1
+ @article {ferte2025 ,
2
+ bibtex_show = { true} ,
3
+ author = { Ferté, Thomas and Ba, Kalidou and Dutartre, Dan and Legrand,
4
+ Pierrick and Jouhet, Vianney and Thiébaut, Rodolphe and Hinaut,
5
+ Xavier and P Hejblum, Boris} ,
6
+ publisher = { French Statistical Society} ,
7
+ title = { Reservoir {Computing} in {R:} A {Tutorial} for {Using}
8
+ Reservoirnet to {Predict} {Complex} {Time-Series}} ,
9
+ journal = { Computo} ,
10
+ date = { 2025-06-27} ,
11
+ doi = { 10.57750/arxn-6z34} ,
12
+ issn = { 2824-7795} ,
13
+ langid = { en} ,
14
+ abstract = { Reservoir Computing (RC) is a machine learning method
15
+ based on neural networks that efficiently process information
16
+ generated by dynamical systems. It has been successful in solving
17
+ various tasks including time series forecasting, language processing
18
+ or voice processing. RC is implemented in `Python` and `Julia` but
19
+ not in `R`. This article introduces `reservoirnet`, an `R` package
20
+ providing access to the `Python` API `ReservoirPy`, allowing `R`
21
+ users to harness the power of reservoir computing. This article
22
+ provides an introduction to the fundamentals of RC and showcases its
23
+ real-world applicability through three distinct sections. First, we
24
+ cover the foundational concepts of RC, setting the stage for
25
+ understanding its capabilities. Next, we delve into the practical
26
+ usage of `reservoirnet` through two illustrative examples. These
27
+ examples demonstrate how it can be applied to real-world problems,
28
+ specifically, regression of COVID-19 hospitalizations and
29
+ classification of Japanese vowels. Finally, we present a
30
+ comprehensive analysis of a real-world application of
31
+ `reservoirnet`, where it was used to forecast COVID-19
32
+ hospitalizations at Bordeaux University Hospital using public data
33
+ and electronic health records.}
34
+ year = 2025 ,
35
+ type = { {Research article}} ,
36
+ domain = { Machine Learning} ,
37
+ language = { R, Python} ,
38
+ repository = { published-202505-ferte-reservoirnet} ,
39
+ }
40
+
1
41
@article {giorgi2024 ,
2
42
bibtex_show = { true} ,
3
43
author = { Giorgi, Daphn\'e and Kaakai, Sarah and Lemaire, Vincent} ,
4
44
publisher = { French Statistical Society} ,
5
45
title = { Efficient simulation of individual-based population models} ,
6
46
journal = { Computo} ,
7
47
year = 2025 ,
8
- url = { https://computo.sfds.asso.fr/published-202412-giorgi-efficient/} ,
9
48
doi = { 10.57750/sfxn-1t05} ,
10
49
issn = { 2824-7795} ,
11
50
type = { {Research article}} ,
@@ -25,7 +64,6 @@ @article{ambroise2024
25
64
title = { Spectral Bridges: Scalable Spectral Clustering Based on Vector Quantization} ,
26
65
journal = { Computo} ,
27
66
year = 2025 ,
28
- url = { https://computo.sfds.asso.fr/published-202412-ambroise-spectral/} ,
29
67
doi = { 10.57750/1gr8-bk61} ,
30
68
issn = { 2824-7795} ,
31
69
type = { {Research article}} ,
@@ -46,7 +84,6 @@ @article{legrand2024
46
84
Sizes for Projections Under Climate Change} ,
47
85
journal = { Computo} ,
48
86
year = 2024 ,
49
- url = { https://computo.sfds.asso.fr/published-202407-legrand-wildfires/} ,
50
87
doi = { 10.57750/4y84-4t68} ,
51
88
issn = { 2824-7795} ,
52
89
type = { {Research article}} ,
@@ -94,7 +131,6 @@ @article{pishchagina2024
94
131
{Detection} in {Multiple} {Independent} {Time} {Series}} ,
95
132
journal = { Computo} ,
96
133
year = 2024 ,
97
- url = { https://computo.sfds.asso.fr/published-202406-pishchagina-change-point/} ,
98
134
doi = { 10.57750/9vvx-eq57} ,
99
135
issn = { 2824-7795} ,
100
136
type = { {Research article}} ,
@@ -131,7 +167,6 @@ @article{susmann_adaptive
131
167
title = { {AdaptiveConformal: An R Package for Adaptive Conformal Inference}} ,
132
168
journal = { Computo} ,
133
169
year = 2024 ,
134
- url = { https://computo.sfds.asso.fr/published-202407-susmann-adaptive-conformal} ,
135
170
doi = { 10.57750/edan-5f53} ,
136
171
type = { {Research article}} ,
137
172
domain = { Statistics} ,
0 commit comments