diff --git a/docs/src/manual-abstract.md b/docs/src/manual-abstract.md index 19a473fd..c7f43cd1 100644 --- a/docs/src/manual-abstract.md +++ b/docs/src/manual-abstract.md @@ -257,7 +257,7 @@ In the example below, there are ẋ(t) == [x₂(t), u(t)] tf ≥ 0 x₂(t) ≤ 1 - u(t)^2 ≤ 1 + 0.1 ≤ u(t)^2 ≤ 1 ... end ``` @@ -276,7 +276,7 @@ end ẋ(t) == [x₂(t), u(t)] tf >= 0 x₂(t) <= 1 - u(t)^2 <= 1 + 0.1 ≤ u(t)^2 <= 1 ... end ``` diff --git a/docs/src/manual-flow-ocp.md b/docs/src/manual-flow-ocp.md index 99ef748b..64377228 100644 --- a/docs/src/manual-flow-ocp.md +++ b/docs/src/manual-flow-ocp.md @@ -36,7 +36,7 @@ nothing # hide The **pseudo-Hamiltonian** of this problem is ```math - H(x, p, u) = p_q\, q + p_v\, v + p^0 u^2 /2, + H(x, p, u) = p_q\, v + p_v\, u + p^0 u^2 /2, ``` where $p^0 = -1$ since we are in the normal case. From the Pontryagin maximum principle, the maximising control is given in feedback form by diff --git a/docs/src/manual-flow-others.md b/docs/src/manual-flow-others.md index 19423491..de446fac 100644 --- a/docs/src/manual-flow-others.md +++ b/docs/src/manual-flow-others.md @@ -11,10 +11,10 @@ In this tutorial, we explain the `Flow` function, in particular to compute flows Consider the simple optimal control problem from the [basic example page](@ref example-double-integrator-energy). The **pseudo-Hamiltonian** is ```math - H(x, p, u) = p_q\, q + p_v\, v + p^0 u^2 /2, + H(x, p, u) = p_q\, v + p_v\, u + p^0 u^2 /2, ``` -where $p^0 = -1$ since we are in the normal case. From the Pontryagin maximum principle, the maximising control is given in feedback form by +where $x=(q,v)$, $p=(p_q,p_v)$, $p^0 = -1$ since we are in the normal case. From the Pontryagin maximum principle, the maximising control is given in feedback form by ```math u(x, p) = p_v diff --git a/docs/src/manual-model.md b/docs/src/manual-model.md index 6a2b707b..c75f2bfc 100644 --- a/docs/src/manual-model.md +++ b/docs/src/manual-model.md @@ -66,7 +66,7 @@ nothing # hide You can also compute flows (for more details, see the [flow manual](@ref manual-flow-ocp)) from the optimal control problem, providing a control law in feedback form. The **pseudo-Hamiltonian** of this problem is ```math - H(x, p, u) = p_q\, q + p_v\, v + p^0 u^2 /2, + H(x, p, u) = p_q\, v + p_v\, u + p^0 u^2 /2, ``` where $p^0 = -1$ since we are in the normal case. From the Pontryagin maximum principle, the maximising control is given in feedback form by