|
| 1 | +--- |
| 2 | +title: "DiD for Cross-Sectional Data over Multiple Periods" |
| 3 | + |
| 4 | +jupyter: python3 |
| 5 | +--- |
| 6 | + |
| 7 | +```{python} |
| 8 | +#| echo: false |
| 9 | +
|
| 10 | +import numpy as np |
| 11 | +import pandas as pd |
| 12 | +from itables import init_notebook_mode |
| 13 | +import os |
| 14 | +import sys |
| 15 | +
|
| 16 | +doc_dir = os.path.abspath(os.path.join(os.getcwd(), "..")) |
| 17 | +if doc_dir not in sys.path: |
| 18 | + sys.path.append(doc_dir) |
| 19 | +
|
| 20 | +from utils.style_tables import generate_and_show_styled_table |
| 21 | +
|
| 22 | +init_notebook_mode(all_interactive=True) |
| 23 | +``` |
| 24 | + |
| 25 | +## ATTE Coverage |
| 26 | + |
| 27 | +The simulations are based on the [make_did_cs_CS2021](https://docs.doubleml.org/dev/api/generated/doubleml.did.datasets.make_did_cs_CS2021.html)-DGP with $2000$ observations. Learners are both set to either boosting or a linear (logistic) model. Due to time constraints we only consider the following DGPs: |
| 28 | + |
| 29 | + - Type 1: Linear outcome model and treatment assignment |
| 30 | + - Type 4: Nonlinear outcome model and treatment assignment |
| 31 | + - Type 6: Randomized treatment assignment and nonlinear outcome model |
| 32 | + |
| 33 | +The non-uniform results (coverage, ci length and bias) refer to averaged values over all $ATTs$ (point-wise confidence intervals). |
| 34 | + |
| 35 | +::: {.callout-note title="Metadata" collapse="true"} |
| 36 | + |
| 37 | +```{python} |
| 38 | +#| echo: false |
| 39 | +metadata_file = '../../results/did/did_cs_multi_metadata.csv' |
| 40 | +metadata_df = pd.read_csv(metadata_file) |
| 41 | +print(metadata_df.T.to_string(header=False)) |
| 42 | +``` |
| 43 | + |
| 44 | +::: |
| 45 | + |
| 46 | +```{python} |
| 47 | +#| echo: false |
| 48 | +
|
| 49 | +# set up data |
| 50 | +df = pd.read_csv("../../results/did/did_cs_multi_detailed.csv", index_col=None) |
| 51 | +
|
| 52 | +assert df["repetition"].nunique() == 1 |
| 53 | +n_rep = df["repetition"].unique()[0] |
| 54 | +
|
| 55 | +display_columns = ["Learner g", "Learner m", "DGP", "In-sample-norm.", "Bias", "CI Length", "Coverage", "Uniform CI Length", "Uniform Coverage"] |
| 56 | +``` |
| 57 | + |
| 58 | +### Observational Score |
| 59 | + |
| 60 | +```{python} |
| 61 | +#| echo: false |
| 62 | +generate_and_show_styled_table( |
| 63 | + main_df=df, |
| 64 | + filters={"level": 0.95, "Score": "observational"}, |
| 65 | + display_cols=display_columns, |
| 66 | + n_rep=n_rep, |
| 67 | + level_col="level", |
| 68 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 69 | +) |
| 70 | +``` |
| 71 | + |
| 72 | +```{python} |
| 73 | +#| echo: false |
| 74 | +generate_and_show_styled_table( |
| 75 | + main_df=df, |
| 76 | + filters={"level": 0.9, "Score": "observational"}, |
| 77 | + display_cols=display_columns, |
| 78 | + n_rep=n_rep, |
| 79 | + level_col="level", |
| 80 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 81 | +) |
| 82 | +``` |
| 83 | + |
| 84 | + |
| 85 | +### Experimental Score |
| 86 | + |
| 87 | +The results are only valid for the DGP 6, as the experimental score assumes a randomized treatment assignment. |
| 88 | + |
| 89 | +```{python} |
| 90 | +#| echo: false |
| 91 | +generate_and_show_styled_table( |
| 92 | + main_df=df, |
| 93 | + filters={"level": 0.95, "Score": "experimental"}, |
| 94 | + display_cols=display_columns, |
| 95 | + n_rep=n_rep, |
| 96 | + level_col="level", |
| 97 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 98 | +) |
| 99 | +``` |
| 100 | + |
| 101 | +```{python} |
| 102 | +#| echo: false |
| 103 | +generate_and_show_styled_table( |
| 104 | + main_df=df, |
| 105 | + filters={"level": 0.9, "Score": "experimental"}, |
| 106 | + display_cols=display_columns, |
| 107 | + n_rep=n_rep, |
| 108 | + level_col="level", |
| 109 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 110 | +) |
| 111 | +``` |
| 112 | + |
| 113 | +## Aggregated Effects |
| 114 | + |
| 115 | +These simulations test different types of aggregation, as described in [DiD User Guide](https://docs.doubleml.org/dev/guide/models.html#difference-in-differences-models-did). |
| 116 | + |
| 117 | +The non-uniform results (coverage, ci length and bias) refer to averaged values over all $ATTs$ (point-wise confidence intervals). |
| 118 | + |
| 119 | +### Group Effects |
| 120 | + |
| 121 | +```{python} |
| 122 | +#| echo: false |
| 123 | +
|
| 124 | +# set up data |
| 125 | +df_group = pd.read_csv("../../results/did/did_cs_multi_group.csv", index_col=None) |
| 126 | +
|
| 127 | +assert df_group["repetition"].nunique() == 1 |
| 128 | +n_rep_group = df_group["repetition"].unique()[0] |
| 129 | +
|
| 130 | +display_columns = ["Learner g", "Learner m", "DGP", "In-sample-norm.", "Bias", "CI Length", "Coverage", "Uniform CI Length", "Uniform Coverage"] |
| 131 | +``` |
| 132 | + |
| 133 | +#### Observational Score |
| 134 | + |
| 135 | +```{python} |
| 136 | +#| echo: false |
| 137 | +generate_and_show_styled_table( |
| 138 | + main_df=df_group, |
| 139 | + filters={"level": 0.95, "Score": "observational"}, |
| 140 | + display_cols=display_columns, |
| 141 | + n_rep=n_rep_group, |
| 142 | + level_col="level", |
| 143 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 144 | +) |
| 145 | +``` |
| 146 | + |
| 147 | +```{python} |
| 148 | +#| echo: false |
| 149 | +generate_and_show_styled_table( |
| 150 | + main_df=df_group, |
| 151 | + filters={"level": 0.9, "Score": "observational"}, |
| 152 | + display_cols=display_columns, |
| 153 | + n_rep=n_rep_group, |
| 154 | + level_col="level", |
| 155 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 156 | +) |
| 157 | +``` |
| 158 | + |
| 159 | +#### Experimental Score |
| 160 | + |
| 161 | +The results are only valid for the DGP 6, as the experimental score assumes a randomized treatment assignment. |
| 162 | + |
| 163 | +```{python} |
| 164 | +#| echo: false |
| 165 | +generate_and_show_styled_table( |
| 166 | + main_df=df_group, |
| 167 | + filters={"level": 0.95, "Score": "experimental"}, |
| 168 | + display_cols=display_columns, |
| 169 | + n_rep=n_rep_group, |
| 170 | + level_col="level", |
| 171 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 172 | +) |
| 173 | +``` |
| 174 | + |
| 175 | +```{python} |
| 176 | +#| echo: false |
| 177 | +generate_and_show_styled_table( |
| 178 | + main_df=df_group, |
| 179 | + filters={"level": 0.9, "Score": "experimental"}, |
| 180 | + display_cols=display_columns, |
| 181 | + n_rep=n_rep_group, |
| 182 | + level_col="level", |
| 183 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 184 | +) |
| 185 | +``` |
| 186 | + |
| 187 | +### Time Effects |
| 188 | + |
| 189 | +```{python} |
| 190 | +#| echo: false |
| 191 | +
|
| 192 | +# set up data |
| 193 | +df_time = pd.read_csv("../../results/did/did_cs_multi_time.csv", index_col=None) |
| 194 | +
|
| 195 | +assert df_time["repetition"].nunique() == 1 |
| 196 | +n_rep_time = df_time["repetition"].unique()[0] |
| 197 | +
|
| 198 | +display_columns = ["Learner g", "Learner m", "DGP", "In-sample-norm.", "Bias", "CI Length", "Coverage", "Uniform CI Length", "Uniform Coverage"] |
| 199 | +``` |
| 200 | + |
| 201 | +#### Observational Score |
| 202 | + |
| 203 | +```{python} |
| 204 | +#| echo: false |
| 205 | +generate_and_show_styled_table( |
| 206 | + main_df=df_time, |
| 207 | + filters={"level": 0.95, "Score": "observational"}, |
| 208 | + display_cols=display_columns, |
| 209 | + n_rep=n_rep_time, |
| 210 | + level_col="level", |
| 211 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 212 | +) |
| 213 | +``` |
| 214 | + |
| 215 | +```{python} |
| 216 | +#| echo: false |
| 217 | +generate_and_show_styled_table( |
| 218 | + main_df=df_time, |
| 219 | + filters={"level": 0.9, "Score": "observational"}, |
| 220 | + display_cols=display_columns, |
| 221 | + n_rep=n_rep_time, |
| 222 | + level_col="level", |
| 223 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 224 | +) |
| 225 | +``` |
| 226 | + |
| 227 | +#### Experimental Score |
| 228 | + |
| 229 | +The results are only valid for the DGP 6, as the experimental score assumes a randomized treatment assignment. |
| 230 | + |
| 231 | +```{python} |
| 232 | +#| echo: false |
| 233 | +generate_and_show_styled_table( |
| 234 | + main_df=df_time, |
| 235 | + filters={"level": 0.95, "Score": "experimental"}, |
| 236 | + display_cols=display_columns, |
| 237 | + n_rep=n_rep_time, |
| 238 | + level_col="level", |
| 239 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 240 | +) |
| 241 | +``` |
| 242 | + |
| 243 | +```{python} |
| 244 | +#| echo: false |
| 245 | +generate_and_show_styled_table( |
| 246 | + main_df=df_time, |
| 247 | + filters={"level": 0.9, "Score": "experimental"}, |
| 248 | + display_cols=display_columns, |
| 249 | + n_rep=n_rep_time, |
| 250 | + level_col="level", |
| 251 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 252 | +) |
| 253 | +``` |
| 254 | + |
| 255 | +### Event Study Aggregation |
| 256 | + |
| 257 | +```{python} |
| 258 | +#| echo: false |
| 259 | +
|
| 260 | +# set up data |
| 261 | +df_es = pd.read_csv("../../results/did/did_cs_multi_eventstudy.csv", index_col=None) |
| 262 | +
|
| 263 | +assert df_es["repetition"].nunique() == 1 |
| 264 | +n_rep_es = df_es["repetition"].unique()[0] |
| 265 | +
|
| 266 | +display_columns = ["Learner g", "Learner m", "DGP", "In-sample-norm.", "Bias", "CI Length", "Coverage", "Uniform CI Length", "Uniform Coverage"] |
| 267 | +``` |
| 268 | + |
| 269 | +#### Observational Score |
| 270 | + |
| 271 | +```{python} |
| 272 | +#| echo: false |
| 273 | +generate_and_show_styled_table( |
| 274 | + main_df=df_es, |
| 275 | + filters={"level": 0.95, "Score": "observational"}, |
| 276 | + display_cols=display_columns, |
| 277 | + n_rep=n_rep_es, |
| 278 | + level_col="level", |
| 279 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 280 | +) |
| 281 | +``` |
| 282 | + |
| 283 | +```{python} |
| 284 | +#| echo: false |
| 285 | +generate_and_show_styled_table( |
| 286 | + main_df=df_es, |
| 287 | + filters={"level": 0.9, "Score": "observational"}, |
| 288 | + display_cols=display_columns, |
| 289 | + n_rep=n_rep_es, |
| 290 | + level_col="level", |
| 291 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 292 | +) |
| 293 | +``` |
| 294 | + |
| 295 | +#### Experimental Score |
| 296 | + |
| 297 | +The results are only valid for the DGP 6, as the experimental score assumes a randomized treatment assignment. |
| 298 | + |
| 299 | + |
| 300 | +```{python} |
| 301 | +#| echo: false |
| 302 | +generate_and_show_styled_table( |
| 303 | + main_df=df_es, |
| 304 | + filters={"level": 0.95, "Score": "experimental"}, |
| 305 | + display_cols=display_columns, |
| 306 | + n_rep=n_rep_es, |
| 307 | + level_col="level", |
| 308 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 309 | +) |
| 310 | +``` |
| 311 | + |
| 312 | +```{python} |
| 313 | +#| echo: false |
| 314 | +generate_and_show_styled_table( |
| 315 | + main_df=df_es, |
| 316 | + filters={"level": 0.9, "Score": "experimental"}, |
| 317 | + display_cols=display_columns, |
| 318 | + n_rep=n_rep_es, |
| 319 | + level_col="level", |
| 320 | + coverage_highlight_cols=["Coverage", "Uniform Coverage"] |
| 321 | +) |
| 322 | +``` |
0 commit comments