File tree Expand file tree Collapse file tree 4 files changed +190
-0
lines changed Expand file tree Collapse file tree 4 files changed +190
-0
lines changed Original file line number Diff line number Diff line change
1
+ from montecover .ssm import SSMMarATECoverageSimulation
2
+
3
+ # Create and run simulation with config file
4
+ sim = SSMMarATECoverageSimulation (
5
+ config_file = "scripts/ssm/ssm_mar_ate_config.yml" ,
6
+ log_level = "INFO" ,
7
+ log_file = "logs/ssm/ssm_mar_ate_sim.log" ,
8
+ )
9
+ sim .run_simulation ()
10
+ sim .save_results (output_path = "results/ssm/" , file_prefix = "ssm_mar_ate" )
11
+
12
+ # Save config file for reproducibility
13
+ sim .save_config ("results/ssm/ssm_mar_ate_config.yml" )
Original file line number Diff line number Diff line change
1
+ # Simulation parameters for IRM ATE Coverage
2
+
3
+ simulation_parameters :
4
+ repetitions : 1000
5
+ max_runtime : 19800 # 5.5 hours in seconds
6
+ random_seed : 42
7
+ n_jobs : -2
8
+
9
+ dgp_parameters :
10
+ theta : [1.0] # Treatment effect
11
+ n_obs : [500] # Sample size
12
+ dim_x : [20] # Number of covariates
13
+
14
+ # Define reusable learner configurations
15
+ learner_definitions :
16
+ lasso : &lasso
17
+ name : " LassoCV"
18
+
19
+ logit : &logit
20
+ name : " Logistic"
21
+
22
+ rfr : &rfr
23
+ name : " RF Regr."
24
+ params :
25
+ n_estimators : 200
26
+ max_features : 20
27
+ max_depth : 5
28
+ min_samples_leaf : 2
29
+
30
+ rfc : &rfc
31
+ name : " RF Clas."
32
+ params :
33
+ n_estimators : 200
34
+ max_features : 20
35
+ max_depth : 5
36
+ min_samples_leaf : 2
37
+
38
+ lgbmr : &lgbmr
39
+ name : " LGBM Regr."
40
+ params :
41
+ n_estimators : 500
42
+ learning_rate : 0.01
43
+
44
+ lgbmc : &lgbmc
45
+ name : " LGBM Clas."
46
+ params :
47
+ n_estimators : 500
48
+ learning_rate : 0.01
49
+
50
+ dml_parameters :
51
+ learners :
52
+ - ml_g : *lasso
53
+ ml_m : *logit
54
+ ml_pi : *logit
55
+ - ml_g : *rfr
56
+ ml_m : *rfc
57
+ ml_pi : *rfc
58
+ - ml_g : *lasso
59
+ ml_m : *rfc
60
+ ml_pi : *rfc
61
+ - ml_g : *rfr
62
+ ml_m : *logit
63
+ ml_pi : *rfc
64
+ - ml_g : *rfr
65
+ ml_m : *rfc
66
+ ml_pi : *logit
67
+ - ml_g : *lgbmr
68
+ ml_m : *lgbmc
69
+ ml_pi : *lgbmc
70
+ - ml_g : *lasso
71
+ ml_m : *lgbmc
72
+ ml_pi : *lgbmc
73
+ - ml_g : *lgbmr
74
+ ml_m : *logit
75
+ ml_pi : *lgbmc
76
+ - ml_g : *lgbmr
77
+ ml_m : *lgbmc
78
+ ml_pi : *logit
79
+
80
+
81
+ confidence_parameters :
82
+ level : [0.95, 0.90] # Confidence levels
Original file line number Diff line number Diff line change
1
+ from montecover .ssm import SSMNonIgnorableATECoverageSimulation
2
+
3
+ # Create and run simulation with config file
4
+ sim = SSMNonIgnorableATECoverageSimulation (
5
+ config_file = "scripts/ssm/ssm_nonig_ate_config.yml" ,
6
+ log_level = "INFO" ,
7
+ log_file = "logs/ssm/ssm_nonig_ate_sim.log" ,
8
+ )
9
+ sim .run_simulation ()
10
+ sim .save_results (output_path = "results/ssm/" , file_prefix = "ssm_nonig_ate" )
11
+
12
+ # Save config file for reproducibility
13
+ sim .save_config ("results/ssm/ssm_nonig_ate_config.yml" )
Original file line number Diff line number Diff line change
1
+ # Simulation parameters for IRM ATE Coverage
2
+
3
+ simulation_parameters :
4
+ repetitions : 1000
5
+ max_runtime : 19800 # 5.5 hours in seconds
6
+ random_seed : 42
7
+ n_jobs : -2
8
+
9
+ dgp_parameters :
10
+ theta : [1.0] # Treatment effect
11
+ n_obs : [500] # Sample size
12
+ dim_x : [20] # Number of covariates
13
+
14
+ # Define reusable learner configurations
15
+ learner_definitions :
16
+ lasso : &lasso
17
+ name : " LassoCV"
18
+
19
+ logit : &logit
20
+ name : " Logistic"
21
+
22
+ rfr : &rfr
23
+ name : " RF Regr."
24
+ params :
25
+ n_estimators : 200
26
+ max_features : 20
27
+ max_depth : 5
28
+ min_samples_leaf : 2
29
+
30
+ rfc : &rfc
31
+ name : " RF Clas."
32
+ params :
33
+ n_estimators : 200
34
+ max_features : 20
35
+ max_depth : 5
36
+ min_samples_leaf : 2
37
+
38
+ lgbmr : &lgbmr
39
+ name : " LGBM Regr."
40
+ params :
41
+ n_estimators : 500
42
+ learning_rate : 0.01
43
+
44
+ lgbmc : &lgbmc
45
+ name : " LGBM Clas."
46
+ params :
47
+ n_estimators : 500
48
+ learning_rate : 0.01
49
+
50
+ dml_parameters :
51
+ learners :
52
+ - ml_g : *lasso
53
+ ml_m : *logit
54
+ ml_pi : *logit
55
+ - ml_g : *rfr
56
+ ml_m : *rfc
57
+ ml_pi : *rfc
58
+ - ml_g : *lasso
59
+ ml_m : *rfc
60
+ ml_pi : *rfc
61
+ - ml_g : *rfr
62
+ ml_m : *logit
63
+ ml_pi : *rfc
64
+ - ml_g : *rfr
65
+ ml_m : *rfc
66
+ ml_pi : *logit
67
+ - ml_g : *lgbmr
68
+ ml_m : *lgbmc
69
+ ml_pi : *lgbmc
70
+ - ml_g : *lasso
71
+ ml_m : *lgbmc
72
+ ml_pi : *lgbmc
73
+ - ml_g : *lgbmr
74
+ ml_m : *logit
75
+ ml_pi : *lgbmc
76
+ - ml_g : *lgbmr
77
+ ml_m : *lgbmc
78
+ ml_pi : *logit
79
+
80
+
81
+ confidence_parameters :
82
+ level : [0.95, 0.90] # Confidence levels
You can’t perform that action at this time.
0 commit comments