mF/xnatNaBHZ/Xv2VkDenZRvx6dNKBnF3Vs464XX3zB1eXZ3T8mj9In32/Rzv32ndqzMfDybBxfMv5x7Liuintdj0+4Qo9PvELu7va/NuSbjF3adeC01bbe3Tpo9dy79MfObXY/bmNSVFyiO577QMtS03VNz8bxf98U+bZrrfcfu0Ud27dVJ5+26uTTTh3at6n0pf3evXv1xhtv2PW4j7y+QovX7tKjt16ui8+rfapGR0rN3K2Ylz7RbzlHNMDPIMkxP08Gg0H9enRWvx6dNW3sJSotLVVm1iF9k75LBzd+peY6Qjeoq58euTFM/15a3YqazUs3P2/16tpBfTp7S6d32LXvHp2MUg2B42uf/6wzA1qrlx1n2DyYW6A3N/5S4z5lIXbZGodBXf1q3Bctg9ForFjiQSqb4cUWZ08NGhYWZs/S6mzmzJmVaoiMjHRJHQCAxmf3gWO6KX6JCq1ccOXp4a4PHouy23rWAADXIvirRU3TosTFxSksLEyTJk2qtH3q1Kl2X1/D1mlmnNl/+WjHunLF+n5S3dbSsUVd1nY0Go11Om5pqVnrf9trtc3Lw12tvTzVtpWnWnt5aPXccRrQs7O6+npbXZPtxIkTdn+u3t61fxPXoUMHux63bdvKI0ratvbSwhk36Oq4//8Sv7BU2ldQtm7Qud07qrMdpqls06ZNrft07ty52rbikhLt+OOY8k5Uvw6Ym5ubzu3WQR3/HDVTU39n12WPf1+z2ax9R0zKOZqvwlLL9tJSs/6Z9JW+ydilxEduVffu3ev0s16bk2eKtHXvIe0zFVlt79ejk778913y72RU/kHvWp9r2fPIV87RmkdfGdu1Vp/uHeVeh2lKnPEecepMkW59OkkrftouScorNFf8DJfr1a2DujpwfSl3d/dm8x5x4/BBNe7j5eVV52MWnDqjnKP5yi2oeQ2/08XSpz9s1ac/bNVV5/fRY7dervDBQZXej+vymrZF1f5MJ07r0f99rkUr11eqq+rPkiR19fVWQGffegX5Xl5eVre7ubkppFc3hfTqpqSTWTpx4oROnC5U/skzyj95RmeKi9WulZf8O/mojZdt0zF36FD7Fw3e3rW/R9iquveIWTeH63+rf9W+IyaLf98eHY3q0bn+74/2/BxRnfyTZ7TjjyNWv9wp19Gnrd78602KuLi/pLLPEUuXLq33Ma254aKLdNHvJv19yZpKa+ydbV9+kTxlUCefdgrs6ivPekwvdepMkXYfzFX+ydM6Yf3XjaSyMHt65DA9MDpUX6+2/2hZe5o4caJNAdKWLVtsnoYflY0YMaLSUg8ZGRl1HrmXnp5ecdveF4LWxaxZs5SRkSGpbMaaRYsWOb0GAEDjlH/ytK7/5zs6km99veqFM25Q2OAg5xYFAHAYgr8GCg8PV0RERKWTQ5PJpOTk5EpXV1b9cqehQV7VqTgd3X9NBg4cqKFDhzboeM5w9913O/2Yw4YN07BhtU9b+MuOHE39NMFi+zN3jdbDN9p2tXC7du1c8lxHjRrl8GNcGXqu7rrmQr3xRdkV/IdOmfXG1rIvEDvmHNfmV+62S/hXm3HjxlndvmHnH7p57rvac7D6tbD69+isD+Ima0DPLjYds3fv3urdu7dNj6nJV5t2asWz70mnCqy2p2bu0fn3L9Cbf71Jk/78Mri+Nu3ar2ufeFOHTWestgcHddXn/7pLXf3KwqPg4OA6f8G2ZuNO3fbsezqYZ/15SAXq5if1veRArWtIOfp1U36ilZq5p2Lb+oOlWn+wLEzwcHfTWw/dookjQxxaR3N+j6iqa9euNj/XzD0HNe+Db7U0Nd1iXdGqVm/YodUbduiygYF69NaRGn3heTIYDNW+R9jD8h+3akbCcuUcrTyl9+7jZu3e+v+BSr8enbT4vvEaMSjIYbVIsrj4yRlseY9oqHatvfT0X65V9Pz3Kn7flGvtZdLWhXcpoIuvw45f188RVZWUlOrp97/VPz5dU+PPcdigICXOvLVsRN6fHPUeERoqjRs2QPe++LG+22I5iurrnBJ9nSNJJnXxLdZLU8umlq2L04VFmvd+qp7+7NsaQ05JOv/c7npl+g0VI3Z7u+D90Bb+/v4uu2iupRo3blylc7u0tLQ6v+eUh26SFBUVVeO+JpNJaWlp8vHxsUtImJiYqCVLlkgqC/1Wrlxpl4u3AABNX0lJqSY/s0ybsw9ZbZ95U5juvOoCJ1cFAHAk1vizg/nz51tsq7rWn59f5emDbF2Dr+r+Q4YMcWr/cKxNu/Zb3R7au7uTK2n8nrlrjLr5WY4uOpp/Ug8uTnZBRWXe+OJnXfbIIu2pYSqzm0cM1g/PTbM59HOEK0PP1YaX7tO1F/atdp+j+Sc17sl39PCrK1RYzQiN2vz8+z6Neux1HTadsNp+wbnnaM3ceypCP1uNGlL2PGoK9Q7kFujaJ97U3xNXq7jENVMSHjGd0FWPvV4p9Dtbay8PffR4lMNDP9RucFBXvfPIrdq26K+659qL6rTe13dbshT5j7d18YMv64O1mSottTKctoEO5hZo4rylGv+vRIvQ72we7m6Km3C5fn1xhsNDv5ZiYniILhsYaLH9dGGxZr+5ygUV1Wz/sXyNfuJN/S1xdbWhn8Fg0OMTr9DquXdVCv0crV+Pzvrm6Xv0Ykyk2rW2PqJUkg7lndCEp5N089x3dSC3+otpJOnr9F06/74F+mfSVzWGfu1ae+k/94zVD89Nc/k0vWjcqk6NmZiYWKfHJSf//+fQiIiIGkO3rKwsXXrppYqJidGkSZM0ceLE+hX7p4SEBM2ePVtS2QWhSUlJhH4AgAoz31iplT//ZrVt3LABmnvHNU6uCADgaIz4s4Oqa0FIliPuqo6gO3v9h7rIza0cJlRdeN7R/cOxMvYctLo9JKibkytp/Py82+ilaeN0y9x3LdqWfpuuyZeHVkxX5gynC4t0/8Jkvf7Fz9Xu4+HupmfuGq37xw23Oj2rq3Tx9Vby32/X8598p8fe+kLFJdbDiv9++p3SNu/Wu7Mmqs85Hevcf1kY8pbyT1of6TesX0+lPHmHfL1rn161Jl39vLXqn3dq3gep1X7RbTab9e+lXys1c7cSH7lV/k78ojvniEnXPvGmtu49bLW9fZtW+vRvt2lkcC+n1YTandu9oxbdN15PTLpS//lorV79/CedOlPD3IGSNuzcrwlPJ8nNzaA2XmXTM7fx8lQbL4+zbnuqdSsPtfb0UJtWntXu17q8zdNDh00FevLdr2qdhvTivv5afP+NCunF7w57MhgMen5KhC756ysymyu/v7yXlqFpEZcofHDjeP1+8evvuuO593Uoz/rFFlLZWn5vP3xrraOgHcXNzU3Tr7tUEUP7a8pLH2vNxp3V7vvxus36Jn2Xnrs3QrddOaTS79DDphOa+fpKvfPVhlqPOW7YAL0YE6menX3t8RTQAsTFxSk+Pl5SWUiXmppa66i8BQsWVHp8TeLj4yudO6alpSkxMVHR0dE21WkymTRz5syKEYrBwcFatGiRAgMtL1YAALRMi1et1wufrrPaFtqrm955+Ba5uTEuBACaG4I/OwkICKg0tYuvr2+l9tDQ0Er3bZ2Ks+qIvKonc47uH46VvttyxF83P291ceA6X03ZjcMHafzwQfp43WaLttiXlysjIUg+bVs7vI7fco4oev4y/bLjj2r36ebnrWVzJjXakTdubm56+MYwjRgUpMnPLKt2xOIvO/7QRQ+8rFdmXK9JI0Ot7nO2b9J3adw/39GJ04VW28MHB2n5325X+7atGlR/OTc3Nz166+UKGxSkqPnvad8R62v/lU9h+r+/3qyxF/ezy7FrsnP/UV3z+JvV/rt29GmrFU/eoYv6MvqkserRyajnp0To0VtH6oVP1ykh5Ydqw+xypaVmnThdWO3Pv721beWpf912te677tJ6reWH2l3Yx19/ufqCiqmmz/bXxSla/3ysS//ti4pL9PfE1Zr3QWqN+119fh+99dAt9R5lbU9BXf30+b/+oje+/EUzX18p04nTVvfLLTilvzz/gZambtLC6TeoRycfvbn6V815c5WOHa85DO/RyagXYiJ1w6V1X4sakMrWeU9MTFRWVtm0tHPmzKlx6szExMSKc8F58+bVei6VnZ1tsa38WHWVnJysWbNmVQSIUVFReuaZZ2zqAwDQvH2dvkv3vfKZ1bauvt765Inb5N3GPufkAIDGhW+H7KRq0BcUFFTpftURdJmZmTb1X/XksOo6E47uH45jNpuVvueAxfZgRvvV6KWpkfJtZxnu7Tti0mNvfeHQY58uLNKTS9YodPqLNYZ+4YOD9EsTmW7vkn499csL02tcT+n4qTOKnv+e7nnhoxoDjc9/+V0R/3ir2n2uOr+PUv5xh91Cv7ONGBSkX1+coYgaQr2j+Sd13ZNv64o5ryp+6df6YVu2Q6YAzdxzUOGzFlcb+p3Tob2+efpeQr8moouvt+LvuEa735ipf912lTr6tHV1SZLKXk/pL9+vB2+4jNDPwf592zXysfK+tXHXfr3+ZfWjvh0t+1Cernz0tRpDP3c3N8294xqtePKORhH6lTMYDLr7mouU8fL9ihxa82j9z3/5XSHTX9Twhxdqyosf1xj6ubkZ9OD1lykz4QFCP9Tb2UFfVlaWxowZU+lCz3JnT7MZGxtbp1F71taCrev6sImJiRo+fLhiYmJkMpkUFhamdevWEfoBACr5LeeIbpn7rtWZfVp5eujjJ6IdulY1AMC1GPH3p+TkZIv1HGxRdYRdWFhYpftVpwO19YrOs6furNq3M/qH4+Qczbf65VVoL9b3q0n3Dj565u4xmvLixxZtr6T8qInhIQ4J3FZv3KEZCcv1+x9Ha9zv4RtHKP72a+q0Plhj4evdRktnT9SrQ37SXxen6HSh9XX93vzyF/2wLVtJsydaBNSf/rBFE59eWu06S5FD+2vZnIlq7eVp9/rLdfRpq0//dpte+HSd5vzvcxVVU0tq5h6lZu7R3xJXy9iutS4P7qWrz++jUUP6qO85HRs0Lev67Xs19u9vVTs147ndO+jzf/1Fvbp1qPcx4Bq+3m302IQr9MD1l+nVVT/pPx+l6Y9jNa9B5gh+3m30n3vH6vYrz29UUwg3Z139vPXExCs1842VFm1PvP2lbh0R3OCpi2316Q9bdPd/P6pxGtiAzr5aMutWDR/QeGdz8O9k1CdPRGtparoeWJSso/knre53/NQZ/fR7To19XdTXX69Mv14X9PF3RKloQYxGo77//vuKqTSzsrI0evRoBQYGavDgwcrPz1d6enrF+deiRYvqfD4ZGxur3NxcLVmyRL6+vnrsscdqvPAyOTlZy5cvr5jSUyob4Td9+nRmagEAWMgtOKXr//lOtZ8R33jwJl3Sr6eTqwIAOBOXhqssJIuJiam0ILutzh4xFxwcbPXEbcSIEZXuW7titDrp6ekVt6tbX8LR/cMx0ndbjvaTpGDWaKrVXVdfqCtDelttm/LSxzpdWPN6XLY4kHtc0fPf07WPv1lj6OfdxkvL5kzSM3eNaVKhXzmDwaApo4fqx+diNTCgS7X7bd17WMMeekULV/xYsebV+2szdOtTSdWGfjcOH6T3H53k0NCvnMFg0IM3XKbUefeqV1e/Wvc3nTitT3/YqhmvfKYBMc+r113zdc8LHynp2006lFdg07G/Tt+lqx9/o9qTrMGBXfXtvHsJ/Zq4dq299OANl2nH64/olRnX1+nnzF5uDQvW5lce1B2jLiD0c7IZ1w3Tef6dLLYfyT+pfyZ95bQ6zhQV68FFybrx30tqDP3GDRugX16c3qhDv3IGg0GTRoYqM+EB3Rpm+8wT7du00gsxkVr37FRCP9iN0WjU4sWLtWrVKkVFRSkwMFB5eXlKSUlRdna2QkJCNG/ePOXk5Nh8EWlcXJy2bNmidevW1frYTZs2ae3atYqIiNCiRYuUk5OjZ555htAPAGChqLhEE55K0m85R6y2PzHpCk0cGeLkqgAAzsaIP5WtZxccHKwFCxbUa9RfRkZGpcXZ58+fb3W/cePGVbpKMy0trc5Tap4d4kVFRbmkfzhGdcFfKMFfrQwGgxbed4NCZ7ykU2cqh3zb9x1R/LJv9K/brm7QMUpKSrX4858U99YX1a4/VG5gQBd98Nhk9evRuUHHbAwGB3XVj89N04OLU/T6F9ansDtdWKzpCcv11aZduiK0t+5f+JlKS81W9518eaje/OtN8nB3bhg6tF9P/fzCdE156RN9+F3dp0Dee9ikN7/8RW9+WbaeV2ivbho1pI+uGtJHYYMC1ba1l9XHLf9xqyY+vVRniqyPlhx6Xg+lPHmHOrRvHNNEouFaeXpoyuihuuvqC7Xi59/047a9KjhdqFNninSqsEinC4sr/i6/ffb2U2eKdbqouNqRqWfr2dmoF6dep3GXDHDCM4M1Xp4e+s89Y3Xdk29btL2c/IPuHX2xBvSs/qIJe9jxx1FNmrdUv+6sfqppLw93zb97jKZHDmty4XAXX28lzZ6oCeEhmp7wqQ7k1n7xxY3DB+m/UyLk38n6+mtAQwUHB7t0Ks24uDjFxcW57PgAgKbBbDbrgUXJWrNpp9X2W8KC9bdJVzq5KgCAKxD8/SksLEwJCQn1mvJz5syZFbdjY2OrDduq9puYmKjY2Nha+z97JGJERES1i8o7un84hrX1/Tw93NXPyogCWDq3e0c9GTVKs95YZdH2zAepumVEsELqGaJu2PmHYl/+VOt/21fjfm5uBs2IvFT/uu2qZrUwdtvWXlp8/3hdGXqupi74RMdPnbG634ffZdYYqt19zUV6Zfr1Llt/zNe7jZbNmaiFK9frkddWVDuFaU027T6gTbsP6LmP18rLw12XDQzUqCHnalToubqwj7/c3d205OuN+svzH6qk1HINBUm6MqS3Pno82iFrG8L1PNzdNe6SAfUO5YpLSqqEg2fdPlOk1l4eurCPf5McSdzcjL24n8ZcdJ5W/vxbpe3FJaV66NUVWvHkHQ4L25K+3aRpCz6t9v1Ykvp076ik2ROa/Ki3Gy4dqJHBvfTwayv01upfre4T0NlXL027rtb1AQEAAFqCl5N/0KKV6622XdzXX28+eJPc3Jj8DQBaAt7t/1S+mHpMTIxN6+MlJiZWjJaLioqq9UrMs9uzsrKUmppa6zEWLFhg9fGu6B/2l757v8W2gT07y8uTXL6uHrh+uC7sc47F9uKSUt374kcqLql9JM3Zjp88o4deTdHQvybUGvpd3Ndf65+P1fNTIppV6He2iSND9MuL03VRX9u/RJ4eOUwLZ7gu9CtnMBg0bewl+v3Vh/XUnddqVOi5alXP11hhcYm+Tt+lx9/+Upc+vFBdJsdr9BNv6o7nPqg29Lvukv767B+3E/qhWh7u7vJu00qdjO3Us7OvzvPvpJBe3XRJv566PKS3hvUPIPRrRP5zz1h5WHlf++LX35Xy03a7HstsNmvPwVxNefFjRc9/r8bQb+LIEP30QmyTD/3K+Xm30RsP3qQVT96pgM6+Fdvd3dz0yI1hynzlAUI/AAAASW+v2aC/vppitc2/o48+fiJabVo5ftkNAEDjQPD3p7NH6Y0ZM6ZO6/0lJCRo9uzZkspG+tVl+pfY2NhKazHMmTOn0jShVZ0dLM6bN6/WdRwc3T/s63RhkbZbmXc9OIhpPm3h4e6uV++/0eqXsD//nqMXP/2+Tv2YzWZ9+F2mBk37r174dF2101ZKkk/bVlow7Tp99+xUnX+uZejY3JzbvaPSnpmiv95wWZ0f88iNYXohJrJRXVF4Tkcfzbo5XF/E36WjSx/X5//+i2beFKYLzj2n3iN08k6c1pcbdlSsdVjV5MtD9f6jk52ytiEA5+jXo7Puu+5Sq20Pv7pChdVM91sXJ04XKjVzt575IFU3/jtR/rc9rXPvfrbaaZclqU0rTy2+f7wSH7lVPm1b1/vYjdW1F/bV1kUP6rO/367F94/Xrjce0by7RqtdNdMuAwAAtBRms1nz3v9Wf3n+A6vfYbRt5alP/3abunfwcUF1AABXYUjRWYxGo0wmk0wmk2JiYhQcHKzHHntMoaGhlaa/TE1N1dy5c5WRkaHAwEA9/fTTCg8Pr/NxVq5cqUsvvVQmk0lZWVkaM2aMFi1aZDFFaEJCguLj4yWVBXrR0dGNon/Yz+bsQ1Y/mIX26u6Capq20N7dNevmcM1d9o1F29+WrNb1lw7Qud07Vvv43QeO6b6Fn1lM3WbNxJEh+s89Y9XNr31DSm5yvDw99Ow9Y3VFaG/95fkPdTT/ZLX7PjHpCv198qhGvbZUm1aeuurPdfsk6YjphL5K36U1G3do9cad2nMwt8HHmBZxiV5sZOEnAPt4YtKVSvx6ow6bTlTavmP/Ub24/Hs9clNYrX2YzWbt3H9MP2zfqx+2ZevHbXu1afeBakcPWzMwoIuSZk3U4KCuNj+HpqS1l6fGXtzP1WUAAAA0GiUlpfrrqyl6OfmHavd5++FbWsTFygCAygj+zjJixAilpPz/sPiMjAxNmjTJ6r5Go1FxcXF1WkPP2mO///57zZw5UykpKcrKytLo0aMVGBiowYMHKz8/X+np6RUj9RYtWmTTuoOO7h/2k77bcn0/SQqu55p0LV3chMv14XeZ2r6v8ijKU2eKNPWlT/RF/F0WQVRhUbGe+/g7/XvZ1zp1pqjG/vt076gFseN09fl97F57UxJxcX9teHGGbnv2fX2buduiPf72azTn1pEuqKxhOhnb6dawYN0aVnaRxM79R7V6406t2bhTX23aqdyCUzb19+itI/Wv265u1OEngPoztmutf99+tWJe+sSi7d9Lv1b0lUMsLhApOHVGP/2eox+2Zev7rdn6cfteHanhIora3HXNhXphSqTaMvINAACgRTldWKTb//OBPvwus9p94m+/RuOHD3JiVQCAxoLg7yyLFy+WyWRSWlqali9fruzsbGVnZ8tkMsloNCogIEAhISGKjIy0aYSfNUajUYsXL1ZGRobeeecdrV27Vnl5eUpJSVFgYGDFceo7Cs/R/cM+qgv+Qgn+6qW1l6cW3zdeI2e/atH2VfouvfHlL7r7mosqtqVm7lbsy59q697DNfbr5eGuObeM1Oxbwpmu8U/+nYz6Mv4uzX3vG837IFWnzhSpXWsvPXPXaE0de4mry7OLc7t31LndOypmzFCVlJRqw64/tGbjTq3esENrt2SpsLj6tSOfvvNazby5Yb8nADR+f7nqQi1asV6/7vyj0vbjp87osbe+0Oybw8tG8/0Z8mVkHaxxGum68m7jpVem36DJl4c2uC8AAAA0LXkFpzT+34lKzdxT7T6P3lr2HQYAoGUi+KvCaDQqMjLSaSPggoOD67Q2YGPtHw2Tsccy+Ovq660uvt4uqKZ5GDEoSNMiLtErKT9atM18faXGXnSePN3dNfvNVfrf6l9r7W9U6LlaEDtO5/l3ckS5TZq7u5uemHSlpkcO0/Z9R9TnnI7qbGzn6rIcwt3dTRf17aGL+vbQ7FtG6uTpQq3dkqU1G3dqzaYd2rBzvySpQ/s2evaesbpj1AUurhiAM7i7u+n5KRFWLzh5a/WveqsOv2dsNWrIuXp52jj15fcSAABAi7PviEkRf39LmVkHrbYbDAa9NDVS0yKGObkyAEBjQvAHuIjZbFa6leAvhNF+DTb3jmv02Y/btO+IqdJ204nTGv+vRO08cEzHjtc8bWMX33Z69u6xmnx5KFM11qJD+7a6dECAq8twqratvXTNBX11zQV9JUlH80/qSP4Jde/QXj5tW7u4OgDONGJQkCaEh2hZarrd+/b0cNf5vbvrkn49Nax/gC4d0FOBXfzsfhwAAAA0fluyD2nM3/5n8V1HuVaeHkqceatuZHpPAGjxCP4AF/njaL6OWlnXh+Cv4XzatlbC9HEa9+Q7Fm0//Z5T42MNBoOmjL5Y8XdcIz/vNo4qEc1MR5+26ujT1tVlAHCReX+5Vst/3FrrWrG18e/oo2H9AzSsX08NG9BT5/c+R21aMcU0AABAS7d28x7d8K/Eatee923XWp88cZvCBgc5tzAAQKNE8Ae4iLXRfpIU0qu7kytpniIu7q+JI0O09Nu6j8AI7dVNCdOv17D+LWv0GgCgYXp29tXsm8P1jyVr6vwYLw93XdjHX8P699Ql/Xvq0v4B6tHJ6MAqAQAA0BR9vG6zop99T6cLi6229+hk1Ion79CgwK5OrgwA0FgR/AEukr67muAviBF/9vLfKZH6csMOqyMrz9autZf+GX2VZlw3TB7u7k6qDgDQnDxyY5iWfpuubfsOW20P6OyrYf17/vknQEN6d1crTz6KAwAAoHqvrPhR9y/8TKWlZqvtgwO7KuXJO7iADABQCd82AC5ibcSfp4e7+vfo5IJqmqfOxnZ67t4I3fGf96vdZ/zwQXr+3rHq2dnXeYUBAJqdNq08tfKfd2r2m6u0Yecf6urrrWH9A3RJ/54a1q+nzuno4+oSAQAA0ESYzWb9LXG15i77ptp9wgcH6ePHo+XLMiUAgCoI/gAXsTbib0CPzvLi6n+7iro8VMtS07Xip+2Vtgd28dWLU69T5ND+LqoMANDcBHTxVdLsia4uAwAAAE1YUXGJpr38qd788pdq97lx+CC988gtau3FetAAAEskDIALnC4s0vZ9Ryy2h/Rimk97MxgMWjp7ou5+4SN99uNW+Xm30Z1XXaBHb71c7Vp7ubo8AAAAAAAASdKJ04Wa8HSSVv78W7X7TI8cpufvjZC7u5sTKwMANCUEf4ALbMk+pJLSUovtBH+O0a61l5bOnqii4hK5uxnk5saHYwAAAAAA0HgcNp3QuCff1vrf9lW7z9w7rtGsm8NlMBicWBkAoKkh+ANcIH3PQavbQ3p1d3IlLYunh7urSwAAAAAAAKhk14FjGvu3/+n3P45abfdwd9Or99+o20ed7+TKAABNEcEf4ALpu/db3R4SxIg/AAAAAACAluLXHTmK/MfbOphXYLW9XWsvvffoJI2+8DwnVwYAaKoI/gAXyNh9wGJbV19vdfXzdkE1AAAAAAAAcLYvN+zQzXOXqOBUodX2zsZ2Sv7H7bqobw8nVwYAaMoI/gAnM5vN2rTHMvgLZn0/AAAAAACAFmHJ1xt1138/VHFJqdX2c7t30Ion71Sfczo6uTIAQFNH8Ac42f5jx3U0/6TF9lCCPwAAAAAAgGbNbDbruY/XatYbq6rd56K+/vrs77eriy8zQwEAbEfwBzjZpmrW9wtmfT8AAAAAAIBmy2w2a+brK/X8J99Vu881F/TV+49OknebVk6sDADQnBD8AU6Wseeg1e2hvbo7uRIAAAAAAAA4g9ls1iOvrdR/P60+9LvtyvP16v3j5enh7sTKAADNDcEf4GTWRvx5erirf49OLqgGAAAAAAAAjmQ2mzXnzc9rDP3m3DJS/779ahkMBidWBgBojgj+ACfL2H3AYtuAHp3l5cnLEQAAAAAAoDkxm8164p0v9exHaVbbDQaDXpgSoenXXerkygAAzRVJA+BEpwuLtG3fEYvtwb1Y3w8AAAAAAKC5+ee7X+mp97612ubh7qbEmbfqlhHBTq4KANCcEfwBTrR172GVlJZabA8l+AMAAAAAAGhW/p30lf6Z9JXVNnc3N707a4Juumywk6sCADR3bq4uAGhJNlmZ5lOSgoMI/gAAAAAAAJqLee9/q78vWWO1zc3NoMSZtxL6AQAcguAPcCJr6/tJUmiv7k6uBAAAAAAAAI7wn4/S9NhbX1htc3Mz6K2HbtGtYUzvCQBwDII/wInSd++32NbFt526+nm7oBoAAAAAAADY0wuffqdZb6yy2mYwGPT6Azdp8uWhTq4KANCSEPwBTmI2m7Vpj+WIvxBG+wEAAAAAADR5L3/2vR56dUW17a/eP163jzrfiRUBAFoigj/ASfYfO66j+Scttoewvh8AAAAAAECTtnDFj7p/UXL17TNu0F+uvtCJFQEAWiqCP8BJ0q2M9pOkYII/AAAAAACAJuu1z3/S9ITl1bYviB2ne0df7MSKAAAtGcEf4CTpu60Hf6G9CP4AAAAAAACaov+t/lVTF3xabfsLMZGaNvYSJ1YEAGjpCP4AJ7EW/Hm4u6l/z84uqAYAAAAAAAANkfj1Rt3zwkcym81W2/9zz1jNuO5SJ1cFAGjpCP4AJ0nfvd9i24CendXK08MF1QAAAAAAAKC+kr7dpL88/0G1od+8v4zWgzdc5uSqAAAg+AOc4kxRsbbtO2KxnfX9AAAAAAAAmpb312bo9v+8r9JS66Hfv2+/Wo/cFObkqgAAKEPwBzjBluxDKikttdge2qu7C6oBAAAAAABAfXy0brOinnmv2tDvH1Gj9Oitlzu3KAAAzkLwBzhB+h7L9f0kRvwBAAAAAAA0FZ/+sEWT5i21enG3JMVNuFxPTLrSyVUBAFAZwR/gBOm7rAd/ob0J/gAAAAAAABq7lJ+2acLTS1VcYj30m31zuJ6MvsrJVQEAYIngD3CCDCsj/job26mrr7cLqgEAAAAAAEBdff7L77o5/l0VFZdYbX/4xhGKv+MaGQwGJ1cGAIAlgj/Awcxmszbt3m+xPaRXNz4QAgAAAAAANGKrN+7Q+H8nqrCa0O/+ccM17y+j+Y4HANBoEPwBDnYg97iO5J+02B7C+n4AAAAAAACN1tfpu3T9P9/RmaJiq+2xEZfouXvHEvoBABoVgj/AwTbttr6+X0iv7k6uBAAAAAAAAHWxdvMejXvybZ0utB76TRl9sV6ceh2hHwCg0SH4Axwso9rgr6uTKwEAAAAAAEBt9h/L181z39XJM0VW2++65kK9HDuO0A8A0CgR/AEOlr7HMvjzcHfTgJ5dXFANAAAAAAAAqlNSUqrbn31fh00nrLbfcdUFWjTjBrm58bUqAKBx4jcU4GDpVkb89e/RWa08PVxQDQAAAAAAAKrz9Pvf6qv0XVbboq4YolfvG0/oBwBo1PgtBTjQmaJibdt32GJ7SK9uLqgGAAAAAAAA1UnN3K1/vLvGalvk0P5648Eb5e7O16kAgMaN31SAA23de0jFJaUW20OCCP4AAAAAAAAaiyOmE4qe/55KS80WbQGdffXmX2+Sh7u7CyoDAMA2BH+AA6XvPmh1e0iv7k6uBAAAAAAAANaYzWbd9d8PlXM036LN3c1NS2bdqg7t27qgMgAAbEfwBzhQ+u79VreH9Orq5EoAAAAAAABgzQufrlPKT9uttv3rtqs0fECgkysCAKD+CP4AB0rfc8BiW2djO3Xza++CagAAAAAAAHC2n37bpzn/+9xq29Xn99HMm8KcXBEAAA1D8Ac4iNlsVvpuy+AvJKibDAaDCyoCAAAAAABAOdOJ05o0b6mKikss2rr5eeuth26RmxtfnwIAmhZ+cwEOcjCvQIdNJyy2h/Tq5oJqAAAAAAAAUM5sNitmwSfafTDXos1gMOjth29VVz9vF1QGAEDDEPwBDrJpl+VoP0kKJvgDAAAAAABwqcWrftL7aRlW2x67daRGDTnXyRUBAGAfBH+Ag2RYWd9PkkIJ/gAAAAAAAFwmY88BPfRqitW2sEFB+tvkK51cEQAA9kPwBzjIpt37LbZ5uLtpQM8uLqgGAAAAAAAAJ04XauLTS3W6sNiiraNPWyXOvFUe7u4uqAwAAPsg+AMcxNqIv/49OquVp4cLqgEAAAAAAMD9Cz/Ttn2Hrba98eBN6tHJ6OSKAACwL4I/wAHOFBVr617LD5HBQUzzCQAAAAAA4AqJX2/U/1b/arXtwesvU+TQ/k6uCAAA+2PoEeAA2/YeVnFJqcV21vcDAAAA0JTcfffd8vLystg+ZcoUxcTEuKAiAKif33KOKPblT622XdTXX0/deY2TKwIAoLJFixZp8eLFFtsLCwtt6ofgDw3GiaClTbstp/mUpGCCPwAAADSQvU4Ggbo4duyY1e0FBQVOrgQA6u90YZEmzVuqE6ctf1f6tG2lpNkT5cXSLAAAFysoKNCBA9azBVvwGw0NxomgJWvr+0mM+AMAAEDD2etkEKiLDh06WL3Q09vb2wXVAED9zHx9pTbu2m+1bdF949W7WwcnVwQAgCVvb29162aZIRQWFlabw1hD8IcG40TQ0qbdlh8mO/m0VTe/9i6oBgAAAM2JvU4Ggbp4/fXXNXToUFeXAQD19tG6zUpI+dFq272jL9atYcFOrggAAOtiYmKszqK4fv16jR8/vs79EPyhwTgRtGRtxF9or+4yGAwuqAYAAADNib1OBgEAaO72HMzVvS98ZLVtcGBXPX9vhJMrAgDA8dxcXQDQ3BzIPa5DeScstgcHMc0nAAAAYM3x48e1d+9eHT9+3NWlAACaiaLiEkU9s0x5J05btLVt5amlcyaqTStPF1QGAIBjMeIPsLP03dbXWwnpTfAHAACAlmvt2rVKS0tTVlaWsrOzlZWVpfz8/Gr39/HxUWBgoAICAhQYGKiwsDCNGDHCiRUDAJqyJ975Uj9s32u17cWp12lAzy5OrggAAOcg+APsrNrgjxF/AAAAaEH27t2rxMREpaWlKSMjw6LdbDbX+Pj8/HxlZGRUPDYhIUGSFBwcrLCwMEVHR6tnz572LxwA0OSt+uU3zf8wzWpb1BVDdOdVFzi5IgAAnIfgD7CzdCvr+7m7uWlgAFeSAQAAoPl79913lZiYWCnssxbyBQYGSiob2efr6ytJysvLU35+vvLy8mQymaz2n56eroyMDCUkJCgkJETR0dGKjIxU+/bt7f9kAABNzh9H83Xncx9Ybet7Tke9PG2cDAaDk6sCAMB5CP4AO0vfvd9iW/8endTKk5cbAAAAmq+nnnqqYlTe2UGf0WjUiBEjFB4ertDQUAUEBMjHx6fO/ebn51dMDbpp0yZlZGQoLa1sFMemTZuUnp6uWbNmKTY2VjNmzCAABIAWrKSkVLf/530dNp2waPPycNfSORPVvm0rF1QGAIDzkEQAdlRYVKytew9bbA/uxTSfAAAAaJ5WrFihmTNnKj8/X2azWUajUZGRkQoPD1dYWJhNIZ81Pj4+Gjx4sAYPHqyIiIiK7Wlpafrss8+UkpIik8mkhIQEJSYm6vHHH9ekSZMa+rQAAE3Q3Pe+0dfpu6y2/eeesRrS+xwnVwQAgPMR/AF2tHXvYRWXlFpsD+3V3QXVAAAAAI5z/PhxxcTEKC0tTWazuWLdvbPDOUcKCwtTWFiYnnnmGaWmpiohIUFr167VrFmzlJycrIULFzL6DwBakG8zduufSV9Zbbvh0oGaFnGJkysCAMA13FxdANCcWFvfT5KCg7o6uRIAAADAcTIzMzVs2DClpqZqxIgRWrVqlZKSkpwW+lUVHh6upUuXauXKlbrsssv07bff6tJLL9XmzZtdUg8AwLkOm04oev4ylZZaWVO2i69ee+BG1vUDALQYBH+AHaXvth78MeIPAAAAzcXatWs1evRoSVJSUpKSkpI0ePBgF1dVJjg4WEuXLtXChQtVWlqq0aNHa+XKla4uCwDgQKWlpfrL8x/oj2PHLdrc3dy0ZOYE+Xm3cUFlAAC4BsEfYEfWRvx19Gmr7h2YYggAAABN39q1azVx4kRFRETo+++/V1hYmKtLsioyMlI//PCDxowZoylTphD+AUAzNv/DNK38+TerbfG3X61LBwQ4uSIAAFyL4A+wo/Td+y22hQZ1YzoJAAAANHmZmZmaOHGiYmNjtWjRIvn4+Li6pBr5+Pho8eLFmjp1qqZMmcK0nwDQDK34abvi3v7Sats1F/TVwzeOcHJFAAC4noerCwCai4O5BTqUd8Jie3Cvbi6oBgAAALCvmTNnKi4uTtOmTXN1KTaJi4tTYGCgpkyZou+++87V5QAA7OS3nCOKfvY9mc2W6/p179Bebz10s9zcGPMAAGh5CP4AO9lkZbSfJIWwvh8AAACagWXLljX6UX7ViY6O1rhx41xdBgDATvJPntb4fyXKdOK0RZubm0HvPHKruvh6u6AyAABcj8teADvJsLK+nySFBHV1ciUAAACA/TXV0K9cU68fAFCmtLRUtz37vrbtO2y1ff5dY3RFSG8nVwUAQONB8AfYyabdlsGfu5ubBgZ0cUE1AAAAAAAAzc8/lqxR8vptVtuirxiiB64f7uSKAABoXAj+ADvJsBL89evRSa29PF1QDQAAAAAAQPPy4XeZil/2jdW2i/r6a+GMG2QwGJxbFAAAjQzBH2AHhUXF2mpliomQXt1cUA0AAAAAAEDzkrHngP7y/IdW27r6euvDuCi1acXF1wAAeLi6AKA52LbviIqKSyy2hwQR/AEAAKB527t3r9LS0iRJISEhGjx4sIsrAgA0N0fzT2r8vxJ14nShRZunh7vef2yyenQyuqAyAAAaH4I/wA427d5vdTsj/gAAANCcTZ06VSkpKRbbY2Nj9eijj7qgIgBAc1NcUqJJ85Zq98Fcq+0vTo3UZQMDnVwVAACNF1N9AnaQscdyfT+JEX8AAABoejIzMzVnzhxddtlluuyyy/Too49q7969FvuNHTtWKSkpMpvNFdvMZrPMZrMSEhI0ePBgbd682ZmlAwCaoVlvrNKaTTuttsWMGaopo4c6uSIAABo3gj/ADtJ3WwZ/HX3a6pyOPi6oBgAAAKifJUuWaMyYMVqyZImys7OVnZ2txMREDR8+XElJSRX7vfLKK0pPT6+4Xx74GY3Givt5eXmaMGGC9u3b5/TnAQBoHt5es0EvfLrOatuIgYH675QIJ1cEAEDjR/AH2IG14C8kqJsMBoMLqgEAAABsl5mZqdmzZ1eM4CsP88r/zJo1SwsXLpQkJSYmymAwyGw2KyoqSuvWrdO+ffu0efNm7du3T+vWrdO0adOUl5eniRMnuvJpAQCaqPXb92rqgk+stvXoZNR7j06WlyerGAEAUBXBH9BAB3MLdDCvwGI76/sBAACgKYmPj5ekikBv3rx5WrdunbZs2aKkpCRddtllio+P18KFC5WVlSVJSkpK0rx58xQQEFCpr4CAAMXFxem7775Tbm6unnrqKac/HwBA03Ug97hunvuuzhQVW7S19vLQR49HqauftwsqAwCg8eOyGKCB0qtZ3y+Y9f0AAADQROTn5ystLa3i/rp16yqFeWFhYQoLC1NiYqLmzJkjg8GgiIgIhYWF1dhvYGCgXnnlFUVFRWnGjBlq3769w54DAKB5OFNUrFvmvquco/lW2xffN14X9vF3clUAADQdjPgDGijDyjSfkhTKiD8AAAA0EdnZ2ZLKRvtZG8FXLjo6WmPHjpUkhYeH16nv8PBwDR48WJ999pl9igUANFtms1n3L/xM67ZmW21/aPwIRV0xxLlFAQDQxBD8AQ20afd+i23ubm4aGNDFBdUAAAAAtiufulNSraP47rvvPpnN5mrDQWtCQkKUnJxc7/oAAC3DwpXr9drnP1ttu+r8PnrqzmucXBEAAE0PwR/QQBlWpvrs16OTWnt5uqAaAAAAwHY+Pj4Vt3v27FnjvsHBwZKk48eP17l/o9GoTZs21a84AECLkJq5Ww8usn6RSO9uHZQ0a4I83N2dXBUAAE0PwR/QAIVFxdqy97DFdtb3AwAAQFPi5+dXcTszM7NOj1m+fHmd+8/KylJ+vvW1mgAAyD6Up1ufSlJxSalFW7vWXvr48Wh1aN/WBZUBAND0EPwBDbA954iKiksstrO+HwAAAJqSwYMHy2g0SlKd1uJ77LHHVFpq+eVsdTIzMyuNKgQAoNzJ04W6KX6JDptOWG1/66GbNTioq5OrAgCg6SL4Axpg027LaT4lRvwBAACg6Zk+fbrMZrMSEhK0b9++GveNjY3VokWL6tTvkiVLlJWVpcDAQHuUCQBoRsxms6a89Il+3fmH1fa/TbpS44cPcnJVAAA0bQR/QANkVBP8MeIPAAAATU1sbKwGDx4ss9msCRMm6Lvvvmtwn3v37tXcuXNlMBgUFhZmhyoBAM3Jcx+vVdK31teAvX7YAD0x6QonVwQAQNNH8Ac0wKbd+y22dWjfRud0ZBojAAAAND3vvfeepk2bJh8fH02YMEGDBg3S2rVr69XXu+++q+HDh8tkMkkSwR8AoJLPf/ldc/73udW2gQFd9NZDt8jNja8uAQCwlYerCwCasow9liP+Qnt1l8FgcEE1AAAAQMP4+PgoLi6u4n5aWpoCAgJs6iMtLU1Tp06VyWRSRESEhgwZooCAAI0YMcLe5QIAmqgdfxzV5GeWqrTUbNHm2661Pn48Wu3btnJBZQAANH0Ef0A9Hcor0IHcAovtrO8HAACA5qI+o/QCAwO1cOFCRvgBAKw6fvKMxv87UXknTlu0ubkZ9O6siepzTkcXVAYAQPNA8AfUU7qV0X6SFML6fgAAAGjBAgICbB4lCABoGUpLS3XHc+9rS/Yhq+1P3XGtrr2wr5OrAgCgeWGibKCe0ncR/AEAAACukJKSossuu8zVZQAAbPSvpK/16Q9brbZNHBmih29kWmgAABqK4A+oJ2sj/tzcDBoU0MUF1QAAAAAtR3Z2trKzs11dBgDABk+9943+mfSV1bbzz+2uV+8bL4PB4OSqAABofpjqE6in9N37Lbb18++k1l6eLqgGAAAAaDn27NkjHx8fV5cBAKgDs9msuLe+0LwPUq22dza200dx0Wrb2svJlQEA0DwR/AH1UFRcoi17D1tsD+nV3QXVAAAAAC3H8ePHtXbtWleXAQCog9LSUj24OEUvJ/9gtd3D3U3vPTpJAV18nVsYAADNGMEfUA/b9h1WUXGJxfaQINb3AwAAAGqzYsUKpaamKjs7W1lZWcrLy6vzY/Pz82U2m5kODgAauZKSUt370sd6a/Wv1e7z0rTrFD64lxOrAgCg+SP4A+ohfbfl+n6SFNKL4A8AAACoztq1azV79uxK6/OZzWYXVgQAcITComLd/twHej8tw2q7wWDQK9Ov172jL3ZyZQAANH8Ef0A9EPwBAAAAtklLS9PkyZMl/X/YZzAY6jVyj7AQABqv04VFuvWpJKX8tN1qu7ubm956+GZNGhnq5MoAAGgZCP6AekjfYxn8+Xm3kX9HHxdUAwAAADRu+fn5mjp1asUUnQaDQWazmQAPAJqZglNnNP5fifoqfZfVdi8Pdy2dM1HXDxvo5MoAAGg5CP6Aekjfvd9iW2ivbqwzAgAAAFixYMECmUymis/LZrNZwcHBio6OVmhoqAICAuTjw0V0ANCU5RWcUuQ/3tb327Kttrdp5amPH4/W1ef3cXJlAAC0LAR/gI0O5RXoQG6BxfbgIKb5BAAAAKxJSUmpGOVnMBi0aNEiRUREuLosAICdHDad0Ogn3tTGXZYXSkuST9tW+uzvt2vEoCDnFgYAQAtE8AfYaHP2IavbWd8PAAAAsC4rK6tiis+4uDhCPwBoRnKOmHTtE29q697DVts7tG+jVf/6iy7s4+/kygAAaJkI/gAbHbQy2k+S+vXo7ORKAAAAgKajfLRfVFSUq0sBANjJ7gPHdM3jb2rXgWNW27v5eevzf92lwUFdnVwZAAAtl5urCwCamtyCk1a3d/Jp6+RKAAAAgKYhODhYkuTj46P27du7uBoAgD1s23tYI2e/Wm3o17OzUd88fS+hHwAATkbwB9joaL714K9De4I/AAAAwJry4C8/P1/Hjx93cTUAgIbatGu/Lp/zqnKO5ltt79O9o1LnTVFf/05OrgwAABD8ATY6VnDK6nY/79ZOrgQAAABoGh5//PGK22vXrm1wf2lpaZo6dWqD+wEA2O7H7Xt15aOv6bDphNX2wYFd9c28exTQxde5hQEAAEkEf4DNjh23DP582raSh7u7C6oBAAAAGj8fHx89/fTTMpvNio+Pb3B/mZmZSklJsUNlAABbfJO+S9c8/obyTpy22n5RX3999dQ96t7Bx8mVAQCAch6uLqCxy8jI0KZNm5SVlSWTySSj0Sg/Pz8NHjxY4eHhri4PLnDsuOVUn0zzCQAAANQsOjpa+fn5mjt3rhYuXNigEXu5ubl2rAwAUBcrftquW556V6cLi622jxgYqM/+cbt82jIjEgAAruTS4O/48ePKy8uTr69vo1vgPSEhQQsWLJDJZKpxv6ioKE2fPl2BgYH1PlZqaqqSk5OVnp6u7OzsioAxICBA48aNU1RUlIxGY6Ptv6XJtTLVZwfvNi6oBAAAAGhaYmNjtWfPnopRf/UN/9LS0uTjw2gSAHCWD7/LVNT891RUXGK1/arz++ijuCi1a+3l5MoAAEBVDg/+1q5dq7S0NGVlZSk7O1tZWVnKz7e+8K9UNgVMYGCgAgICFBgYqLCwMI0YMcLRZVbIysrSpEmTlJWVVaf9lyxZoiVLlmjRokWKjIy06VgZGRmKiYmpOFZwcLBCQkKUl5enjIyMij/x8fGaN2+eoqOjG1X/LZW1qT792hP8AQAAAHXxzDPPKCUlRfHx8XrppZcUGhpa58fm5eVVmo0FAOB4b6/ZoLtf+FClpWar7dcPG6Ck2RPVypOJxQAAaAzs/ht57969SkxMVFpamjIyMizazWbrHxLK5efnVwRSUtnIO6kstAoLC1N0dLR69uxp77IllQVlEyZMqHWUnzUxMTE2hX+JiYmaPXu2pLJRg3FxcZVOXE0mk2bOnFmxbsXs2bOVlZWluLi4RtF/S3asgKk+AQAAgPrIzMxUTEyM8vPzZTabZTKZlJaWVufH13Y+CQCwr1dW/KgZCcurbZ80MlRv/vUmeXq4O7EqAABQE7sFf++++64SExMrhX3WTsrKp8T08fGRr6+vpLKrNvPz85WXl1dt6Jaenq6MjAwlJCQoJCRE0dHRioyMtOsUoWlpaZWOHxUVpdtuu00BAQEyGo3KyMhQVlZWRbBZVUxMjLZs2VLrlaepqakVoVxsbKzVsM1oNGrx4sWaMmVKRTiXkJCg0NDQWsNFR/ffkpnNZqsj/pjqEwAAAKhZWlqaJk+eLKnsc7XBYLC5j/LHmM3mGmeSAQA03LMfpmn2m6uqbb/n2ouUEHu93N3dnFgVAACoTYODv6eeeqpiVN7ZQZ/RaNSIESMUHh6u0NBQBQQE2LQGQ35+fsXUoJs2bVJGRkZF2LZp0yalp6dr1qxZio2N1YwZM+wSAO7Zs6fi9qpVqxQcHFypPTg4WMHBwYqMjFRycrJmzZplEVQuWLCg1lFz5etYGI3GWvedP39+RTAnSbNmzao1mHN0/y1ZwalCFZeUWmzv6MOIPwAAAKA6+fn5mjRpkqSy8O7sAA/VK18q4+wLZ22Z4rT8fDUvL09S2f9D+YWtAFCT+R+kas7/Pq+2/cHrL9Oz94yp10UcAADAseod/K1YsUIzZ86smKLFaDQqMjJS4eHhCgsLa/BC6z4+Pho8eLAGDx6siIiIiu1paWn67LPPlJKSIpPJpISEBCUmJurxxx+vOJGsr+zsbEnSvHnzLEK/qsrDsZiYmErbU1JSagzbEhISKk6+ZsyYUWtNRqNRsbGxFeGqyWRSYmJitevxObr/lu7occtpPiVG/AEAAAA1WbBggaTKI/aMRqOioqIUGhpaMTNMXWzcuFFz5sxxSJ3VSU1NVXJystLT05WdnV2xxmBAQIDGjRunqKgoh4RpY8aMqddSFDWpz/r0AFqWz37cWmPo98SkK/T3yaMI/QAAaKRsDv6OHz+umJgYpaWlyWw2V6y7d3Y450hhYWEKCwvTM888o9TUVCUkJGjt2rWaNWuWkpOTtXDhwnqP/svOzpbRaKxz6BUZGamIiIhKI+ZqW2i+/IRXUp3/zcaNG1cRzElScnJytTU6uv+W7lg1wZ8fa/wBAAAA1UpLS5PBYKiY4jMuLk7Tpk2rV1+DBw9Wenq6kpKS7FylpYyMDMXExCgrK0tS2SwwISEhysvLq1ibPiMjQ/Hx8Zo3b16TOI+q7SJXAC3btr2Hdduz71fb/sxdo/XwjWFOrAgAANjKpkm4MzMzNWzYMKWmpmrEiBFatWqVkpKSnBb6VRUeHq6lS5dq5cqVuuyyy/Ttt9/q0ksv1ebNm+vVX1ZWlkaMGGHTY8aNG2exrXzkYFXJyckVV2sajcY6X9Va9cTM2vqCzugf0rECy/X9JKlDe0b8AQAAANUpP0cyGAyKjY2td+hXrnzaS0dKTEzU6NGjlZWVpaioKG3ZskWrVq3S0qVLtWrVKm3ZsqXSufDs2bMVHx9v1xrs/TyjoqJsGl0JoGXJKzil8f9O1PFTZ6y2L4gdR+gHAEATUOfgb+3atRo9erQkKSkpSUlJSRo8eLDDCrNFcHCwli5dqoULF6q0tFSjR4/WypUrbeqjPDCzFuTVduy6Sk1NrbgdEhLSoOOc3Zez+od07Hg1wR9TfQIAAADVMplMFev51WVJgtr4+vo6dH3A1NRUzZ49W5IUGxurZ555xmJWF6PRqMWLF1cK/xISEpScnOyQmsov7ixfe76uf85W2xrwAFqukpJSRT/7nn7LOWK1/fl7IzRt7CVOrgoAANRHnab6XLt2rSZOnKiIiAjNnz+/wev3OUr5GoOPPPKIpkyZosWLF2vMmDF1eqzRaNSWLVtsXpfB2tWSAQEBVvc9+wSwun2qExISooyMjIr71kYVOrp/VD/VZwem+gQAAACqFRgYqKysLPn4+NR7aYazxcbGOnRazalTp0oqO0+sLSybP39+peUfZs2aZbc19MrPvaOiovTMM8/Y/PisrCwNHz5cUlno54h1CAE0D/94d41W/vyb1bY7rrpA94271MkVAQCA+qp1xF9mZqYmTpyo2NhYLVq0qNGGfuV8fHy0ePFiTZ06VVOmTLFp2s/6nARZW2jdWj8mk6nSvrYeKygoqNL98jUmnNU/yuQy1ScAAABgs/LZYvLz83X8+HG79Omoc9OEhISKc6u6jE40Go2KjY2tuG8ymZSYmGjXmuo7Uq986tGqNQLA2T5Ym6m5y76x2jb0vB5KiB0ng8Hg3KIAAEC91Rr8zZw5U3FxcXrsscecUY/dxMXF6amnntKUKVMcepxNmzZVul/deodVR9DZuq5C1RF8Z4/Oc0b/KFPdVJ9+TPUJAAAAVOvs88mq51D1sXfvXq1du7bB/VizYMGCitt1Xc++6pIR9pruMz8/X0ajsV4XqWZlZVWMRKzPaEEALUP67gP6y/MfWG3r6uutDx6brNZenk6uCgAANEStwd+yZcsavPC6q0RHR9u81p+tMjMzK92/7777rO5X9eTW1kXaa7ua1dH9o4y1qT7btfZSK886zZoLAAAAtEiBgYGaNm2azGazXnnllQb3l5ycrEmTJtmhMst+y0f7la+pVxdV19JLS0uzW022rt9erny0X3BwsN2mHgXQvBzNP6kb/52ok2eKLNo8Pdz1Qdxk+XdiimAAAJqaWoO/ph4IObr+s68GDQsLszjhK5efn9+g4/j5+VW6n5eX59T+UeaYlak+meYTAAAAqF1cXJwmT56s1NTUBl+gmZuba6eqKktNTa24bWvgVvVc8Oy+6isvL8/m9dulshlcykf7zZ8/v8F1AGh+iktKNOmZpdp90Pr76UtTr9PwAbbNJgUAABoHhik1wNlXg0rSokWLqt23oSemVQPMqkGfo/uvyZYtW2w6lr+/v/z9/W16TGNxLN9yxF/H9m1dUAkAAACau5ycHOXk5NR5f1s/l7vCM888o7y8PE2ZMkWLFy/WmDFj6tVPRkaGQy7yPHuKTlsDt5CQkEpLJlRdjqE+IiMjFR4ebvPjZs6cKalsqtLqLk4F0LLNefNzrdm402pbzJihunf0xU6uCAAA2AvBXwPMnTu34va8efNqXHfh7IBQsv9IREf3XxNbF5p/6KGH9PDDDzuoGseyOuKP9f0AAADgAEuXLtVzzz3n6jLs4qmnnqo4Z+nQoYPMZrOmTJmi4OBgm0bW5eXlKTs7W+np6fVa964mJpOp0nmVrf0HBQVVup+VldXgmuqzNl9ycnJFAGnruRqAliHx6416/pPvrLaNGBio/06p2/qmAACgcWpSwV9KSopefvllrVixwtWlKD4+vuJELioqStHR0TY9vqFTc9YW7Dm6/5bK2hp/foz4AwAAAGqUmppaaX10g8Egs9ms9PT0SqPkbNHQc56qqo7Qq+v6fuWqjhCs7/NqqFmzZkmSYmNjbX4OAJq/X3bkKOalj622+Xf00XuPTpaXZ5P6uhAAAFRR6xp/VT311FOVTticafny5Xa5arKhMjIylJCQIKlsXb/6XIVpK19f3xrvN/b+mwOz2axjx1njDwAAALBVVFSUzGazJFX8bTAYZDAYXFlWJZs2bap039ZzosZw8WR8fLxMJpOMRqNmzJjh6nIANDKH8gp0U/wSnS4stmhr5emhjx6PUlc/bxdUBgAA7MnmS3hefvll+fn5afDgwY6op1rZ2dlKSUmx+3QutjKZTJowYYKkssXbly5d6pTj5uXlNdr+4+PjNXDgwDrv31TX9zt5pkiFxSUW25nqEwAAAI4wceJEhYWF1Xn/LVu2NNqpHceNG6c5c+ZI+v/Rfo1NQ0cQ+vn5Vbrv6HO4qrKysiouUJ0xY4bLz50BNC5FxSW69akk7T1sstq+cMYNuqhvDydXBQAAHMHm4M9oNCo3N9cRtdRo0qRJkuw/nYutJkyYIJPJpMDAQC1btqzOj6t60tXQk8CqV5M6uv+aDBw4UEOHDm3Q8ZoCa9N8SlIHpvoEAACAA/j7+zfZi+aq8vHxUXBwsDIyMhQYGKjo6Gj5+PjYPKouLy9P6enpWrJkid1rbOh5btVzKGefu86ePVtS2RSlsbGxdut3y5YtNu3fnH5ugebkr6+mKG3zHqttD1w/XLePOt+5BQEA0ILl5OQoJyenzvvb+pnc5uDP19dXaWlpevTRR219aL2NHTu2UUzxOWXKFGVkZMhoNGrlypU2XUFZ9epPW08Cq+4/ZMgQp/YPWZ3mU5L8mOoTAAAAqFVwcLAyMzO1dOlS9ezZs979REVFKTc3VytXrrRjdWWzu5ytMUzdWVeJiYlKS0uTJD322GN27dvWUaQPPfSQHn74YbvWAKBhXvv8J72S8qPVtitDeuuZu0Y7uSIAAFq2pUuX6rnnnnNY/zav8SeVrXG3efNme9di1eTJk5Wenu7ytR9mzZpVMdWoraGfZHnSuGfPHpseX/Xq06oLxzu6f0jHCqwHf0z1CQAAANQuPDxckn3WEw8KCmpwH7Vp6Ig9ZwWHJpNJc+fOlVQWrkZGRjrluACahu+3ZmvGK59ZbQvq6qek2RPl4e7u5KoAAIAj2Rz85eXlyWw2KyYmxhH1VDJ58mSlpqa6PPSLj4/XkiVLKkK/wMBAm/sIDQ2tdN/WqTirnnRWrcHR/YOpPgEAAICGCAkJkdlsVvv27Rvcl6+vb6NbJ7BqoGmPgLMuZs6cWTFacf78+U45JoCm4Y+j+bp57hIVFZdYtLVt5amP4qLUydjOBZUBAABHsnmqT6lsMfasrCxNmzZNr7zyir1rkiRNnTq1UuhnNptlMBjsulZBXSQmJlYskL5s2bJ6B2JVR9BlZmba9Pjs7OxK94ODg53aP6Sj1QR/HQn+AAAAgFoFBARo3bp1dukrOjq6YgRhY9HQddbrIzU1VSkpKZKkiIgIh5zHxcfHa+DAgXXen/X9gMbhTFGxbp77rg7kFlhtf/3BmxTau7uTqwIAAJI0ceJEhYWF1Xn/LVu22DQFv83BX/mVhAaDQcnJyfL19dVTTz1lazc1mjp1qpKTkyuFflLZWg7OXFswMTGxYoH0pKSkBp1EGY1GGY3Gin8/W9csPHvqTms/EI7uH1JuNWv8dWCNPwAAAKBO7LWkgI+PjwYPHmyXvspVXc6hoUGeM6b6nDNnTsVtW9fiq6uBAwdq6NChDukbgGOYzWZNT1iuH7fvtdo+++Zw3Rr2f+3de3yb9Xn//7dzIkAi2aYH2hQp7bpDHcth3/3KihO5XdeDEztu6YkkMi2la5wo0G20cUIMpScBDhvd2qDE6SjQyInpYV1BxqGHbUgGOrp9hy3H3fZd20ghLT1g+1bMKSHW74/UqmXdtiXrZEmv5+PBY7rvj+5bV7KoH3983Z/r4oFvAAAKZdWqVTl9YC7tUp+dnZ1yuVzxZJzP59PBgwezFtCePXuSkn4VFRVqbW3VHXfckbXPmYvf709I+mXjadL169cnHIdCoZSvHRwcjL+eKZZc37/cjcyQ+Kuixx8AAAAwp5MnT6q/v1+nT5/O+D6Z3sNMVVVVwnG6Pf6mv//yyy/PNKRZeTye+AOfLpeLdg0A4g70/pvu/d5/mI41/skf6PPXvDPPEQEAgHxKO/HncrnU2dmpI0eOxJN/Ho9HR48ezTiY22+/XT6fL2mnX1NTU16TfoFAIN7DsKurK2uJsJaWloTjYDCY8rVTk3gul6sg9y93I+PJpT4vvGCpLrxgaQGiAQAAAIrLtm3btGXLFtXU1GjNmjVat26dNm7cqIcffjit++zfv19vectb9Nhjj2U1vuk79KZWRUnF6OhownG2djeaCYfD8ZYUUu52+wEoPo+Gfqa//kqv6djvv/YSde/6kBYvTvvXgQAAoIjMe6ZvaGhQX19fPDnX3t6uvr6+eQdy++236+67707a6dfc3JzVHYVzCYVC2rJli6Tzuxubm5tTvtYwDIXDYYXDYdPddtPv5fP5Urqv3++Pv25qakoqQZOv+5c7sx1/1ez2AwAAAOY0NDSkUCikWCymWCwmwzBksVh02WWXpV0Ss7W1VYZhxB/WzJa1a9cmHKdb6nP6jr9c7sCb+md3uVys4QBIkiK/GtOHbj+il89NJI2tvPACffuWVlXyewwAAEpe2j3+pnI4HOrr69OGDRsknX+C89ixY1qzZk1a9zlw4EBC0m+S0+nMa9IvHA7r6quvjh/7fD75fL6EBdzUxd9kPz0zVqtVw8PDSec7Ojrk8XjinxcIBObcUbh///6E62eT6/uXM7Mef/T3AwAAAOZ2+PDh+Gur1aonnnhi3j3wHA6H7Ha7IpGI+vv7k1oezNf0HXpDQ0NpXR+JRBKOM+kRPxufz5fwoClrOACS9PyLZ/Q+j0+/iSZXK5Kk+z/5Ab3pslflOSoAAFAIGe/tdzgcOnLkiKTzu/QaGxt1/PjxlK/v7u6Wx+NJSvo1NDTE75sP4XBYGzZsSEjmhUIhhUKh+C6+cDgswzDi/82H2+1OePJzz549s95r6qKus7NzzqdGc33/cmZW6rN6xUUFiAQAAAAoLpM9xSsqKnTnnXfOO+k3qba2VlJ67Q3mYrVaE3bOTfbPS9XU0qBOpzNbYSUwDCPei15itx+A82KxmLZ9+Z/0nz/5hen4rVvfrve8pSbPUQEAgELJSlHvqUm6WCymq6++Wk8//fSc13V3dycsWiavn5pMzAfDMJKSfrnU19cXX5xNJhzNSoN6vd7434/b7VZra+uCuH+5Miv1WcWOPwAAAGBOk7vhLBaLNm7cmPH97Ha7YrGY6TonE9N3D6Zz/8nkpqSs9YmfbteuXQnHO3fuzMnnACgud327X0cfHTAde89b3qSbN/9ZniMCAACFlFGpz6kmk39bt26VYRjavHmz+vr6tHLlStP39/b2xpNOU3f71dXVpd3cPVORSCStpN9MT1ROvcdcZUCfeOIJ7dq1S729vQqHw2psbJTdbldtba2i0agGBwfj9+jq6kqr12Cu71+uRsYp9QkAAADMh2EYqqioyNpOuKqqKknSwID5L7rnq6WlRb29vfHjYDCYcsnOqUlCl8s163sNw1AwGJTFYkk5SRgIBBJiczqdVGwBoId/9N/ac98jpmM1tlfp/hs/qEWLsvLcPwAAKBJZS/xJicm/cDiszZs3JyxMJgWDQbW1tSUk/GKxmOx2ux544IFshpQSh8OhU6dO5fUzrVarDh06pFAopMOHD6u/v19jY2Pq7e2V3W5XXV2dmpub570LL9f3LzcvvHRWL7x0Nun8JSsp9QkAAADMZbInX7YSVZNlNaf2Y8+G6Q9E+nw+ud3uOa/z+/3x101NTbOW35zeZsLpdKqnp2fOz9i+fXvCcSpxASht//bfJ3X1HUc1MRFLGqu8eLm+fXOrVl50QQEiAwAAhZTVxJ+UmPwbHByUy+VSd3d3fDwYDGrr1q0J10wm/WbbIViqHA6H9u3bV7T3Lxcjp82bY1eT+AMAAADmVFtbq0gkEt+pl6n+/v6s3MdMR0eHPB6PpPNJukAgMOeuvP379ydcPxuPx5NQISYYDMrn8836UOb0a+x2e87KiQIoDv/99K+16bNf0/MmDykvWlSh7var9cbXXlKAyAAAQKHlZK//ZPIvFospEAhox44dkqShoSFt2bJFsVgsYbffZNIv0wbvQK6YlfmUpKoVlPoEAAAA5rJp0ybFYrH4Tr1MRCIRhcNhVVRUyGazZR7cNG63O2Fn4p49e2Zt5eDz+eJlPjs7O+fc1TjZ73CqcDg84/tDoZC8Xm/COSq3AOXt589GteHT9+nZqPlDyp4Pv0uNf/IHeY4KAAAsFGkn/jZu3JhSD76GhgYdPHhQsVhMfr9fW7du1YYNGyT9rqdfLBaTxWJRT09PSkm/3t7erDSCB9I1cto88UePPwAAAGBuzc3NslqtCgaDGd9rsle8pJz1uOvr64uX65wszTm1h98kr9cbj8ftdqeUkGtpaUnp3KRdu3YlnZurhyCA0mU896Kabr1f4V+NmY5/7F3/n3a9Pzv9VAEAQHFKO/E3ODiYcgP15ubmePIvGAwm7PSLxWKyWq3q6+vTZZddltL9IpGI6WILyDVKfQIAAACZ2bp1qyKRiI4ePTrvexw4cCAheZircpdWq1VPPPGEmpqaJJ1P/jU2Nqq+vl7btm3T5s2bVVNTEy8J2tXVNWeJz0lut1tut1tWq1V2u11dXV1yOBym7w2FQklrYJfLNWsPQQCl68UzZ3XV530aPPGM6fimP/0jeXe2JFTZAgAA5SftHn9Wq3XWMifTTSb/tm/fbpr0S6c0y+joKOVAURAzlfqsptQnAAAAkJIbbrhBBw4cUHt7u+rq6rRmzZq0rr/99tvl9XpVUVGhWCwmSfHEXC5YrVYdOnRIoVBIhw8fVn9/v8bGxtTb2yu73a66ujo1NzfPq+xmR0dHSolCh8OhU6dOzSd8ACXm3LkJffhvv6lHh35mOl7/JpuO7LpaSxYvznNkAABgoUk78VdZWWnak2A205N/VqtVDzzwQNr9GNjth0IZpdQnAAAAkBGLxaK9e/fqtttuU2Njo9xut66//nqtXLly1usefvhheTweRSKReMKvoqJCLpcr5eoxmXA4HNq3b1/OPwcAZhKLxfRXh/z61mNDpuNvuuyV+s6nr9FFy5flOTIAALAQpZ34k6RgMKjbb79dTqcz5Z4Ka9euldvtltfrVWtrq6xWq06ePJnStYZh6KGHHlIwGKSkCQqCUp8AAABA5txutwKBgPr7++X1euX1euV0OmWz2bR69WrZbDaNjY0pHA4rFArFy3pOTfhN9opPtbQmABS7O77xqLy9/2Y6tuoSi/o+dy2/nwAAAHHzSvzFYrH4Im0+Mrk2Go3O6zogE2alPpctWayLLlhagGgAAACA4tXT06P6+vp4JZmpPfumm5rwmzyuqKjQAw88MOdOQQAoBV/97r/r5q99z3Ss8uLl6vvctbrslZX5DQoAACxoi+Zz0eRTlvP5T1JG1wKF8Gw0ecffJZaLaJgNAAAAzMOxY8e0cePGhHNm67+KigrTXvG1tbV5jxkA8s3/5H9p+/7vmI4tX7ZE3/n0NVpjf3WeowIAAAvdvBJ/0u8WYPn8DyiUUZMdf9Ur6O8HAAAAzIfFYtGhQ4d08OBB2Ww20wc9pycCd+7cqePHj5P0A1AWnvhxRJs7e3RuYiJpbNGiCnXvulrr16zOf2AAAGDBm1epT0nswENZMevxR/18AAAAIDPNzc1qbm5WJBJRb2+vTpw4oUgkorGxMdlsNtntdjmdTjmdzkKHCgB58+OTv1LL576mF146azp+t7tF772yJs9RAQCAYjHvxJ/T6VRDQ4NsNls24zEViUQUCARm7f0A5JJZj7+qlez4AwAAALLBZrNpx44dhQ4DAAru1G8Mbfz0/Ro5nfx7CEm6devbta3xijxHBQAAiknaib+xsTE5HA4dPXo0F/HMaMeOHWpsbNTx48fz+rmAJNMfuCn1CQAAAAAAsmVs/AVtvPV+RX49Zjr+8cY365Ytb89vUAAAoOjMq8dfXV1dtuNIydq1awvyuShvL519Wc+9eCbpPKU+AQAAAABANrx45qyu+oJPQ+Ffmo6/5y1v0t07WlRRUZHnyAAAQLFJO/FnGIasVmsuYpnT6tWrC/K5KG+jJmU+JamaUp8AAAAAACBD585NqPVvvqHA0AnT8fU1dnXvulqLF8/r+X0AAFBm5vUTQ1VVVbbjSMnKlSsVi8UK8tkoXzPV1a+i1CcAAAAAAMhALBbTJ7oe0rcfN29ts8b2Kv3Tp6/RhRcszXNkAACgWKXd4+/pp5/ORRwpaW1tVWtra8E+H+Vp5PTzpucp9QkAAIBydfLkSV122WWFDgMAip6n51908OEnTcde9wqrHv7ctTx4DAAA0kKNAGAOz86Q+LuExB8AAADKUDQaVX19vXbs2KGhoaFChwMAResfHvmRbu3+gelY1YoL1fe5a/W6VxSm3Q4AACheJP6AOcxU6pMefwAAAChXsVhMfr9fGzZs0MaNG9XX11fokACgqDz4bz/Wjru/Yzq2fNkSPXjrNaqxvSrPUQEAgFIwZ+Lv9OnT+YgjZ4o9fhTeKIk/AAAAIM5isWj9+vWKxWKKxWIKhULatm2b1qxZo4MHD7IGA4A5PP7jsLZ09mhiIpY0tmhRhY7u3qz6N9kLEBkAACgFcyb+GhsbdfTo0XzEknXd3d16y1veUugwUORGxmfo8beCUp8AAAAoTz09PXr88ce1devWeALQMAx5PB7V1NTopptu0smTJwsdJgAsOMORX6nls4f14pmXTccP7HyPWv70TXmOCgAAlJI5E38HDx7Url27dPvtt+cjnqy57bbbtGfPHh08eLDQoaDImZX6XLJ4kVZcuKwA0QAAAAALg81m0759+zQ8PKy9e/fKarXGk4A+n0/19fVyuVx67LHHCh0qACwIT//G0IZP36fRcfPKQp91/bn+4t1vznNUAACg1MyZ+HM4HDp48KDuvvtuuVyuoijbsn37dh04cEB33HGHnE5nocNBkRsx+YG8euWFqqioKEA0AAAAwMJisVjkdrt1/PhxHTx4UA6HI54ADAQC2rx5s9atW1e0lWQAIBuee/GMmm69X0//xjAd377xCnVs/rM8RwUAAErRnIk/SWpubtaRI0f06KOP6sorr1ywjdv7+/u1Zs0a9fb26uDBg3K5XIUOCSVg5HRyqU/KfAIAAADJmpub1dfXp2PHjmnjxo3xBGAkElF7e7vWrFmj22+/vSgeKAWAbNp97zENhX9pOnZV/Rp9qW0TDxgDAICsSCnxJ0kNDQ3q6+vTxMSEtm3bJpfLpePHj+cytpSdPHlS27dv15YtWyRJR44cUVNTU4GjQqkYNSn1Wb3ywgJEAgAAABSH2tpaHTp0SMPDw9qxY0dCH0Cv16uamhrt2LFDQ0NDhQ4VAHKu79//Wwd6/810rKF2tXyf+qAWL075V3QAAACzSuunCofDoR/+8Idat26dHn30UTU2Nha0Z0N/f7+2bt2q+vp6+f1+1dbW6oknnqC8J7LKrNRn1QoSfwAAAMBcLBaLOjo69PTTT+uOO+6Q3W6PJwH9fr82bNigpqYm+gACKFm/MZ7TX/z9P5qO1dpfrW/f3Krly5bmOSoAAFDK0n6cyGKxqKenRwcPHtTKlSv16KOPavPmzfGSLbl+YnNoaEi333671qxZoy1btigQCCgWi6mzs1N9fX2yWCw5/XyUn2ejyaU+L7FQ6hMAAABIR2trqx577LGkPoCDg4P0AQRQkmKxmLbf/R09MzqeNHbRBUv1rQ6XKnmwGAAAZNmS+V7Y3NyshoYGffnLX9aBAwfiJVu8Xq8kyel0qqGhQTabTQ6HQ5dddlnan3Hy5EmFQiENDAwoFAopGAzGx2KxmCTJ5XKpo6ODhB9y4uzL53T6hZeSztPjDwAAAJif5uZmNTc3a2hoSF/60pf08MMPS1K8D2B7e7vcbrdaW1vntY4EgIXia//8n/r24+Ztcv724xv1xtdekueIAABAOZh34k/6XdmWG264QQ8++KB8Pl98x18wGExI1E29prKyUlarVZWVlbJYLIpGoxobG5NhGBobG1M0GjX9vMlkn91uV2trq1wuFwk/5NSoSZlPiR5/AAAAQKYm+wBGo1F9+ctf1pEjR2QYhiTFHyptbm7Wzp07VVtbW+BoASA9P3tmRH950G861vTmP9TH3/3mPEcEAADKRUaJv0kWi0Wtra1qbW3V0NCQDh8+rP7+foXD4aT3GoYxY2Jv0mSCbyq73a7169frmmuuYdGHvBk5TeIPAAAAyKXJB0o7Ojrk8/l04MCB+FrS7/fL7/fL4XDohhtu0IYNGwocLQDM7dy5CX30i98yrSD0CstF+son3qeKiooCRAYAAMpBVhJ/U9XW1qqzs1OSFI1GNTAwoGAwqHA4rEgkokgkEn+KcyYOh0M2m012u11r166V0+lkZx8KYmQ8ub+fJFVR6hMAAADIuskHSgOBgLxer/r7+yVJoVBI27Ztk8Vi0Q033CCXy6WVK1cWOFoAMHfXt/sVPH7CdOzQJ67Sq6tW5DcgAABQVrKe+JvKYrHI6XTK6XQmjU3u+hsbG1NlZWX8/cBCwo4/AAAAIP8aGhrU0NCgSCSi/fv368iRI5LOV5DxeDzyeDxqbW2V2+2mDyCABeWpn/5ct/i+bzp23bv+RO95S02eIwIAAOVmUaE+2GKxyGKxyGazxV8DCw2JPwAAAKBwbDab9u3bp+HhYe3du1dWq1WxWEyxWEw+n0/19fVyuVx67LHHCh0qAOjFM2f14b/5hs6+fC5p7PWvrtJdf9FUgKgAAEC5KVjiDygGozOU+qxeSalPAAAAIF8sFovcbreOHz+ugwcPyuFwxBOAgUBAmzdv1rp163T06NFChwqgjHXc/z0dj/wq6fyiRRW6/5Mf1MqLLihAVAAAoNyQ+ANmMeOOvxXs+AMAAAAKobm5WX19fTp27Jg2btwYTwBGIhG1t7frpptuKnSIAMrQD576if7uO+a7j3d/oEHraux5jggAAJQrEn/ALJ49nbzjb/GiRbJevLwA0QAAAACYVFtbq0OHDunxxx/Xjh074gnAWCxW6NAAlJnR8Rd03d99y3Tsj3/vNfr0lrfnOSIAAFDOSPwBszDb8Ve1YrkqKioKEA0AAACA6Ww2mzo6OvT000+ro6NDq1evLnRIAMrMDQce0tO/MZLOL1+2RF/75Ie0bOmSAkQFAADKFT95ALMYMdnxR38/AAAAYGHasWNHoUMAUGZ6Hh3U0UcHTMfuuPbdqrG9Ks8RAQCAcseOP2AWo+PJO/7o7wcAAAAAAJ7+jaGd3u+Yjv355b+nnc1vyXNEAAAAJP6AWZmW+lxJ4g8AAAAAgHI2MTGh6774LY0992LSWNWKC3XvX71fixbxazcAAJB//AQCzIJSnwAAAAAAYLr9D/1QPxj4ienY3e4WrXqFNc8RAQAAnEfiD5jBuXMTpk/uUeoTAAAAAIDyNRz5lfbc94jp2Ja3rtXVDXV5jggAAOB3SPwBMzBL+klSNaU+AQAAgHk5cuSITp8+XegwAGDezpx9Wdf8zdf10tmXk8Ze9wqr9u/YVICoAAAAfofEHzADszKfEqU+AQAAgPk6fPiwampq1NfXl9X7njx5Uv39/RoaGsrqfQFgus8e+Wc99dNfmI7d+9fvVyVVggAAQIEtKXQAwEL1LIk/AAAAIOtisZgeffRRbdiwIeN73X777fJ6vUnnm5ubtXPnTtXW1mb8GQAwqf/4Ce37VsB07K/fu05vX/t7eY4IAAAgGTv+gBmMnH7B9DylPgEAAID5qaysVEVFRVbutW7dOnm9XsVisaT//H6/NmzYoJtuuikrnwUA0edf1Efu+qYmJmJJY2tsr9IXPvzOAkQFAACQjMQfMIOR8RkSf5TtAAAAAArq9ttvVzgcViwWU0VFRVIycTIB6PP55HK5ChQlgFJy41ce1olfjiadX7pksQ5/6kNavmxpAaICAABIRqlPYAajlPoEAAAAsspisUiSxsbG9PDDD2tgYECSZLfbtWnTJq1cuTKl+9x9990Jyb5YLCan06mGhgZZLBYNDg7K7/fLMAwFAgHt2LFDBw4cyP4fCEBZ+KcnhnXv9/7DdOzzre/Q2je8Js8RAQAAzIzEHzADSn0CAAAA2ReLxdTb26ve3t6E87t371Zra6tuv/32Wa+PRCIJ96qoqFBnZ2fCzj6Xy6XOzk55vV7ddttt8vv9am1t1bp167L7hwFQ8p4ZPa22L3/bdMy5ZrVuvGp9niMCAACYXdqJv61bt8pms6murk42m01r165N+alMoJiYlfqsqKiQ9aLlBYgGAAAAKH6TSbtYLLlHliT5fD4NDg4mJQWnCofD8dcVFRVqamqasZyn2+2WzWbT9u3b1dbWpqGhoQyiB1BuYrGY/uLv/1G/iSZXBFp54QW678YPaPFiuugAAICFJe3EXyAQUEVFhbq7u+PnLBaL7Ha7WlpatH379qwGCBTKiEmpz8qLl/NDPQAAADAP3d3dCoVCSSU6p4rFYhocHEypNOfkbr+WlpZZ39fc3KyNGzeqr69PfX192rBhw/z/EADKyqFjP1Lfv/+P6djfb2/W6ldX5TkiAACAuc271GcsFlNTU5MqKyslne/RcOLEiSyFBRSeWalPynwCAAAA83PbbbfFk36xWExWq1Xr16+X3W6X3W7X4OCgBgcHFQqF5Pf7df3112vNmjVz3tfhcMz5no6ODj388MPy+Xwk/gCk5H9O/Uaf+oeHTceuql+jD7/9j/McEQAAQGrmnfjbuXOnbrrppmzGAiwooyalPqtXkPgDAAAA0jU0NCTDMFRRUaFYLKaOjg7t2LEj4T2T5Tp9Pp/27Nmj9vb2WUt+Tpp8GHU2drtdW7du1dGjR+cVP4Dy8vK5c/rI335Dz790Nmns0qoVOrjzPQm7lwEAABaStBN/VqtV0WhUa9euzUU8KEIf+9jHtGzZsqTz27ZtU1tbWwEiyo5nTWr4V1suKkAkAAAAwO90dXXp0KFDSefPnDlTgGhSM7Uv39GjR+V0Omd8b2trq6LRqG6//XY99thjWrdu3az3TrXnfHNzs44ePaqhoSHV1tamFjiAsnSr7wd68n+eNh37h798n15hvTjPEQEAAKRu3jv+LBZLNuNAERsZGTE9Pz4+nudIsmtk3CTxt4LEHwAAAAprfHxczzzzTKHDSMvAwIAkye12z5r0m+R2u3X33XfL7/fPmfhL1eWXX65YLKZIJELiD8CM7vxmQHd841HTse0br9CG/+8P8xwRAABAeuad+EulnArKQ3V1temOvxUrVhQgmuyYmJjQ6PiLSefp8QcAAIBCW7FihS699NKk82fOnJnxobyFoKKiIqWk36S6ujoFAoGsff7kw6tjY2NZuyeA0vL333lMe+57xHTsD1a9Qvuuo0coAABY+Oad+AMm3XPPPbriiisKHUZWGc+/pFgslnSexB8AAAAKra2tzbSk/pNPPqmrrrqqABHNzW63S1JaLSMsFosikUjWYohGown/FwCm8vp/qBu/8rDp2OJFi3T/jR/QxcuTH3oGAABYaBYVOgBgIRo5nVzmU6LUJwAAADAfdXV1ktLbbTc0NGR6fnri7vTp0yndbzKJSNsKANN95diPdMPBh2Yc77rhvbriDy/LY0QAAADzl3bib7LEp9VqzXYswIIxcvoF0/NV7PgDAAAA0uZwOBSLxWZM5k0XiUQUDoclSY899ljS2FSpJhPD4bAqKipoWwEgwX3f/7/acfd3Zhz37nyPPvrOP8ljRAAAAJlhxx9gYqbEH6U+AQAAgPnZunWrvvCFL6T03slSprFYTJs3b05I/vl8PlVUVMSPU00m7t+/X9L5JCQASNKRfx3QX/z9P5q2+pCkv29rVtuG0mptAgAASt+8E3/9/f0pl1TJpkJ8JsrPyDilPgEAAIBs+vCHP6xwOKympiYdP37c9D1DQ0PauHGjQqGQKioq5Ha7tWHDBm3evFkbN27UmjVr4jsBKyoqFIvF5PF45vzs3t5ehUIhWSwWXXYZ5foASN/oD+nau745Y9Lvzus26PpNV+Y5KgAAgMwtme+F7e3tam9vl3T+icm6ujrV1dXJZrNp7dq1WrlyZdaCnNTb26vt27fr5MmTWb83MNUoO/4AAACArKqtrdX69evV39+vxsZG2Ww2ORwOVVZWamxsTKFQKKmMZ0NDg/bu3av6+nqFQqH4L+hjsZgqKirU1NSk3t5e7dixQwcOHDD93P7+frW3t6uiokKbNm3K+Z8TwML3T08Mq/XOr+vcxITpuOfD79KN71uf56gAAACyY96Jv6lPRA0ODioUCqm7uzt+zmKxyG63ZzUhONm74fTp0zlJLAKTnj1tvuPvkpXs+AMAAADmq6urS1deeaVOnz6tcDickOibXGNWVFSooqJCDodD69ef/8X70aNHtXHjRkWj0YT33nnnnbJarTpy5IhCoZB27typ9evXq7KyUuFwWD6fT93d3fFE4c6dO/P8Jwaw0PT+6L+0ubNHL58zT/rduvXt2vOht+Y5KgAAgOyZd+Jv0tTeClOTgYZhpJQQrKurk91uTymRN7nIA3Jtph5/lSuW5zkSAAAAoHRYrVY98MAD2rx5swzDSBibXFtOJum6urriY3a7XT09PWpra4snC++44w5ZLBbdfPPNOnLkiMLhcLwqzVST93O73ZT5BMrcd//v/9MHPEd09uVzpuM3feitumXL2/McFQAAQHbNO/HX1NSkaDSqwcHBpAWbNL+E4Nq1a2Wz2WZMCD711FPzDRdIy4jJjj/rxcu1ZPHiAkQDAAAAlA6Hw6G+vj594Qtf0MMPP5w07nQ61dnZmZSkczgcevzxxxWJRFRZWSmLxSLp/FpystTnZN+/SZPrUqfTqZtuuimHf6rS9bGPfUzLli1LOr9t2za1tbUVICJgfv554Ce66gs+nZkh6XfjVev1+WvemfD7LAAAgHzq6urSoUOHks6fOXMmrfvMO/F38803xxdi0WhUkUhEAwMDGhwcVCQSmVdCMBgMSpLpDkHDMBQOh1VRUUGZT+TcyHjyjr/qFfT3AwAAALLBZrPp0KFDikajGhgYUCQSibeHmEzozXbtdB0dHQqFQurv7084H4vFtHPnTpJ+GRgZGTE9Pz4+nudIgPkLDp3Qez53WC+eedl0/PpNV2rfdY0k/QAAQEGNj4/rmWeeyfg+aSf+JvvsTWWxWFRbW6va2lq5XK6EsaGhIQ0MDCgcDsebtYfD4aR7zLVDEMinUZNSn9UrSfwBAAAA2WSxWOR0OrNyr56eHkUikfi602azyel0zplIxOyqq6tNd/ytWLGiANEA6XvixxE1f/Z+Pf/SWdPxtg1X6O+2NZH0AwAABbdixQpdeumlSefPnDkz4wN5ZjLu8TeXyYTgdENDQwqHwxoYGJhXQhDIpZHx5FKfVSsvKkAkAAAAAFJls9lMdwRi/u655x5dccUVhQ4DmJcf/c/T2njrfRp/wbw81kff+Sfav2MTST8AALAgtLW1mZbTf/LJJ3XVVVelfJ+cJ/5mMpkQbGpqSjg/+YTm5C7ByQQhkE8jZjv+KPUJAAAAAEBR+M+f/FyNt9yr6PMvmY63/tnl6rr+vVq0aFGeIwMAAMiteSf+DMNIaraeDZNPaE5NCEajUT344IPas2dP1j8PmC4Wi5kn/ij1CQAAAADAghc68Yzefcu9GnvuRdPxDzkduuev3qfFi0n6AQCA0lMUP+FYLBa1trZq69athQ4FZeD0Cy/p3MRE0vlqSn0CAACgjJ0+fbrQIWSk2OMHkJrhyK/0zo6v6tlocgsPSbqqfo2+9skPasnixXmODAAAID/STvwZhiHpfEnOfHv961+f989E+ZlpcXAJiT8AAACUscbGRh09erTQYcxLd3e33vKWtxQ6DAA59j+nfqN3dtyjXxvPmY43X/FHOrLrQ1q6hKQfAAAoXfMu9Tk2NpbFMFJjsVjy/pkoPyPjyWU+JamKUp8AAAAoYwcPHtSGDRt04sQJ3XTTTYUOJ2W33XabDhw4oCNHjhQ6FAA59JNfPKt37L1Hz4yOm46/+09+X1+/aYuWLZ33r8IAAACKwrxLffp8Po2Pm/8wlStr166VzWbL62ei/Jj195Ok6hUk/gAAAFC+HA6HDh48qLvvvlsul6soSmdu375dBw4c0B133CGn01nocADkSPhXo3rH3q/q1LNR0/E/v/z39K29Ll1A0g8AAJSBeSf+QqGQ3vSmN2nHjh06cuSITp48mc24TNXW1uqxxx7L+eegvI2cNi/1SY8/AAAAlLvm5mYdOXJEjz76qK688kr19fUVOiRT/f39WrNmjXp7e3Xw4EG5XK5ChwQgR57+jaE/v+keRX49Zjr+1trX659ubtWFFyzNb2AAAAAFknbib/369bLZbIrFYorFYnrooYfU3t6u+vp6bd26NRcxAnk1U6nPakp9AgAAAGpoaFBfX58mJia0bds2uVwuHT9+vNBhSZJOnjyp7du3a8uWLZKkI0eOqKmpqcBRAciVX4xE9Y699+hnvxw1HV9XY9eDt16ji5Yvy3NkAAAAhZN2jYOenp6E40gkonA4rEgkosrKymzFBRTM6Ew7/law4w8AAACQzpf9/OEPf6ht27bp0UcfVSAQUENDg9xut9atW5f3ePr7++X1ehUMBhWLxeRwOPTAAw/QJx4oYb82ntO7br5X/+/nz5qO/+kfXib/Zz6sFRdekOfIAAAACivj4uY2m42+eygpM/X4q1qxPM+RAAAAAAuXxWJRT0+P/H6/2tvb4wlAi8Wi1tZWbdq0SbW1tTn7/KGhIT300EPy+XyKRqOKxWKSpM7OTkp7AiVudPwFNd5yr4YjvzId/z+/91o9/NmPyHIR63gAAFB+6GoMTGNW6nPFhcu0jCbgAAAAQJLm5mY1NDToy1/+sg4cOCDDMOT1euX1eiVJTqdTDQ0Nstlscjgcuuyyy9L+jJMnTyoUCmlgYEChUEjBYDA+Npnwc7lc6ujoYJcfUOJOP/+Smm69X0/99Bem43WrL9UjX/ioKlfQrgMAAJQnMhnANCMmpT4p8wkAAADMzGKxqKOjQzfccIMefPBB+Xw+DQ0NSZKCwWBCom7qNZWVlbJaraqsrJTFYlE0GtXY2JgMw9DY2Jii0ajp500m++x2u1pbW+VyuUj4AWXg+RfPqOVzX9O//fdJ0/Ea26v0Xc91ql7JGh4AAJQvEn/ANGalPqtX8qQgAAAAMJfJMp+tra0aGhrS4cOH1d/fr3A4nPRewzBmTOxNmkzwTWW327V+/Xpdc801OS0lCmBhefHMWV3l6VZg6ITp+Btfc4m++4WP6pXWi/MbGAAAwAJD4g+YxmzH3yU8LQgAAACkpba2Vp2dnZKkaDSqgYEBBYNBhcNhRSIRRSIRGYYx6z0cDodsNpvsdrvWrl0rp9PJzj6gDJ19+ZyuvqNH3//P/zUdt72yUt/zXKfXVPO/DwAAACT+gGnMdvxVseMPAAAAmDeLxSKn0ymn05k0Nrnrb2xsTJWVlfH3A4AknTs3oWv+9hvyP/lfpuOvqV6p7992nWyvqsxvYAAAAAsUiT9gilgsppFxk1KfNAUHAAAAcmIyyUeyD8B0ExMT+osv/aO+EQyZjr/SerG+57lOv/eaS/IcGQAAwMK1qNABAAvJcy+e0dmXzyWdpzE4AAAAAAD5E4vFdP2Bh/S1H/yn6XjVigv1yOc/qjdd9qo8RwYAALCwkfgDpjAr8ylJ1ZT6BAAAAAAgL2KxmD71D33q6nvSdHzlhReo73PXau0bXpPnyAAAABY+En/AFCPjz5uer6LUJwAAAAAAeXGr7/v6u+88Zjp20QVL5f/Mh/XmP3hdnqMCAAAoDiT+gClm3vFHqU8AAAAAAHLtjq8/Ks8D/2o6dsHSJfr2La1av2Z1XmMCAAAoJiT+gCko9QkAAAAAQGF86TuPq+Nr3zUdW7pksb6xd4vecfkb8xwVAABAcSHxB0zx7GnzUp/VK9jxBwAAAABArnzl2I/011/pNR1btKhCvk99SE1v/qM8RwUAAFB8SPwBU4zOsOPvEgs7/gAAAAAAyAXfvzylHXd/x3SsoqJC9/71B/SB9bV5jgoAAKA4kfgDphgZN9/xV7WCxB8AAAAAANn2zf4hffSL31QsFjMd9+5sUeufXZ7foAAAAIoYiT9gCrMefxddsFTLly0tQDQAAAAAAJSu3h/9l1x3PqCJCfOk3xc/3qRtjVfkOSoAAIDiRuIPmGLEpMdf9Ur6+wEAAAAAkE3ff+p/9cHbjurlcxOm454Pv0ufeE99nqMCAAAofiT+gClGx5N3/FVT5hMAAAAAgKzpP35CV33ep5fOvmw63nH127TnQ2/Nc1QAAAClgcQfMIVZqc/qlST+AAAAAADIhh/9z9Nq/szX9PxLZ03H//q96/TZ1nfkOSoAAIDSQeIPmMKs1GcVpT4BAAAAAMjYwE9/oQ2fvk+nX3jJdLxtwxW682MbVFFRkefIAAAASgeJP2CKEUp9AgAAAACQdT8++Su9+5Z7TVtsSNKH//yPtX/HJpJ+AAAAGSLxB/zW8y+e0YtnkvsLUOoTAAAAAID5+9kzI3pXx1f1a+M50/EPOh36yieu0qJF/JoKAAAgU/xEBfyW2W4/SbqEUp8AAAAAAMzLL0aietfN9+rnI6dNxzf96R/p8Cc/qCWLF+c5MgAAgNJE4g/4rZHT5om/Knb8AQAAAACQtmejz+vdN9+rnz4zYjr+zj9+o3p2b9bSJST9AAAAsoXEH/BbI6efNz1fzY4/AAAAAADScvr5l9T8mft1PPIr0/GG2tX6xw6Xli9bmufIAAAAStuSQgcALBQzlfqsXsGOPwAAACAbTp48KZ/Pp3A4rFAopLGxMVVWVsput8tms2n16tVqamrSZZddVuhQAWTghZfO6r2fP6wn/+dp0/E3//4qfefT1+ii5cvyHBkAAEDpI/EH/BY7/gAAAIDc2bNnj7q7u+PHsVhMkmQYhiKRSPy8x+ORxWJRS0uLXC6Xamtr8x4rgPk7+/I5be7s0b+GfmY6XmN7lXo/e60sFy3Pc2QAAADlgVKfwG+NztDjr5oefwAAAEBGtm/fru7u7niyb7pYLBYfi8ViMgxDPp9PGzZskMvl0vHjx/MZLoB5mpiY0Ee/+C35n/wv0/HXv7pKj3z+o7rEwgO2AAAAucKOP+C3KPUJAAAAZF9vb6/8fr8qKioknU/sWa1W2Ww22Ww2SVI0GtXY2JgikYgMw4i/T5ICgYACgYCam5t14MCBwvwhAMwpFovphoMP6eijA6bjr6leqe96rtNrL7HkOTIAAIDyQuIP+C2zUp8XLF2iCy+g0TgAAAAwXw8++GD8tdPplNvtltPpnPH90WhUAwMDGhoaUiAQUDAYlCT5/X6FQiH19PToda97Xc7jBpCem7/2PR18+EnTseqVF+qRz39Ub7i0Os9RAQAAlB8Sf8BvPWtS6rN65YXxJ5MBAAAApG9oaEgVFRVyOp06cuTInO+3WCxyOp1yOp3asWOHotGofD6furu7deLECTU2NurYsWMk/4AFZN83A7rjG4+ajq24cJke/uy1WmN/dZ6jAgAAKE/0+EuRYRjyeDyqqamJl55BaRk12fF3yUr6DgAAAACZCIfDkqTOzs55XW+xWOR2u/XYY49p7969Ghsb0+bNm7MZIoAMdPU9qZvue8R07IKlS/SdW67Rm/+ARD0AAEC+sONvDuFwWHfffbe6u7vj58bGxmS1WjO+dyAQkN/v1+DgYLyXxWSvi5aWFrlcrow+J9f3LzUjM+z4AwAAADB/k2uOyy67LON7ud1uNTU1ad26dbr99tt10003ZXxPAPN39NEB7fQ+aDq2ZPEiff2mLXpb3RvyHBUAAEB5Y8ffDEKhkLZt26b6+vqEpF+27l1fX68tW7bE711XVyeHwyHDMBQKheK7C30+34K7f6kaGU9O/FWtIPEHAAAAZGLdunWqrKzM2v3sdrsOHjwor9er06dPZ+2+ANLjf/K/dO1d31QsFksaq6io0H03fkDNV/xRASIDAAAobyT+pjAMQ16vV/X19WpsbFRvb2/WP8Pn86mxsVHhcFgul0vDw8M6duyYenp6dOzYMQ0PD6upqSn+/t27d8vj8SyY+5eyEZNSn9WU+gQAAAAy0tLSokgkktV7Njc3KxaLye/3Z/W+AFLzr4M/1dV3HNXL5yZMx/fv2KQtb12b56gAAAAgkfiTdD7ht3nzZtXU1Mjj8cR7ULhcLj3++ONZK4cZCAS0e/duSedL1Ozbty/p3larVYcOHUpIznm93pQWtLm+fyl78cxZPf/S2aTzlPoEAAAAMtPc3CyLxaKjR49m9b52u10PPfRQVu8JYG4/+p+n9Z7PH9aLZ142Hb/92ndr+8Y/zXNUAAAAmETiT+eTYcFgMP66o6NDw8PD2rdvn+x2e9bK0mzfvj3hM2Zz5513Jhy3t7cX/P6lbNSkzKckVa9gxx8AAACQqZtuuknt7e3q6+vL2j3D4bAGBgaydj8Aczse/qU23nqfxl84Yzq++wMNav9AQ56jAgAAwFQk/n6rqalJnZ2dGh4eltvtTtgpZ7FYMr6/1+uVYRiSpOuvv37O91utVrnd7vixYRiz9uPL9f1L3chp88RfFTv+AAAAgIy1trZq3bp12rZtm1wul44fP57R/SYf3IxGo9kID0AKfvrMiN59y70zrp/bNlwhz0feleeoAAAAMB2Jv986dOiQWltbc3b//fv3x19PLbM5m5aWloTj2cpx5vr+pW6mhQulPgEAAIDs6Onp0Zo1axQIBNTY2Kh169bp6NGjOn36dFr3OXnyZLzaSTYe0gQwt58/G9W7b75Xvxgx/75ueeta7d+xSRUVFXmODAAAANMtKXQA5cDv98d341mtVtnt9pSuczgcCceTT7Xm+/7l4NnTz5uep9QnAAAAkD1f//rX1djYqEgkokgkovb2drW3t8tms8nhcKihoUE2m02VlZWy2+1auXKlpPPJvnA4LL/fr+7ubsViMVVUVGjt2rUF/hMBpe/Z6PNqvOVe/fSZEdPxpjf/oe796/dr0SKeLQcAAFgISPzlQSAQiL+uq6tL61qHw6FQKJRwr4aGxHr5ub5/ORiZIfF3iYUdfwAAAEC2WCwWPf7442pvb9eRI0fi58PhsCKRiHp7e+e8RywWi7+e2r4AQPadfv4lNd16n45HfmU6/jbH6/XAni1aumRxniMDAADATHgcKw+mltC02WxpXTs9kReJRPJ+/3IwOj5DqU92/AEAAABZt2/fPh05ckS1tbWSFC8PGIvF5vxv0tatW7V+/fqCxA+UgxdeOqv3fv6wfvT/TpmOv/n3V+mfbrlGF16wNM+RAQAAYDYk/nLMMIx4GU7pfCnOdKxevTrhOBwO5/X+5YIefwAAAEB+NTQ06NixYzpy5IjWrFkTT+pVVFTM+N/k+M6dO9XZ2VnI8IGSdvblc9rc2aN/Df3MdLzG9ir1fvZarbzogjxHBgAAgLlQ6jPHpu+gS7X/3qTpO/imluXMx/3LhVmpz6VLFuvi5csKEA0AAABQPhoaGtTQ0KChoSE9+OCD6u3tTXggcTLhN/W11+uV1+uVzWaT1WpVZWWlpPOlRCdNnhsbG5MkRaNRORwO3XTTTbn9AwFFbmJiQh/94rfkf/K/TMdf/+oqPfL5j+oSCxVyAAAAFiISfzk2MDCQcDy5+EzV1IVrIe5fLkZMSn1Wr7gw4ZcMAAAAAHKntrZWtbW12rt3b7zf31NPPaX+/v6EKidTpdOqIBaLaWBggMQfMItYLKYbDj6ko48OmI6/pnqlvuu5Tq+9hN8lAAAALFQk/nIsGo1mdH1VVVXC8eTTqvm6f7kYNSn1SZlPAAAAoDBsNpt27NgRP45GoxoYGNDQ0JBOnDihSCSiwcHBGROCU019mC8ajerkyZO67LLLchI3UOxu/tr3dPDhJ03HqldeqEc+/1G94dLqPEcFAACAdJD4y7HR0dGMrp++I296oi/X90/F8PBwWu9ftWqVVq1alfbn5NLIeHKpz+qVlC0BAABA4Zw6dUqnTp1K+f3p/lxeTCwWi5xOp5xOZ9JYNBpVJBJROBxWJBLR6Oho/HU0Gk0oGxqLxRQMBrV169Z8hg8UhTu/GdAd33jUdGzFhcv08Gev1Rr7q/McFQAAANJF4i/Hpj+Bmu3Smrm+fyo6OjrSev+NN96oT37ykzmKZn5GTHb8Va1gxx8AAAAKp6enR3fddVehw1jwLBZLvEzoTKLRqMbGxhQOh7V27do8RgcUh0PHntSe+x4xHbtg6RJ955Zr9OY/eF2eowIAAMB8kPjLs0xLc86V2Mv1/UvVs6fNdvyR+AMAAABKgcVikcVikc1mK3QoaTMMQw899JAqKytlsViS2jVMXcNNXQ+Ojo7Gjx0Oh+x2e34CRtHpeXRQ7rsfNB1bsniRvn7TFr2t7g15jgoAAADzReJvgausrJz1eKHfvxicOfuyxl84k3T+Ekp9AgAAAJAUCATk9/s1ODioSCQiwzBktVpls9nU0tIil8slq9Wak88eGBjQ7t27M7pHR0eH3G53liJCKXn4R/+tj9z1DcVisaSxiooK3fvXH1DzFX9UgMgAAAAwXyT+FrixsbEFf3+Px6OampqU37/Q+vuNjr9oep4dfwAAACikzZs3m/a0m8nw8HDaZfgxu1AopLa2tnifQIfDobq6Oo2NjSkUCsX/83g86uzsVGtra4EjBlIXGPqZPnj7Eb18bsJ0/Ms7Nmnr2yiNCwAAUGxI/OXY9Kc+M020TS/Fmev7p6KmpkZXXHFFRp9bSCPjyWU+JamKHX8AAAAooFWrVi24h+bKic/ni++0c7lc6ujoSFh/GYahXbt2qbe3V5K0e/duhcNhkq8oCv/xv6fU8tnDevHMy6bjng+/Szs2/mmeowIAAEA2kPjLsen9F9LtwTf9/Zdffnle718ORk6/YHq+egU7/gAAAIByFAgE4kk/t9ttmsyzWq06dOiQtm3bFk/+eb1erV27Vs3NzVmLZeqaz+12yzAMSYkPfU5f101/ILQYexsid3588lfa+On7dPqFl0zHd73fqd0fbMhzVAAAAMgWEn85Nn0H3YkTJ9K6fnR0NOF4+oIt1/cvByOnzXf8VbPjDwAAAChL27dvl3Q+uTfXDr4777wznviTpPb29qwm/ialEgswlxO/HNW7b75Xv4mar4M/3vhm3X7tu1VRUZHnyAAAAJAtiwodQKlbuzaxHn66pTinP7lpt9vzev9yMDI+w44/evwBAAAAZcfr9cZ31V1//fVzvt9qtcrtdsePDcOQz+fLelyVlZVZvyfKyzOjp/Xum+/VqWfNKwV9yOnQ3TtaSPoBAAAUORJ/OTZ9B93Q0FBa10cikYRjh8OR1/uXg1FKfQIAAAD4rf3798dfNzU1pXRNS0tLwrHf789qTECmRsdfUOMt9+p/f/Gs6Xjjn/yB7r/xA1q8mF8TAQAAFDt+ossxq9Wa0AA+HA6ndf3U0p1OpzPv9y8HlPoEAAAAIJ1P2E3u9rNarSlXRJn+AGUwGMx6bNPbPACpGn/hJW36zNcUOvFL03HnmtX6xk1btGwp3WAAAABKAYm/PFi/fn3CcSgUSvnawcHB+OuGBvPm2rm+f6l71iTxt3jRIlkuuqAA0QAAAAAolEAgEH9dV1eX1rXTk39T75UNlPrEfLx09mW9/7YjeuK/Iqbj/+f3XqvvfPoaXbR8WZ4jAwAAQK6Q+MuD6WVf0nn6c2oSz+VyFeT+pW7EpNRn9coL6WsAAAAAlJmpJTqnt1WYy/RE4fS2CvM1Ojqalfug/Lx87pxcd35d3//P/zUd/6PXvVIPf+5aWS9enufIAAAAkEsk/lIQjZo3vk5Vc3NzwnGqjd6nLjqbmpoSSnrm8/6lbmTcPPEHAAAAoHwYhhEv8ykp7fXR6tWrE47TbcMwF0p9Ih0TExPa9uV/0rcfP246bntlpY59/lq90npxniMDAABArpH4S8HY2FjC8XwSgR0dHfHX4XA4pbIvU5vKT72+EPcvZaMmpT6rV9DfDwAAACgn03fopdrfb9L0HYLptGBIxdRSn+FwWB6PR42NjaqpqdGqVatUU1OjxsZGeb3erCcdUVxisZg++Q99uv/7/9d0/NWVK/TdL3xUl72yMr+BAQAAIC9I/M0hEAgkPPUpSYcPH077Pm63O2HhuGfPnqT7TuXz+eILxc7OzjkXnbm+fykzK/VZxY4/AAAAoKwMDAwkHKfbUy8fO/LC4bA2b96s+vp6eb1ehUKh+LrPMAyFQiF5PB7V19ervb095/FgYfr80X/Wlx583HSs8uLl6vvctfr9Va/Ic1QAAADIlyWFDmAhCYVCCgaDGh0dlWEYikQipv3yuru71d/fr9raWtntdlVVVam2tlYNDQ2z3r+vr09XXnmlDMNQOBzWhg0b1NXVldQE3uv1yuPxSDqf0GttbU0p/lzfv1SZlvpcQeIPAAAAKCeZtnioqqpKOJ5eOWa+JuPy+/3q7u5O+bru7m4NDg7qgQceKNu2DuXoS995XJ898s+mYxddsFQPfebDWvuG1+Q5KgAAAOQTib8pgsFgPCE2l3A4nFA+pampac7En9Vq1RNPPKFdu3apt7dX4XBYjY2Nstvtqq2tVTQa1eDgYPyJza6urqT+fYW8fyl6+dw5Gc+9mHS+eiWlPgEAAIByMjo6mtH103f8ZZpInG5yHedwONTS0iKbzSaLxaJoNKpAICC/359U9SUUCqmtrU09PT3z/tzh4eG03r9q1SqtWrVq3p+H+bvv+/9Xf/2VXtOxZUsW6x9vblX9m8q32g8AAMBCcerUKZ06dSrl96f7MzmJvyncbrfcbndOP8NqterQoUMKhUI6fPiw+vv7NTY2pt7eXtntdtXV1am5uXneu/Byff9SMzaenPSTpGpKfQIAAABlZXrSLB+lO1MxdedgZ2en6VquublZ+/btk8fjkdfrTRgLBoPy+XzzXgOm2w/+xhtv1Cc/+cl5fRbm7x8fP66Pf+kfTccWLapQd/vVeucfvzHPUQEAAMBMT0+P7rrrrpzdn8RfgTgcDu3bt69o718qzMp8SpT6BAAAAMpdpjv2spk4tFqteuCBB5LaOEzX0dGhqqqqpEo2t912Gw9/lrDv/ef/yrXvAU1MxEzHD91wld5XvybPUQEAAKBQFhU6AKCQno0+b3q+ilKfAAAAANJQWVk56/F8tba2anh4eM6k3yS32y27PbGc42QfeJSeJ34c0fu+4NOZl8+Zjt/18Y366Dv/JM9RAQAAoJDY8YeyNjJunvi7hMQfAAAAgDRMLclZaHfccYe2bNmScC4YDCYlBFPh8XhUU1OT8vvp75c/Qyd+qebP3K/nXzprOv7pLW/XX75nXZ6jAgAAwFw2b94sp9OZ8vuHh4fTKsFP4g9lbeT0DKU+6fEHAAAAlBWr1ZpwnGkir5A9AhsaGmS32xN2+c13x19NTY2uuOKKbIWGLDn56zFtvPU+jT1n3rf+hk1X6tNb357nqAAAAJCKVatW5fSBOUp9oqyNkvgDAAAAIKmqqirhON0ef9Pff/nll2caUkZqa2sL+vnInbHxF9R06/069az5v9EP//kf666Pb1RFRUWeIwMAAMBCQOIPZW2mUp/VlPoEAAAAysr0HXonTpxI6/rR0dGEY5vNlmlIGZle1nM+ZT6x8Lx45qze94VuHY/8ynT8vVfW6CufuEqLFvHrHgAAgHLFT4Ioa2alPisqKmS96IICRAMAAACgUNauXZtwnG6pz+k7/gqdaJu+g7HQiUhkbmJiQh+565t6dOhnpuNvc7xe3bs+pCWLF+c5MgAAACwkJP5Q1swSf1UrlvN0JAAAAFBmpifGhoaG0ro+EokkHDscjoxjysT0HYgNDQ0FigTZEIvF9Ml/6NM3+83/XdbaX61vdbi0fNnSPEcGAACAhYbsBsqaWanP6hWU+QQAAADKjdVqldVqjR+Hw+G0rp9aGtTpdGYrrHkzDCP+uqmpqYCRIBu++O3H9KUHHzcde90rrOr97EdUuYJe9QAAACDxhzI3arLjr3oliyUAAACgHK1fvz7hOBQKpXzt4OBg/HWmu+vC4bDq6+sTknfp6u/vj7++4YYbMooHhdXz6KB2fbXPdKzy4uV6+LMf0eteYTUdBwAAQPkh8Yey9uzp5B1/VST+AAAAgLLU0tKScBwMBlO+dmqS0OVyzfpewzDk9/sVCARMxysrKxUOh+XxeFL+/KnC4XB8x6LL5Sp42VHM3z8P/ETXfvGbpmPLlizWt29p1Rr7q/McFQAAABYyEn8oa2Y9/i5ZSalPAAAAoBw1NzcnHPt8vpSu8/v98ddNTU0JJUOnC4fDuvLKK9XW1qYtW7Zo8+bNSe+xWq1qampSd3d32iVHJWn37t2SJLvdro6OjrSvx8Iw+LNn9H5Pt86+fC5prKKiQl/71AfVUPv6AkQGAACAhYzEH8rWuXMTGnvuxaTz1ST+AAAAgLI1NVEWDodn3JU31f79+02vN+PxeBJKeAaDQdMEY2trq6TfJfFS5fV6FQwGZbVa1dfXN2sSEgtX5Fdjarr1PkWff8l0/K6/2KgPrmcnJwAAAJKR+EPZMp5/UbFYLOl8NQ3RAQAAgLLldrtlt9vjx3v27Jm1157P54uX+ezs7Ey41kwkEkk6Z7arr6GhQVarVcFgMOWSnx6PRx6PR3a7naRfERsdf0FNn7lfPx85bTr+yfet1yfeU5/nqAAAAFAsSPyhbJmV+ZSkanr8AQAAAGVtatIsHA5rw4YNCT38Jnm93viOPLfbHd+lN5vpfQRnOif9rvSo1+tVTU2NPB6PAoFAvIdfKBSS3+9Xe3u7ampq5PV65XK59Pjjj8+ZgMTC9OKZs7rq8z4NR35lOr75rXW649p35zkqAAAAFJMlhQ4AKJSR08+bnq+i1CcAAABQ1qxWq5544gnt2rVLvb29CofDamxslN1uV21traLRqAYHB+M7Abu6upL6A87E7XZrdHRU3d3dqqys1N69e+VwmJdsvOaaa9Td3S1JMgxDXq9XXq/X9L1Op1MdHR0z3gsL38TEhD78t99U8PgJ0/G3171BX/2r92vRIp7hBgAAwMxI/KFsjYzPsOOPUp8AAABA2bNarTp06JBCoZAOHz6s/v5+jY2Nqbe3V3a7XXV1dWpubk5pl990HR0dc/YClCSHw6Hh4WF1d3crEAgoEolobGxMhmHIbrfLZrOpoaFBTU1N7PArcrFYTDd+5WF967Eh0/G61Zfqmx0uXbCUX+MAAABgdvzEiLJFqU8AAAAAc3E4HNq3b1/BPt9qtcrtdsvtdhcsBuTeXd/u15cfesJ07LJXWuX/zIdlvXh5nqMCAABAMaI+BMrW6AylPqsp9QkAAAAAyJMj/zqg9q8eMx2rvHi5Hv7stVr1CmueowIAAECxIvGHsvXsTIk/Sn0CAAAAAPLgB0/9RNf93bdMxy5YukT/dMs1qrG9Ks9RAQAAoJiR+EPZmqnUZxWJPwAAAABAjg389Bf6wG3dOvvyuaSxiooKHf7UB+WsXZ3/wAAAAFDUSPyhbI2MJyf+Ki9ersWL+VoAAAAAAHIn/KtRNX3mfkWff8l0/O+2Nen962rzHBUAAABKARkOlK0Rk1Kf9PcDAAAAAOTSyOnn1XTr/frFyGnT8V3vd+r6TVfmOSoAAACUChJ/KFujJqU+q1dS5hMAAAAAkBsvnjmrqz7v049P/tp0fOvb1uq2j7wrz1EBAACglJD4Q9kyK/VJfz8AAAAAQC6cOzeha/7mG+ofDpuO//na39M9f/k+LVrEr2oAAAAwf/w0ibJFqU8AAAAAQD7EYjH99Vd69Y+PHzcdX/v6S/XNjq1atnRJniMDAABAqSHxh7I0MTFhuuOPUp8AAAAAgGy781tB3e3/oemY7ZWV8n/mI7JctDzPUQEAAKAUkfhDWTr9whlNTMSSzldT6hMAAAAAkEV/+49B3XTfI6ZjVSsu1MOf+4hee4klz1EBAACgVFFDAmXJrMynRKlPAAAAAED23PbAv+iWw983HVu+bIm+8+lr9KbLXpXnqAAAAFDKSPyhLD1L4g8AAAAAkCOxWEyf6f6BvtDzL6bjFRUV8n3qQ1pXY89zZAAAACh1JP5QlkZOJ/f3k+jxBwAAAADITCwW0033PaI7vxWc8T1f3t6sq+rX5DEqAAAAlAsSfyhLJP4AAAAAANkWi8V041ce1pcefHzG9+zfsUk7mt6Sx6gAAABQTkj8oSyNjs9Q6nMFpT4BAAAAAOmbmJjQ9QceUlffk6bjFRUV6rrhvfrYu/6/PEcGAACAckLiD2WJHX8AAAAAgGw5d25Cbfv/Sfd+7z9MxxctqtBX/+r9uubtf5znyAAAAFBuSPyhLM2U+KtaQeIPAAAAAJC6l8+d00e/+C0d+dcB0/HFixbp8Kc+qKsb6vIcGQAAAMoRiT+UpRGTUp8rL7xAS5csLkA0AAAAAIBidPblc2r9m6/rm/1DpuNLlyzW0fardVX9mjxHBgAAgHJF4g9lyWzHH2U+AQAAAACpeunsy9rc2aMHf/hj0/ELli7RN/ZuUdOb/yjPkQEAAKCckfhDWRodJ/EHAAAAAJifF8+c1QduO6K+f/8f0/Hly5bo2ze36l3/5/fzHBkAAADKHYk/lKVno8mlPqtXXFSASAAAAAAAxeT5F8/ovV/w6QdP/cR0/OLly/Tgp6/R2+rekOfIAAAAABJ/KFNmPf6qLST+AAAAAAAzG3/hJbV89rAeHfqZ6fjKCy9Q72c/onU19jxHBgAAAJxH4g9lJxaLmff4W0GpTwAAAACAOeO5F9X8mfv1+I8jpuPWi5er73PX6k//8LI8RwYAAAD8Dok/lJ3xF87o5XMTSefp8QcAAAAAMDM6/oI23HKvfvT/TpmOV6+8UI98/qP6P29clefIAAAAgEQk/lB2zMp8SvT4AwAAAAAk+43xnN59y7166qe/MB1/pfVifc9znRyrL81zZAAAAEAyEn8oO2ZlPiWpih1/AAAAAIApfjk6rnfd/FUNhX9pOv6a6pX6nuc6vemyV+U5MgAAAMAciT+UnZkSf5T6BAAAAABM+vmzUb2z46v6r6d/bTr+uldY9X3Pdfr9Va/Ic2QAAADAzEj8oexQ6hMAAAAAMJuTvx7TO/Z+Vf/7i2dNx1e/ukrf91yn119anefIAAAAgNmR+EPZYccfAAAAAGAmP3tmRO/o+KpO/HLUdPz3XlOt73s+JturKvMbGAAAAJACEn8oOyOnZ9jxR+IPAAAAAMraT37xrN5+0z16+jeG6fgfvu4V+r7nY3rtJZY8RwYAAACkhsQfys7MO/4o9QkAAAAA5ersy+f0vi90z5j0q7W/Wt/9wnV6ddWKPEcGAAAApI7EH8qO2Y6/i5cv0wVL+ToAAAAAQLn68oNPaCj8S9Oxy9/wGj3y+Y/qFdaL8xwVAAAAkJ5FhQ4AyLeR8eQdf5T5BAAAAIDy9fNno/rs0R+Yjr3591fpe57rSPoBAACgKLDFCWVn1KTUZ/UKEn8AAAAAUK7av3pM4y+cSTpfa3+1HvnCdbJevLwAUQEAAADpY8cfyo5ZqU/6+wEAAABAeXo09DMdfXTAdOxudwtJPwAAABQVdvwhYx/72Me0bNmypPPbtm1TW1tbASKanVmpzyp2/AEAAKBIdHV16dChQ0nnz5xJ3q0EYHYvnzunTxx8yHSs9c8u1/o1q/MbEAAAAJAhEn/I2MjIiOn58fHxPEcyt1gsphGzUp/0+AMAAECRGB8f1zPPPFPoMICS4PX/m4bCv0w6v/LCC9R5XWMBIgIAAAAyQ+IPGauurjbd8bdixYoCRDO7F146q5fOvpx0nlKfAAAAKBYrVqzQpZdemnT+zJkzMz6UByDZM6OndWv3903HPuP6c11atTLPEQEAAACZI/GHjN1zzz264oorCh1GSp416e8nSdWU+gQAAECRaGtrMy2p/+STT+qqq64qQERAcbrpvkcUff6lpPNrbK/Szua3FCAiAAAAIHOLCh0AkE9mZT4lqdrCjj8AAAAAKBeP/zisr/3gP03HvrR9k5YuWZzniAAAAIDsIPGHsjIyPkPijx1/AAAAAFAWzp2b0A0HHjIdu7qhTm+re0OeIwIAAACyh8QfysrITKU+6fEHAAAAAGWhq+9JPfXTXySdX3HhMt15XWMBIgIAAACyh8QfysqMpT5XsuMPAAAAAErdr43ndMvh75mO3bL57Vr1CmueIwIAAACyi8QfysoopT4BAAAAoGztvf8RjT33YtL5P3rdK/WJlisLEBEAAACQXST+UFYo9QkAAAAA5enf/vukvvrd/zAd+/vtzVq2dEmeIwIAAACyj8QfyopZqc/ly5bowguWFiAaAAAAAEA+nDs3oRsOPGg69v51tXrH5W/Mc0QAAABAbpD4Q1kZMSn1SZlPAAAAACht93zv3/Uf//vzpPMXXbBUf/OxDQWICAAAAMgNEn8oKyPR5FKflPkEAAAAgNL1bPR5ddz/XdOxvVe/TbZXVeY3IAAAACCHSPyhrIyMJyf+LiHxBwAAAAAl6+avfde07cPvv/YS3XjV+gJEBAAAAOQOiT+UFbPFXtVKSn0CAAAAQCn6j/89pa888u+mY3/X1qwLli7Jc0QAAABAbpH4Q1kx7fFH4g8AAAAASs7ExIRuOPCQYrFY0ljLW96kxj/5gwJEBQAAAOQWiT+UjRdeOqsXXjqbdL56BaU+AQAAAKDU3Pf9/6t/+++TSeeXL1uiL368qQARAQAAALlH4g9lY9Rkt5/Ejj8AAAAAKDWj4y/opvseMR3b88G3avWrq/IcEQAAAJAfJP5QNsz6+0n0+AMAAACAUnOr7/v6TfT5pPOvf3WVPvU+ZwEiAgAAAPKDxB/Kxsh48qJPotQnAAAAAJSSp376cx14+N9Mx764rUkXXrA0zxEBAAAA+UPiD2Vjph1/lPoEAAAAgNIQi8X0iYN+TUzEksY2vvkPtelP31SAqAAAAID8IfGHsvHs6Rl2/JH4AwAAAICS4PuXp/TYcDjp/LIli/XFjzcVICIAAAAgv0j8oWyMzrDj75KVlPoEAAAAgGJnPPeidn/1mOnYrvc79cbXXpLniAAAAID8W1LoAIB8GZlxxx+JPwAAAAAw87GPfUzLli1LOr9t2za1tbUVIKKZffbID/TLsfGk87ZXVmrPB99agIgAAACA1HV1denQoUNJ58+cOZPWfUj8oWyMjCfv+Fu2ZLEuorE7AAAAAJgaGRkxPT8+npxgK6TQiWe0/6Efmo797cc36qLlyclLAAAAYCEZHx/XM888k/F9SPyhbIyYlPqsXnmhKioqChANAAAAACx81dXVpjv+VqxYUYBozMViMf3lQb/OTUwkjb3zj9+oq66sKUBUAAAAQHpWrFihSy+9NOn8mTNnZnwgzwyJP5SNUZNSn5T5BAAAAICZ3XPPPbriiisKHcasegKDenToZ0nnly5ZrC9t38TDngAAACgKbW1tpuX0n3zySV111VUp32dRNoMCFjKzUp/VKy4sQCQAAAAAgGw4/fxLar+nz3Tsxveu0x+sekWeIwIAAAAKi8QfyoZZqc+qlST+AAAAAKBYfb7nn/XzkdNJ51/3Cqv2Xv22/AcEAAAAFBiJP5SNkXFKfQIAAABAqfjxyV/p77/zuOnYnR/boBUXXpDniAAAAIDCI/GHsnDm7Msaf+FM0nlKfQIAAABA8YnFYvrLg369fG4iaeztdW/QB9fXFiAqAAAAoPBI/KEsmPX3k6RLLOz4AwAAAIBi883HhvSDgZ8knV+yeJH+fvsmVVRUFCAqAAAAoPBI/KEsmPX3k6QqdvwBAAAAQFF57sUz+tQ/9JmOfaKlXjW2V+U5IgAAAGDhIPGHsjByOrm/n0SPPwAAAAAoNrc98K96+jdG0vnXVK/ULVv+rAARAQAAAAsHiT+UhZlKfVavZMcfAAAAABSTP1v7Bv3h616RdL7zo42yXLS8ABEBAAAACweJP5SFmUp9VlPqEwAAAACKyjsuf6Oe+vIN6vxooy5evkyS1FC7WlvftrbAkQEAAACFR+IPZWGUUp8AAAAAUDKWLV2iT73fqR8f/Ctteeta/X3bJlVUVBQ6LAAAAKDglhQ6ACAfKPUJAAAAAKVn1Sus8u36UKHDAAAAABYMdvyhLIyY7PhbvGiRVl54QQGiAQAAAAAAAAAAyD4SfygLz5r0+KteeSGlYAAAAAAAAAAAQMkg8YeyYLbj7xL6+wEAAAAAAAAAgBJC4g9lYXSGHX8AAAAAAAAAAAClgsQfysLIeHLir2oFiT8AAAAAAAAAAFA6SPyhLJiV+qym1CcAAAAAAAAAACghJP5Q8s6+fE7R519KOk+pTwAAAAAAAAAAUEpI/KHkjT33oun5akp9AgAAAAAAAACAEkLiDyXPrMynRKlPAAAAAAAAAABQWkj8oeSNnH7B9HwVpT4BAAAAAAAAAEAJIfGHkvfsTDv+VrDjDwAAAAAAAAAAlA4Sfyh5M+34u8TCjj8AAAAAAAAAAFA6SPyh5I2O0+MPAAAAAAAAAACUPhJ/KHkz7firXsGOPwAAAAAAAAAAUDpI/KHkjZj0+Fu0qEKWiy4oQDQAAAAAAAAAAAC5QeIPJW9kPHnHX9WKC7VoEf/8AQAAAAAAAABA6SDzgZJnVuqTMp8AAAAAAAAAAKDUkPhDyRs1KfVZvfKiAkQCAAAAAAAAAACQO0sKHQByJxAIyO/3a3BwUJFIRIZhyGq1ymazqaWlRS6XS1artdBh5txMpT4BAAAAAAAAAABKCTv+SlAoFFJ9fb22bNmi7u5uSVJdXZ0cDocMw1AoFJLH41FNTY18Pl+Bo829Z6NmO/5I/AEAAAAAAAAAgNJC4q/E+Hw+NTY2KhwOy+VyaXh4WMeOHVNPT4+OHTum4eFhNTU1xd+/e/dueTyeAkacW+fOTWjsuReTzl9CqU8AAAAAAAAAAFBiSPyVkEAgoN27d0uS3G639u3bl1TK02q16tChQwnJP6/XK7/fn9dY88Us6Sex4w8AAAAAAAAAAJQeEn8lZPv27ZLOJ/c6Ojpmfe+dd96ZcNze3p6zuApp5HRymU9JqmbHHwAAAAAAAAAAKDEk/kqE1+uVYRiSpOuvv37O91utVrnd7vixYRgl2e9vZPwF0/NVK9jxBwAAAAAAAAAASguJvxKxf//++OupZTxn09LSknBciuU+Z97xR+IPAAAAAAAAAACUFhJ/JcDv98d3+1mtVtnt9pSuczgcCcfBYDDrsRXayGnzHX+U+gQAAAAAAAAAAKWGxF8JCAQC8dd1dXVpXTs9+Tf1XqVgdIZSn9WU+gQAAAAAAAAAACWGxF8JmFqi02azpXXt9ERhJBLJSkwLxcylPtnxBwAAAAAAAAAASguJvyJnGEa8zKd0vtRnOlavXp1wHA6HsxHWgvGsSanPiooKVV68vADRAAAAAAAAAAAA5A6JvyI3fYdeqv39Jk3fIRgKhTKOaSEx2/FXefFyLV7MP30AAAAAAAAAAFBayH4UuYGBgYTjysrKtK63WCxZjGbhGTHZ8Ve9kv5+AAAAAAAAAACg9JD4K3LRaDSj66uqqhKOx8bGMrrfQjM6bpL4W0HiDwAAAAAAAAAAlJ4lhQ4AmRkdHc3o+uk7/uaTSBweHk7r/atWrdKqVavS/pz5MCv1WbXyorx8NgAAAJCJU6dO6dSpUym/P92fywEAAAAApYfEX5EzDCPhuBClOzs6OtJ6/4033qhPfvKTOYom0YjZjj9KfQIAAKAI9PT06K677ip0GAAAAACAIkKpzxKTaenPUur5NzExQalPAAAAAAAAAABQNkj8lbnKyspZj4tZ9PmXNDERSzpfTalPAAAAAAAAAABQgij1WebGxsYyvofH41FNTU3K789Xf7/nXzqrWvurNXL6eT17+gW9dPZlSZT6BAAAQHHYvHmznE5nyu8fHh5Ouww/AAAAAKC0kPgrclarNeE400TefEp91tTU6Iorrsjoc3PhtZdYNHD3J+LHL7x0ViOnn9fFy5cVMCoAAAAgNatWrcrbQ3MAAAAAgNJA4q/IVVVVJRyn2+Nv+vsvv/zyTENasC68YKlWXWCd+40AAAAAAAAAAABFiB5/RW76Dr0TJ06kdf3o6GjCsc1myzQkAAAAAAAAAAAAFACJvyK3du3ahON0S31O3/Fnt9szDQkAAAAAAAAAAAAFQOKvyE3foTc0NJTW9ZFIJOHY4XBkHBMAAAAAAAAAAADyj8RfkbNarbJaf9e3LhwOp3X91NKgTqczW2EBAAAAAAAAAAAgz0j8lYD169cnHIdCoZSvHRwcjL9uaGjIWkwAAAAAAAAAAADILxJ/JaClpSXhOBgMpnzt1CShy+XKWkwAAAAAAAAAAADILxJ/JaC5uTnh2OfzpXSd3++Pv25qakooGQoAAAAAAAAAAIDiQuKvRHR0dMRfh8NhBQKBOa/Zv3+/6fUAAAAAgIXPMIxChwAAAABggVlS6ACQHW63Wz6fT+FwWJK0Z88e9fX1zbiLz+fzxct8dnZ2ym635y1WAAAAACgmgUBAfr9fg4ODikQiMgxDVqtVNptNLS0tcrlceamgEgqFdPjwYfn9/oSk32QsdXV12rlzJ+s7AAAAoIyx46+ETE30hcNhbdiwIaGH3ySv16vdu3dLOp8wbG1tzWucAAAAAFAMQqGQ6uvrtWXLFnV3d0uS6urq5HA4ZBiGQqGQPB6PampqUm65MB+GYWjbtm1qbGxUd3d30k6/yVi6u7tVX1+v9vZ2dgMCAAAAZYodfyXEarXqiSee0K5du9Tb26twOKzGxkbZ7XbV1tYqGo1qcHAwvgDs6upK6g9Yik6dOqWenp748ebNm7Vq1aoCRgSUDr5fQG7xHQNyi+8YZuPz+eIPTLpcLnV0dCTs6jMMI772kqTdu3crHA5nvY1COBzWli1b4tVdUtHd3a3+/v5Zq8CUAr7DQG7xHQNyh+8XkFvl/h0j8VdirFarDh06FC8B09/fr7GxMfX29sput6uurk7Nzc1ltcvv1KlTuuuuu+LHTqezrL7kQC7x/QJyi+8YkFt8xzCTQCCQUCXFLJk3ufbatm1bPPnn9Xq1du3arD5gOZlQnORyudTc3Ky1a9dKkgYGBhQMBuX1ehOuC4fDamtrS/iFR6nhOwzkFt8xIHf4fgG5Ve7fMRJ/JcrhcGjfvn2FDgMAAAAAis727dslnU/uzbWD784774wn/iSpvb09q4m/YDAo6fwvK7q6upJ28DU0NKihoUEtLS26+uqrE0p8BoNBhUIhORyOrMUDAAAAYGGjxx8AAAAAAL/l9XrjybPrr79+zvdbrVa53e74sWEYWev3N9mz3eFwqKenZ9aynQ6HQwcPHkw6P5k4BAAAAFAeSPwBAAAAAPBb+/fvj79uampK6ZqWlpaEY7/fn5VYJpN2d955Z0rvb2hoSIr5xIkTWYkFAAAAQHEg8QcAAAAAgM4n7CZ3+1mtVtnt9pSum15KM1u77J566ilZrda0SnU2NDQkHM+2SxAAAABA6aHHH4AFp6urS+Pj41qxYoXa2toKHQ5QcviOAbnFdwwoXoFAIP66rq4urWsdDke8NOfkvaYn4dIViUTkcrnSusZmsyUcp5q8BPKBORLILb5jQG7xHUOxIPEHYME5dOiQnnnmGV166aVMokAO8B0DcovvGFC8ppbonJ5Am0tdXV1C4i8SiWQcz7Fjx9K+Zvrnbtq0KeM4gGxhjgRyi+8YkFt8x1AsKPUJAAAAACh7hmHEy3xK6ZfIXL16dcJxOBzORlhpGxwcjL92u92U+gQAAADKDIk/AAAAAEDZm75TLt0SmdN3CE7d/ZcvhmHEdy06HA51dHTkPQYAAAAAhUXiDwAAAABQ9gYGBhKOKysr07reYrFkMZr52bVrlwzDkN1u1wMPPFDocAAAAAAUAIk/AAAAAEDZi0ajGV1fVVWVcDw2NpbR/dLV3t6u3t5eORwO9fX1UeITAAAAKFNLCh0Ais9zzz2XcDw8PFygSFIzPb6FHi+kM2fOxP/vk08+WeBoMBu+X8WJ71jx4DtWnPiOFY9S+45Nj3/6z+2Y3ejoaEbXT9/xl2kicSaTfQitVqsMw1AwGNRtt92mcDgc3+mXSdJv+r+bhx9+OK3vxitf+Uq98pWvnPfnp6PUvsPlgDmyuPAdKz58x4oH36/ixHeseCz079ivf/1r/frXv075/SdOnEg4nmutVxGLxWLzCQzl67777qNXBAAAALDAeTweXXvttYUOo2i0t7eru7s7fnz06FE1NDSkfH04HFZ9fX382G636/HHH89qjJK0bds29fb2zvoeh8OhlpYWud3utO/Peg8AAABY2OZa61HqEwAAAACAaTLdsZernn/9/f2SzicWnU6nmpqaZLfbE94TCoXk8XhUU1OjQCCQkzgAAAAALEyU+gQAAAAAIEOVlZWzHmfL9ddfL5fLZVrO0+PxyOv1xo8Nw9CWLVvS3r0IAAAAoHiR+EPa3vnOdyYc2+12XXzxxQWKBgAAAIB0vs9DOByOH0//uR25NTY2lpfPma18Z0dHh5xOp7Zs2ZJwfvv27Sn3NZn8dzM2NqaxsTFdeumlWr58ecrx5bPHHwAAAFCM0u3x9+KLL+qZZ55RZWWlKisr51zrkfhD2latWkWvEAAAAAAlZfoOukwTebkq9TmXhoYGNTU1JfQBNAxDfr9fzc3Nc17Peg8AAAAobvT4AwAAAACUvaqqqoTjdHv8TX//5ZdfnmlI83bnnXcmnaPXHwAAAFAeSPwBAAAAAMre9B16J06cSOv60dHRhGObzZZpSPNmtVqzvoMRAAAAQHEg8QcAAAAAKHtr165NOE43UTZ9x5/dbs80pIxMTzxWVlYWJhAAAAAAeUXiDwAAAABQ9qYnyoaGhtK6PhKJJBw7HI6MY8rE9ETf6tWrCxIHAAAAgPwi8QcAAAAAKHvTy2OGw+G0rp9aGtTpdGYcj9/vz+j66TsWsxETAAAAgIWPxB8AAAAAAJLWr1+fcBwKhVK+dnBwMP66oaEhozjC4bDa2toySv5N3YHocDgKvgMRAAAAQH6Q+AMAAAAAQFJLS0vCcTAYTPnaqUlCl8s163sNw5Df71cgEDAdt9vtcjgc2r9/f8qfPz0WwzDix3feeee87gMAAACg+JD4AwAAAABAUnNzc8Kxz+dL6bqpO/OampoSSoZOFw6HdeWVV6qtrU1btmzR5s2bTd/ndDoVCoXmtetv165d8ddut5vdfgAAAEAZIfEHAAAAAMBvdXR0xF+Hw+EZd+VNNXVn3tTrzXg8noTdeMFg0DTBOLn7sK2tLa1+gz6fL7770OVyzRkPAAAAgNKypNABAAAWPsMw9NBDD6myslIWi0VVVVUJ4xaLJf46Go3GX4+OjsaPHQ6H7HZ7fgIGFijDMLR//351d3friSeemHVHCID0ZPr9Yq7DJLfbLZ/PF0+27dmzR319fTP+m5qaaOvs7Jzz38DU3nuTzBJ7U3fpbdiwQfv27UvakTid1+uVx+OJ/zlI+gGYC/MfkB2s9YDcYa2XPhJ/KEmBQEB+v1+Dg4OKRCIyDENWq1U2m00tLS1yuVxMwEAaBgYGtHv37ozu0dHRIbfbnaWIgOISDod19913q7u7O35ubGwsK3MRcx7KXba+X8x1mKqvr09XXnmlDMNQOBzWhg0b1NXVlVQyc3qirbW1dc57t7S0JPQDnDxnxmq1yjAMGYahtrY2ORwO7d27V2vXrk34Nx4IBHTbbbcpFArJbrfrjjvuUENDQ7p/7KLAvAdkF/MfkBnWekDusNabPxJ/KCmhUCihFI7D4VBdXZ3GxsYUCoXi/3k8HnV2dqa0MAcAYL5CoZC+/OUvq7e3Nyf3Zs5DOcvl9wuwWq164okntGvXLvX29iocDquxsVF2u121tbWKRqMaHByMl+zs6uqaczfeJLfbrdHRUXV3d6uyslJ79+6dsQff+vXrE/6Nh0IhbdmyZcaYi+0XEulg3gMALCSs9YDcYa2XORJ/KBk+ny+euZ/sZTE1+28YRnzhLkm7d+9WOBym/A0AIKsMw1B3d3dCmbhsY85DucrH9wuYZLVadejQIYVCIR0+fFj9/f0aGxtTb2+v7Ha76urq1NzcPK9ftnV0dKT0v8mHDh2SYRgKBoN68MEHFYlEkp74n4yjVHf4Scx7AICFgbUekDus9bKLxB9KQiAQiE+KM/WymFy4b9u2LT45er1erV27NuWnc4FyNbX2tdvtjj/dPjY2Fj8/tQb29DFJstlsOYsPWAgmy7AFg8GE8y6XSzt37tSGDRvi351MMOehHOXj+8Vch5k4HA7t27evYJ9vtVrV3Nxctv/7zbwH5BbzHzA31npA7rDWy42KWCwWK3QQQKZqamriT70ODw/P+l7DMFRTUxM/TuUaoNyFQiE1NjbyfQHmsGrVKknn55brr78+oedCfX19wlNrjz/++LwaQzPnoVzl+vvFXAcsTMx7QG4x/wGpYa0H5A5rvexbVOgAgEx5vd54lv7666+f8/1WqzWh74VhGPL5fDmLDygllZWVhQ4BWNCamprU2dmp4eFhud3uhJIsFosl4/sz56Gc5fr7NYm5Dlg4mPeA/GH+A2bHWg/IHdZ62UfiD0Vv//798ddNTU0pXdPS0pJw7Pf7sxoTAKA8HTp0KKeN1ZnzUM5y/f0CsPAw7wEAFgrWekDusNbLPhJ/KGp+vz/+NIzVak15m6/D4Ug4nl5DGIC5bD5lAyA9zHlAfjDXAQsD8x6QX8x/QOEw5wH5UU5zHYk/FLVAIBB/XVdXl9a10yfHqfcCYK6ctsQDCw1zHpAfzHXAwsC8B+QX8x9QOMx5QH6U01xH4g9FbeoWdpvNlta10yfSSCSSlZiAUjQ6OlroEICyx5wH5BZzHbCwMO8B+cH8BxQecx6QW+U415H4Q9EyDCO+DV5SQtPPVKxevTrhOBwOZyMsoKSV05Z4YCFhzgPyh7kOKDzmPSD/mP+AwmDOA/KnnOa6JYUOAJiv6U+wpFr/etL0J2hCoVDGMQGlbuqW+HA4LJ/Pp2AwqEgkIsMwZLVaZbPZ1NLSoqamprS/lwDMMecB+cNcBxQe8x6Qf8x/QGEw5wH5U05zHYk/FK2BgYGE43Rr9JZThh/IpnA4rN27d5s2jTYMQ6FQSKFQSB6PRy6XS/v27StAlEBpYc4D8ou5Digs5j2gMJj/gPxjzgPyq1zmOkp9omhFo9GMrq+qqko4Hhsby+h+QCmb/L75/X7V19ebTo5muru71djYmFC2AkD6mPOA3GOuAxYO5j0gf5j/gMJizgNyrxznOnb8oWhl2pRz+hMxmU60QDmYnOgcDodaWlpks9lksVgUjUYVCATk9/uTJsNQKKS2tjb19PQUImSgJDDnAfnDXAcUHvMekH/Mf0BhMOcB+VNOcx2JPxSt6V9CtrYDuTP1ibHOzk61trYmvae5uVn79u2Tx+OR1+tNGAsGg/L5fKbXAZgbcx6Qe8x1wMLBvAfkD/MfUFjMeUDuleNcR6lPlIxMn2hhYgVmZ7VadezYsTknuY6ODnV0dCSdv+2223IVGlB2mPOA3GCuAxYm5j0gt5j/gIWDOQ/IjXKb60j8oWxNb5abbvNcoJy0trZqeHhYDocjpfe73W7Z7faEc4ZhKBwO5yI8AHNgzgPmxlwHlA7mPSB1zH9AcWPOA+ZWjnMdiT+ULZrdArl1xx13JJ1LtXkugOxizgNyg7kOWJiY94DcYv4DFg7mPCA3in2uI/GHomW1WhOOM53o2AoPZFdDQ0PS0zHF9GQMsJAw5wELE3MdkBvMe8DCxvwHZA9zHrAwFftcR+IPRauqqirhON0a2NPff/nll2caEoBpamtrCx0CUBKY84CFi7kOyD7mPWDhY/4DsoM5D1i4inmuI/GHojX9CZYTJ06kdf3o6GjCsc1myzQkANNMfzJm+jGA1DDnAQsXcx2Qfcx7wMLH/AdkB3MesHAV81xH4g9Fa+3atQnH6W6Fn/5ETDF9cYFiMf3JNX4ABeaHOQ9YuJjrgOxj3gMWPuY/IDuY84CFq5jnOhJ/KFrTv2hDQ0NpXR+JRBKOHQ5HxjEBSDT9ybOGhoYCRQIUN+Y8YOFirgOyj3kPWPiY/4DsYM4DFq5inutI/KFoWa3WhAa46TbXnLp13ul0ZissAFMYhhF/3dTUVMBIgOLGnAcsXMx1QPYx7wELH/MfkB3MecDCVcxzHYk/FLX169cnHIdCoZSvHRwcjL8upmw9kC/hcFj19fUJk1y6+vv7469vuOGGbIQFlC3mPCD7mOuAhYt5D8gd5j9gYWHOA7Kv3Oc6En8oai0tLQnHwWAw5WunTqIulytrMQGlorKyUuFwWB6PZ17Xh8Ph+JNqLpeLchNAhpjzgOxjrgMWLuY9IHeY/4CFhTkPyL5yn+tI/KGoNTc3Jxz7fL6UrvP7/fHXTU1NCVvqAZxntVrV1NSk7u7utEtNSNLu3bslnW8s3dHRke3wgKIzvel6upjzgJnN9/vFXAcsXMx7QO4w/wHZxVoPyB3WevND4g9Fb+oXLxwOKxAIzHnN/v37Ta8HkKi1tVXS7ya7VHm9XgWDQVmtVvX19fHDJyBpbGws4Xg+P7wy5wHmMvl+MdcBCxfzHpA7zH9A9rDWA3KHtd78kPhD0XO73bLb7fHjPXv2zFq71+fzxbfBd3Z2JlwLIFFDQ4OsVquCwWDKW+M9Ho88Ho/sdnvRTo5AtgUCgaS56fDhw2nfhzkPSJbp94u5Dli4mPeA3GH+A7KDtR6QO6z15q8iFovFCh0EkCnDMHTllVfG/4fAbrerq6srqfau1+uNf8ndbjdPwwApaG9vV3d3t6Tz2+RdLpecTmf8h8poNBp/Gs3v98swDLlcLu3bt6+QYQMFEwqFFAwGNTo6KsMwFIlEZuzRYLfbVVtbK7vdrqqqKtXW1s7ZkJ05D+UsV98v5jpg4WLeA3KH+Q9ID2s9IHdY62UXiT+UDMMwtGvXLvX29sbPTf6PQDQa1eDgYHzi7OrqSqqfDcBcKBRSY2NjSu91Op3q6Ogouoa3QDZNXYSlq6mpSYcOHZrzfcx5KFe5+n4x1wELG/MekBvMf0B6WOsBucNaL7tI/KHkhEIhHT58WP39/RobG5NhGLLb7bLZbGpubo7X9gWQOsMw1N3drUAgoEgkkvTdamhoUFNTE6UlgDxjzgOyh7kOWPiY94DsY/4DFibmPCB7ynGuI/EHAAAAAAAAAAAAlIBFhQ4AAAAAAAAAAAAAQOZI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAUAJCoZDq6+tlGEahQ8kJwzDU2NioUChU6FAAAAAAIG9Y6wEA0kXiDwCAIuf3+9XY2Ci32y2r1VrocHLCarWqpaVFjY2NCgQChQ4HAAAAAHKOtR4AYD5I/AEAUMQCgYDa2trkdrvV2tpa6HByyu12y+12a8uWLSwIAQAAAJQ01noAgPmqiMVisUIHAQAA0hcKhdTY2Cin06menp5Ch5M327ZtU29vr44dOyaHw1HocAAAAAAgq1jrsdYDgEyQ+AMAoAgZhqErr7xSkvTEE0+UbNkXM+X8ZwcAAABQ2sp5vVPOf3YAyCZKfQIAUITa2tpkGIb27dtXdoshq9WqgwcPyjAMtbW1FTocAAAAAMga1nqs9QAgUyT+AAAoMn6/X8FgUE6nU83NzYUOpyAaGhrkdDoVDAbl9/sLHQ4AAAAAZIy1Hms9AMgGSn0CAJABwzC0f/9+tbS05KUHwWTpE8Mwyr7vwWTfC6vVquHh4UKHAwAAAKCEsNYrHNZ6AJAZdvwBADAP4XBY7e3tqqmpkdfrVTgczsvn7t+/X4ZhyOl0lvVCUJIcDoecTqcMw5DH4yl0OAAAAABKAGu9wmOtBwCZYccfAADz0NjYqFAoFD8eHh7Oef8FwzBUU1MjSTp69KgaGhpy+nnFwO/3x3s/nDp1qsDRAAAAACh2rPUWBtZ6ADB/7PgDAGAeIpFI/LXD4chL0/WHHnpI0vmG5ywEz2tubo7/3ft8vgJHAwAAAKDYsdZbGFjrAcD8kfgDAGAeDMOIv3Y6nXn5zMnFjsvlysvnFYvJpvcsBgEAAABkirXewsFaDwDmh8QfAABpmlr2RcrPYjAUCsU/t6WlJeefV0wmn4gNhUJ5678BAAAAoPSw1ltYWOsBwPyQ+AMAIE3TFxxr167N+WcePnw4/rrcG71PN3UxzpOgAAAAAOaLtd7CwloPAOaHxB8AAGma2vPBbrfnpedDf3+/pPyVmikmVqs1/v+DYDBY4GgAAAAAFCvWegsLaz0AmJ8lhQ4AAIBi89RTT8Vf22y2nH+eYRjxJ08zbfQeDofV29srn8+no0ePym63J4z5fD4Fg0FFIhEZhiGr1aq6ujo1Nzdr06ZN81r4+v1+BQIBRSIRRSIRhcNhWa1W2Ww22Ww2NTQ0yOl0JsSSrvXr16u3tzepNA8AAAAApIq1XnpY6wHAwkTiDwCANE19CjQfpVgGBgbir9NdfIZCIQ0MDGhwcFD9/f0JpWui0Wj8dSAQ0JYtW5KuNwxDwWBQwWBQu3fvltvtVkdHR0qf7fP55PV644u/uro6rV+/XjabTZFIJN7Lore3V5LSuvd0DQ0N8fsEAoGMF80AAAAAyg9rPdZ6AFAKSPwBAJAiv9+v/fv3Jzxp2N3drd7eXo2NjckwDElSZ2enWltbs/a5U0uapLP49Hg88nq9c77P7/erra0tpXt6vV4Fg0E98MADsz4R2t7eru7ubkkz/32EQiF5PJ6slGyZ2nsjGAyyGAQAAACQMtZ6rPUAoJSQ+AMAYA4ej0fd3d3xxd5UhmEknc92A/ipT26mUyKltbVVLS0tGh0dVTAYNF0Y+nw+7d69Ww6HQ62trXI6naqsrNTY2JjC4bD8fn98UTcpFArp6quv1rFjx0w/d+o1HR0dMy6MHQ6Henp6tHnzZgWDQVVVVaX8Z5tu6tOxU/++AAAAAGAmrPVY6wFAKaqIxWKxQgcBAMBCNvWpz4GBAe3evTt+fPTo0aRFTLZLwjQ2NsZjOHXq1LzvU1NTk7BwdTqdCgaDcz61ahiGrr766qSeCi6XS/v27Ut6f319fXxB9vjjj8+5gA2Hw6qvr8/46dlVq1ZJOv/3P9NCFQAAAAAmsdZjrQcApWhRoQMAAGChczgc8f+mn29oaEgYz0UfiMk+E/Nptj7V9J4RwWBQXV1dcy7ArFarjh07lrSo6+7uTnricmpzekmqrKycM65MGr2b3WdqXw4AAAAAmAlrPdZ6AFCKSPwBAJCGwcHB+Gun05mXz5x8cjOVhdVspl/vcrnU3Nyc8vV79+5NOufz+RKOpy/Epjarn01HR0fWyuaYlekBAAAAgNmw1kvEWg8AiheJPwAA0jB1MZjt/g5mpi5sLBZLVu+dzkJw8v3Tn3Kd3qx9eozbt29PqQ+D2+3O+AnabP/9AAAAACgfrPVY6wFAqSDxBwBAGqb2PshFqZfZZPoU6HTzabA+vVTM9Kc+p5dyMQxD9fX12rZtm/x+f06f0Jz698OToAAAAADSwVqPtR4AlIolhQ4AAIBiMf1pxmz1K5jN2NhY/PVCeMpx+pOvZosul8ul7u7uhHO9vb3q7e2VdP7vbf369aqrq5PT6czJ3+PY2FjGfTIAAAAAlAfWeqz1AKCUkPgDACBFU58AzVfPh6lPNkaj0bx85mymN403W8jt27dPkUgkqTTMpHA4rHA4HF8w2u12ud3uORvPz2XqwjnbT8wCAAAAKF2s9VjrAUApodQnAAApCgQC8df5Lv0iJS52Forpi8NJPT096uzsTOlJzHA4rN27d6uxsTGjsi1TF8s8AQoAAAAgVaz1krHWA4DiReIPAIAU5bvZu5S4qFkIT4FOX5A2NDTM+N7W1lYNDw/r6NGjcrlcc5Z5CYVC8ng8WYsNAAAAAFLBWo+1HgCUEkp9AgCQokI2e5cWxmJneu+LpqamOa9paGiILxoNw1AwGFQgEDBtAN/d3a2Ojo55PcU5eS+eAAUAAACQDtZ6rPUAoJSw4w8AgBQUotn7pMmFZyalUbJlai8Hh8OR9t+D1WpVc3Oz9u3bp+HhYXV1dSW9Z2BgIKMYZypJAwAAAADTsdY7j7UeAJQOEn8AAKRg6hOg+VwISgtrcdPb2xt/vXfvXtP3bNu2LeHvazbNzc3q6OhIODefMjdTF8oL6e8LAAAAwMLGWu881noAUDpI/AEAkIKpTybW1tbm9bOnLj6nP42aTz6fL/75TqfTtOeDYRjq7e1NK87pJWTms9iORCIZXQ8AAACgPLHWY60HAKWGxB8AACmYWvbEbLHR3t6e8pOP6ZraXD5Xn5GK2267Lf66s7Nz1vem06Ni6lOfVqt1Xj01pi4+nU5n2tcDAAAAKE+s9VjrAUCpIfEHAEAKZir/EgqFVF9fr0gkkrMm8FMXN5n2RJiqra0t5ac1t23bJsMwZLVadfTo0RmftJxcBAYCgZTjePDBB+OvZyopM5epfy9mT6cCANkbSuUAAAT4SURBVAAAgBnWeqz1AKDUkPgDAGAO0xdMg4ODCoVCam9vV2Njo1pbW9XT05Ozz7darfHFVzafAg2Hw9qwYYN8Pt+s72lsbFRvb6+ampr0xBNPzLrYmvy76u3tld/vnzOGUCgkr9cr6fyit7W1Nc0/xe/uIylnC3IAAAAApYe1Hms9AChFSwodAAAAC930BVh3d7e6u7vjT0Tm46nD9evXKxwOJ5ShyQbDMLR7927ddtttWr9+vS6//HJZLBZFo1EFAgEFg0FZrVZ1dXWpubl5zvtN7b/Q1tYml8ulnTt3Jj01ahiG9u/fH18INjU16dChQ/P+c0z+vVD6BQAAAECqWOux1gOAUkTiDwCAOVgslqRzTU1NuvPOO2W1WvMSwzXXXKPu7m5J5xen2X7acbJRe29vb8L5dP+c05+YnVw4S+fL5lgsFkUiERmGET+3d+/elBaaM5laama+T5ECAAAAKD+s9VjrAUApIvEHAMAcGhoa5HQ6NTg4qLq6Ornd7rz3FnA4HLLb7QqHw3rwwQezshg8duyYwuGwfD6fIpGIxsbGZBiG7Ha7amtr1dramvafs6OjQ62trQoGgwoEAopEIvHFXzgcltVqlc1mk9PplNPpzMrf42SZmcm/IwAAAABIBWu91LHWA4DiURGLxWKFDgIAAMzN6/XK4/HIarVqeHg47es3b96cUD7m2LFjJdEnoaamRoZhqLOzk6dAAQAAABQd1nrmWOsBwPwsKnQAAAAgNS6XS9L5Ui1TS56Us0AgEC8ls2nTpgJHAwAAAADpY62XjLUeAMwfiT8AAIqE1WqNLwgnG6WXu8m/B7fbnbceHAAAAACQTaz1krHWA4D5I/EHAEAR6ejokCQFg8Gk5urlJhQKKRgMymq16vrrry90OAAAAAAwb6z1foe1HgBkhsQfAABFxGq1qrOzU5Lk8XgKHE1hTf759+7dyxOgAAAAAIoaa73fYa0HAJkh8QcAQJFpbW2Vw+FQb29v2fZ/8Pv9CgaDcjqdNHkHAAAAUBJY67HWA4BsIPEHAEAReuCBB2S1WrV9+/ZCh5J3hmGovb1dVqtVXV1dhQ4HAAAAALKGtR5rPQDIFIk/AACKkNVq1cGDB2UYhrZt21bocPJq165dMgwjviAGAAAAgFLBWo+1HgBkisQfAABFqqGhQV1dXert7U2pB8TY2Fjug8oxj8ej3t5edXV1yeFwFDocAAAAAMg61nqs9QAgEyT+AAAoYs3Nzers7JTX65XP55v1vdFoNOE4HA7nMrSs8/l88nq96urqUnNzc6HDAQAAAICcYa0HAJivJYUOAAAAZKa1tVU2m03bt2/Xpk2bEkqiGIahsbExBYPBpMWfz+eT3W6XzWZb8GVUDMOQ1+vVsWPHePoTAAAAQFlgrQcAmI+KWCwWK3QQAAAg+9rb29Xd3Z3y+4eHhxf8ohAAAAAAyh1rPQDAbNjxBwBAiWpublZdXZ0qKyslSRaLJWF8shzMZD8IFoIAAAAAsPCx1gMAzIYdfwAAAAAAAAAAAEAJWFToAAAAAAAAAAAAAABkjsQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAlgMQfAAAAAAAAAAAAUAJI/AEAAAAAAAAAAAAl4P8Hx/WKNDPnXGUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -130,16 +130,16 @@ "\n", " # Panel b\n", " myplt.add_panel()\n", - " myplt.add_plot(x = time, y = rho, type = \"plot\", linewidth_data = 3,\n", + " myplt.add_plot(x = time, y = rho/1000, type = \"plot\", linewidth_data = 3, # todo: remove the /1000 when the log will be updated\n", " marker = \"-\", data_color = color2, markersize = 12)\n", " #x = np.linspace(0, 15)\n", " #myplt.add_plot(x = x, y = x*0+996, type = \"plot\", linewidth_data = 1.5,\n", " # marker = \"--\", data_color = color4, markersize = 12)\n", - " myplt.complete_panel(ylabel = r'$\\rho ~ (\\mathrm{kg/m}^3)$',\n", + " myplt.complete_panel(ylabel = r'$\\rho ~ (\\mathrm{g/cm}^3)$',\n", " xlabel = r'$t~\\mathrm{(ps)}$',\n", " xpad = 10, legend=True, handlelength_legend=1)\n", - " myplt.set_boundaries(x_ticks=np.arange(0, 16, 5), y_ticks=np.arange(300, 1100, 200),\n", - " x_boundaries=(-1, 16.2), y_boundaries=(350, 1020))\n", + " myplt.set_boundaries(x_ticks=np.arange(0, 16, 5), y_ticks=np.arange(0.300, 1.100, 0.200),\n", + " x_boundaries=(-1, 16.2), y_boundaries=(0.350, 1.020))\n", "\n", " # Print figure\n", " myplt.add_subplotlabels()\n", diff --git a/docs/sphinx/source/tutorial3/tutorial.rst b/docs/sphinx/source/tutorial3/tutorial.rst index 68b889fc..ea426ae0 100644 --- a/docs/sphinx/source/tutorial3/tutorial.rst +++ b/docs/sphinx/source/tutorial3/tutorial.rst @@ -35,7 +35,7 @@ angles, and dihedrals used in the simulation, here ``harmonic``. With the ``pair_style`` named ``lj/cut/coul/long``, atoms interact through both a Lennard-Jones (LJ) potential and Coulomb interactions. The value of :math:`10\,\text{Å}` is the cutoff, and the -``ewald`` command defines the long-range solver for the Coulomb +``kspace_style`` command defines the long-range solver for the Coulomb interactions :cite:`ewald1921berechnung`. Finally, the ``special_bonds`` command, which was already seen in :ref:`carbon-nanotube-label`, sets the LJ and Coulomb @@ -163,30 +163,15 @@ Let us output the system into images by adding the following commands to **water acolor OW red acolor HW white & adiam OW 3 adiam HW 1.5 -Let us also extract the volume and density every 500 steps: +Let us also extract the volume and density, among others, every 500 steps: .. code-block:: lammps - variable myvol equal vol - variable myoxy equal count(H2O)/3 - variable NA equal 6.022e23 - variable Atom equal 1e-10 - variable M equal 0.018 - variable rho equal ${myoxy}*${M}/(v_myvol*${NA}*${Atom}^3) thermo 500 - thermo_style custom step temp etotal v_myvol v_rho + thermo_style custom step temp etotal volume density -Here, several variables are defined and used for converting the units of the -density in kg/mol: The variable ``myoxy`` represents the number of -atoms divided by 3, which corresponds to the number of molecules, :math:`N_\text{H2O}`, -and the variable ``myrho`` is the density in kg/mol: - -.. math:: - - \rho = \dfrac{N_\text{H2O}}{V N_\text{A}}, - -where :math:`V` is the volume in :math:`\text{m}^3`, :math:`N_\text{A}` the Avogadro number, and -:math:`M = 0.018`\,kg/mol the molar mass of water. +With the real units system, the volume is in :math:`Å^3`, and +the density is in :math:`\text{g/cm}^3`. Finally, let us set the timestep to 1.0 fs, and run the simulation for 15 ps by adding the following lines into **water.lmp**: @@ -315,10 +300,15 @@ the position :math:`(0, 0, 0)`: fix myrct PEG recenter 0 0 0 shift all -Note that the ``recenter`` command has no impact on the dynamics, -it simply repositions the frame of reference so that any drift of the -system is ignored, which can be convenient for visualizing and analyzing -the system. +.. admonition:: Note + :class: non-title-info + + Note that the ``recenter`` command has no impact on the dynamics, + it simply repositions the frame of reference so that any drift of the + system is ignored, which can be convenient for visualizing and analyzing + the system. However, be aware that using ``fix recenter`` can sometimes + mask underlying issues in the simulation, such as net momentum or the so-called + *flying ice cube syndrome* :cite:`wong2016good`. Let us create images of the systems: @@ -418,7 +408,6 @@ constraints using the following commands: .. code-block:: lammps compute rgyr PEG gyration - compute prop PEG property/local dtype compute dphi PEG dihedral/local phi The radius of gyration can be directly printed with the ``thermo_style`` command: @@ -427,7 +416,7 @@ The radius of gyration can be directly printed with the ``thermo_style`` command thermo_style custom step temp etotal c_rgyr thermo 250 - dump mydmp all local 100 pull.dat index c_dphi c_prop + dump mydmp all local 100 pull.dat index c_dphi By contrast with the radius of gyration (compute ``rgyr``), the dihedral angle :math:`\phi` (compute ``dphi``) is returned as a vector by the ``compute dihedral/local`` @@ -514,11 +503,13 @@ named **pull.lammpstrj**, which can be opened in OVITO or VMD. .. admonition:: Note :class: non-title-info - Since the trajectory dump file does not contain information about + Since the default trajectory dump file does not contain information about topology and elements, it is usually preferred to first write out a data file and import it directly (in the case of OVITO) or convert it to a PSF file (for VMD). This allows the topology to be loaded before *adding* the trajectory file to it. When using LAMMPS--GUI, this process can be automated through the ``View in OVITO`` or ``View in VMD`` options in the ``Run`` menu. Afterwards - only the trajectory dump needs to be added. \ No newline at end of file + only the trajectory dump needs to be added. Alternatively, the + ``dump custom`` command can be combined with ``dump`` command to + include element names in the dump file and simplify visualization. diff --git a/docs/sphinx/source/tutorial4/tutorial.rst b/docs/sphinx/source/tutorial4/tutorial.rst index d0e07504..f9dbedbb 100644 --- a/docs/sphinx/source/tutorial4/tutorial.rst +++ b/docs/sphinx/source/tutorial4/tutorial.rst @@ -35,6 +35,10 @@ These lines are used to define the most basic parameters, including the atom, bond, and angle styles, as well as interaction potential. Here, ``lj/cut/tip4p/long`` imposes a Lennard-Jones potential with a cut-off at :math:`12\,\text{Å}` and a long-range Coulomb potential. +The parameters ``O``, ``H``, ``O-H``, and ``H-O-H`` correspond +respectively to the oxygens, hydrogens, O-H bonds, and H-O-H angle constraints of +the water molecules; their definitions, provided by the ``labelmap`` commands, +will be clarified below. .. include:: ../shared/needhelp.rst @@ -168,7 +172,6 @@ must be located next to **create.lmp**. The **parameters.inc** file contains the mass Cl- 35.453 mass WALL 26.9815 - Each ``mass`` command assigns a mass in g/mol to an atom type. The **parameters.inc** file also contains the pair coefficients: @@ -190,10 +193,10 @@ types. By default, LAMMPS calculates the pair coefficients for the interactions between atoms of different types (i and j) by using geometric average: :math:`\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}`, :math:`\sigma_{ij} = \sqrt{\sigma_{ii} \sigma_{jj}}`. However, if the default -value of :math:`1.472\,\text{kcal/mol}` was used for :math:`\epsilon_\text{1-5}`, +value of :math:`1.472\,\text{kcal/mol}` was used for :math:`\epsilon_\text{O-WALL}`, the solid walls would be extremely hydrophilic, causing the water molecules to form dense layers. As a comparison, the water-water energy -:math:`\epsilon_\text{1-1}` is only :math:`0.185199\,\text{kcal/mol}`. Therefore, +:math:`\epsilon_\text{O-O}` is only :math:`0.185199\,\text{kcal/mol}`. Therefore, to make the walls less hydrophilic, the value of :math:`\epsilon_\text{O-WALL}` was reduced. @@ -344,7 +347,7 @@ to **equilibrate.lmp**: thermo 1 thermo_style custom step temp etotal press -Let us perform an energy minization by adding the following lines to **equilibrate.lmp**: +Let us perform an energy minimization by adding the following lines to **equilibrate.lmp**: .. code-block:: lammps @@ -443,7 +446,8 @@ the end of the simulation. Figure: a) Pressure, :math:`p`, of the nanosheared electrolyte system as a function of the time, :math:`t`. b) Distance between the walls, :math:`\Delta z`, as a - function of :math:`t`. + function of :math:`t`. The orange line shows the raw data, and the blue line + represents a time-averaged curve. Imposed shearing ---------------- diff --git a/docs/sphinx/source/tutorial5/tutorial.rst b/docs/sphinx/source/tutorial5/tutorial.rst index 5c95b023..068bb988 100644 --- a/docs/sphinx/source/tutorial5/tutorial.rst +++ b/docs/sphinx/source/tutorial5/tutorial.rst @@ -52,7 +52,7 @@ Next, copy the following three crucial lines into the **relax.lmp** file: .. code-block:: lammps pair_style reaxff NULL safezone 3.0 mincap 150 - pair_coeff * * reaxCHOFe.inc Si O + pair_coeff * * ffield.reax.CHOFe Si O fix myqeq all qeq/reaxff 1 0.0 10.0 1.0e-6 reaxff maxiter 400 In this case, the ``pair_style reaxff`` is used without a control file. The @@ -62,13 +62,16 @@ allocation issues, which sometimes can trigger segmentation faults and file, which should have been downloaded during the tutorial set up. Finally, the ``fix qeq/reaxff`` is used to perform charge equilibration :cite:`rappe1991charge`, which occurs at every step. The values 0.0 and 10.0 represent the -low and the high cutoffs, respectively, and :math:`1.0 \text{e} -6` is the tolerance. +low and the high cutoffs, respectively, and :math:`1.0 \text{e} -6` is the tolerance, +i.e., the precision to which the atomic charges are equilibrated during the +charge equilibration process. + The ``maxiter`` sets an upper limit to the number of attempts to equilibrate the charge. .. |reaxCHOFe_inc_5| raw:: html - reaxCHOFe.inc + ffield.reax.CHOFe Next, add the following commands to the **relax.lmp** file to track the evolution of the charges during the simulation: @@ -213,7 +216,7 @@ file, which must contain the following lines: read_data relax.data pair_style reaxff NULL safezone 3.0 mincap 150 - pair_coeff * * reaxCHOFe.inc Si O + pair_coeff * * ffield.reax.CHOFe Si O fix myqeq all qeq/reaxff 1 0.0 10.0 1.0e-6 reaxff maxiter 400 group grpSi type Si @@ -345,7 +348,7 @@ Open the **decorate.lmp** file, which must contain the following lines: displace_atoms all move -12 0 0 # optional pair_style reaxff NULL safezone 3.0 mincap 150 - pair_coeff * * reaxCHOFe.inc Si O H + pair_coeff * * ffield.reax.CHOFe Si O H fix myqeq all qeq/reaxff 1 0.0 10.0 1.0e-6 reaxff maxiter 400 The ``displace_atoms`` command is used to move the center of the diff --git a/docs/sphinx/source/tutorial6/tutorial.rst b/docs/sphinx/source/tutorial6/tutorial.rst index 66a00fd9..ae41a86f 100644 --- a/docs/sphinx/source/tutorial6/tutorial.rst +++ b/docs/sphinx/source/tutorial6/tutorial.rst @@ -37,7 +37,7 @@ Add the following lines to **generate.lmp**: create_atoms O random 480 1072 box overlap 2.0 maxtry 500 The ``create_atoms`` commands are used to place -240 Si atoms, and 480 atoms, respectively. This corresponds to +240 Si atoms and 480 O atoms, respectively. This corresponds to an initial density of approximately :math:`2 \, \text{g/cm}^3`, which is close to the expected final density of amorphous silica at 300 K. @@ -215,15 +215,16 @@ random positions are made. Each attempt is either accepted or rejected based on energy considerations. For further details, please refer to classical textbooks like Ref. :cite:`frenkel2023understanding`. -Using hydrid potentials +Adapting the pair style ----------------------- -The first particularly of our system is that it combines water and -silica, which necessitates the use of two force fields: Vashishta (for -:math:`\text{SiO}_2`), and TIP4P (for water). Here, the TIP4P/2005 model is -employed for the water :cite:`abascal2005general`. - -Create a new file called **gcmc.lmp**, and copy the following lines into it: +For this next step, we need to define the parameters for the water molecules and +the cross-interactions between water and silica. The TIP4P/2005 model is employed +for the water :cite:`abascal2005general`, while no specific parameters are set +for the silica itself. The atoms of the silica will remain frozen during this part. +Only the cross-interactions between water and silica need +to be defined. Create a new file called **gcmc.lmp**, and copy the following +lines into it: .. code-block:: lammps @@ -232,7 +233,7 @@ Create a new file called **gcmc.lmp**, and copy the following lines into it: atom_style full neighbor 1.0 bin neigh_modify delay 1 - pair_style hybrid/overlay vashishta lj/cut/tip4p/long OW HW OW-HW HW-OW-HW 0.1546 10 + pair_style lj/cut/tip4p/long OW HW OW-HW HW-OW-HW 0.1546 10 kspace_style pppm/tip4p 1.0e-5 bond_style harmonic angle_style harmonic @@ -242,14 +243,20 @@ Create a new file called **gcmc.lmp**, and copy the following lines into it: Open the **gcmc.lmp** file. -Combining the two force fields, Vashishta and TIP4P/2005, is achieved -using the ``hybrid/overlay`` pair style. The PPPM -solver :cite:`luty1996calculating` is specified with the ``kspace`` +The PPPM solver :cite:`luty1996calculating` is specified with the ``kspace`` command, and is used to compute the long-range Coulomb interactions associated with ``tip4p/long``. Finally, the style for the bonds and angles of the water molecules are defined; however, these specifications are not critical since TIP4P/2005 is a rigid water model. +.. admonition:: Note + :class: non-title-info + + In practice, it is possible to use both ``vashishta`` and + ``lj/cut/tip4p/long`` pair styles by employing the ``pair_style hybrid`` + command. However, hybridizing force fields should be done with caution, as there + is no guarantee that the resulting force field will produce meaningful results. + The water molecule template called |H2O_mol_6| must be downloaded and located next to **gcmc.lmp**. @@ -331,26 +338,31 @@ to **gcmc.lmp**: .. code-block:: lammps - pair_coeff * * vashishta SiO.1990.vashishta Si O NULL NULL - pair_coeff * * lj/cut/tip4p/long 0 0 - pair_coeff Si OW lj/cut/tip4p/long 0.0057 4.42 - pair_coeff O OW lj/cut/tip4p/long 0.0043 3.12 - pair_coeff OW OW lj/cut/tip4p/long 0.008 3.1589 - pair_coeff HW HW lj/cut/tip4p/long 0.0 0.0 + pair_coeff * * 0 0 + pair_coeff Si OW 0.0057 4.42 + pair_coeff O OW 0.0043 3.12 + pair_coeff OW OW 0.008 3.1589 + pair_coeff HW HW 0.0 0.0 bond_coeff OW-HW 0 0.9572 angle_coeff HW-OW-HW 0 104.52 -The force field Vashishta applies only to ``Si`` and ``O`` of :math:`\text{SiO}_2`, -and not to the ``OW`` and ``HW`` of :math:`\text{H}_2\text{O}`, thanks to the ``NULL`` parameters -used for atoms of types ``OW`` and ``HW``. Pair coefficients for the ``lj/cut/tip4p/long`` +Pair coefficients for the ``lj/cut/tip4p/long`` potential are defined between O(:math:`\text{H}_2\text{O}`) and between H(:math:`\text{H}_2\text{O}`) atoms, as well as between O(:math:`\text{SiO}_2`)-O(:math:`\text{H}_2\text{O}`) and -Si(:math:`\text{SiO}_2`)-O(:math:`\text{H}_2\text{O}`). Thus, the fluid-fluid and the +Si(:math:`\text{SiO}_2`)-O(:math:`\text{H}_2\text{O}`). Thus, the fluid-fluid and the fluid-solid interactions will be adressed with by the ``lj/cut/tip4p/long`` potential. The ``bond_coeff`` and ``angle_coeff`` commands set the ``OW-HW`` bond length to 0.9572 Å, and the ``HW-OW-HW`` angle to :math:`104.52^\circ`, respectively :cite:`abascal2005general`. +.. admonition:: Note + :class: non-title-info + + The pair coefficients for interactions between Si(:math:`\text{SiO}_2`) + and O(:math:`\text{SiO}_2`) are set by the first command, ``pair_coeff * * 0 0``, + which effectively means that they do not interact. This is acceptable here because + the silica atoms remain frozen during this part of the tutorial. + Add the following lines to **gcmc.lmp** as well: .. code-block:: lammps @@ -387,19 +399,16 @@ following lines into **gcmc.lmp**: .. code-block:: lammps compute ctH2O H2O temp - compute_modify thermo_temp dynamic yes - compute_modify ctH2O dynamic yes - fix mynvt1 H2O nvt temp 300 300 0.1 - fix_modify mynvt1 temp ctH2O - fix mynvt2 SiO nvt temp 300 300 0.1 + compute_modify thermo_temp dynamic/dof yes + compute_modify ctH2O dynamic/dof yes + fix mynvt H2O nvt temp 300 300 0.1 + fix_modify mynvt temp ctH2O timestep 0.001 -Two different thermostats are used for :math:`\text{SiO}_2` and :math:`\text{H}_2\text{O}`, -respectively. Using separate thermostats is usually better when the system contains -two separate species, such as a solid and a liquid. It is particularly important -to use two thermostats here because the number of water molecules will fluctuate -with time. The ``compute_modify`` command with the ``dynamic yes`` -option for water is used to specify that the number of molecules will not be constant. +Here, the ``fix nvt`` applies only to the water molecules, so +the atoms in the silica remain fixed. The ``compute_modify`` command with +the ``dynamic/dof yes`` option is used for water to account for the fact +that the number of molecules is not constant. Finally, let us use the ``fix gcmc`` and perform the grand canonical Monte Carlo steps. Add the following lines into **gcmc.lmp**: @@ -430,12 +439,14 @@ Finally, let us print some information and run for 25 ps: run 25000 -Running this simulation using LAMMPS, one can see that the number of molecules is increasing -progressively. When using the pressure argument, LAMMPS ignores the value of the -chemical potential (here :math:`\mu = -0.5\,\text{eV}`, which corresponds roughly to -ambient conditions, i.e. to a relative humidity :math:`\text{RH} \approx 50\,\%` :cite:`gravelle2020multi`.) -The large pressure value of 100 bars was chosen to ensure that some successful -insertions of molecules would occur during the short duration of this simulation. +.. admonition:: Note + :class: non-title-info + + When using the pressure argument, LAMMPS ignores the value of the + chemical potential (here :math:`\mu = -0.5\,\text{eV}`, which corresponds roughly to + ambient conditions, i.e. to a relative humidity :math:`\text{RH} \approx 50\,\%` :cite:`gravelle2020multi`.) + The large pressure value of 100 bars was chosen to ensure that some successful + insertions of molecules would occur during the short duration of this simulation. .. figure:: figures/GCMC-number-dm.png :class: only-dark @@ -449,7 +460,8 @@ insertions of molecules would occur during the short duration of this simulation Figure: Number of water molecules, :math:`N_\text{H2O}`, as a function of time, :math:`t`. -After a few GCMC steps, the number of molecules starts increasing. Once the +Running this simulation using LAMMPS, one can see that +after a few GCMC steps, the number of molecules starts increasing. Once the crack is filled with water molecules, the total number of molecules reaches a plateau. The final number of molecules depends on the imposed pressure, temperature, and the interaction between water and silica (i.e. its hydrophilicity). Note that GCMC simulations diff --git a/docs/sphinx/source/tutorial7/tutorial.rst b/docs/sphinx/source/tutorial7/tutorial.rst index 1fc334c2..02bc0db7 100644 --- a/docs/sphinx/source/tutorial7/tutorial.rst +++ b/docs/sphinx/source/tutorial7/tutorial.rst @@ -11,17 +11,18 @@ Method 1: Free sampling ======================= -The most direct way to calculate a free energy profile is to extract the -partition function from a classical (i.e. unbiased) molecular dynamics -simulation, and then estimate the Gibbs free energy by using +The most direct way to estimate a free energy profile is to sample +the Boltzmann distribution using a classical (i.e.unbiased) molecular dynamics +simulation, and compute relative Gibbs free energies from the relative probabilities +of states using .. math:: :label: eq_G - \Delta G = -RT \ln(p/p_0), + \Delta G = -RT \ln(\rho/\rho_0), where :math:`\Delta G` is the free energy difference, :math:`R` is the gas constant, :math:`T` -is the temperature, :math:`p` is the pressure, and :math:`p_0` is a reference pressure. +is the temperature, :math:`\rho` is the density, and :math:`\rho_0` is a reference density. As an illustration, let us apply this method to a simple configuration that consists of a particles in a box in the presence of a position-dependent repulsive force that makes the center of the box a less @@ -48,7 +49,7 @@ content: units real atom_style atomic - pair_style lj/cut 3.822 + pair_style lj/cut $(2^(1/6)*v_sigma) pair_modify shift yes boundary p p p @@ -56,12 +57,18 @@ Here, we begin by defining variables for the Lennard-Jones interaction :math:`\sigma` and :math:`\epsilon` and for the repulsive potential :math:`U`, which are :math:`U_0`, :math:`\delta`, and :math:`x_0` [see Eqs. :eq:`eq_U`-:eq:`eq_F` below]. The cut-off value of -3.822 Å was chosen to create a Weeks-Chandler-Andersen (WCA) potential, -which is a truncated and purely repulsive LJ -potential :cite:`weeks1971role`. It was calculated as :math:`2^{1/6} \sigma`. +:\math:`2^{1/6} \sigma = 3.822` was chosen to create a Weeks-Chandler-Andersen +(WCA) potential, which is a truncated and purely repulsive LJ potential :cite:`weeks1971role`. The potential is also shifted to be equal to 0 at the cut-off using the ``pair_modify`` command. +.. admonition:: Note + :class: non-title-info + + The syntax ``$(...)``, where a dollar sign is followed by parentheses, allows + you to evaluate a numeric formula immediately, without having to assign it + to a named variable first. + System creation and settings ---------------------------- @@ -232,9 +239,8 @@ Data analysis Once the simulation is complete, the density profile from **free-sampling.dat** shows that the density in the center of the box is about two orders of magnitude lower than inside the reservoir. -Next, we plot :math:`-R T \ln(\rho/\rho_\mathrm{bulk})` (i.e. Eq. :eq:`eq_G` where -the pressure ratio :math:`p/p_\mathrm{bulk}` is replaced by the density ratio -:math:`\rho/\rho_\mathrm{bulk}`, assuming the system behaves as an ideal gas) and compare it +Next, we plot :math:`-R T \ln(\rho/\rho_\mathrm{bulk})`, where :math:`\rho/\rho_\mathrm{bulk}` +is the the density ratio, and compare it with the imposed potential :math:`U` from Eq. :eq:`eq_U`. The reference density, :math:`\rho_\text{bulk} = 0.0009~\text{Å}^{-3}`, was estimated by measuring the density of the reservoir from the raw density @@ -303,7 +309,7 @@ and paste in the following content: units real atom_style atomic - pair_style lj/cut 3.822 + pair_style lj/cut $(2^(1/6)*v_sigma) pair_modify shift yes boundary p p p