diff --git a/rg_examples/nn_Conv2d.py b/rg_examples/nn_Conv2d.py new file mode 100644 index 00000000000000..2175df10ba48bd --- /dev/null +++ b/rg_examples/nn_Conv2d.py @@ -0,0 +1,16 @@ +import torch +import torch.nn as nn + + +# Create a random input tensor +in_tensor = torch.randn(1, 3, 448, 448).to('cuda') + +# Create a simple convolutional layer +conv_2d = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1).to('cuda') + +# Perform convolution +output = conv_2d(in_tensor) + +print(f"Input shape: {in_tensor.shape}") +print(f"Output shape: {output.shape}") +print("Convolution completed successfully")