|
| 1 | +from typing import Any, Dict, Optional |
| 2 | + |
| 3 | +import doubleml as dml |
| 4 | +import numpy as np |
| 5 | +import pandas as pd |
| 6 | + |
| 7 | +from montecover.base import BaseSimulation |
| 8 | +from montecover.utils import create_learner_from_config |
| 9 | + |
| 10 | + |
| 11 | +# define loc-scale model |
| 12 | +def f_loc(D, X): |
| 13 | + loc = 0.5 * D + 2 * D * X[:, 4] + 2.0 * (X[:, 1] > 0.1) - 1.7 * (X[:, 0] * X[:, 2] > 0) - 3 * X[:, 3] |
| 14 | + return loc |
| 15 | + |
| 16 | + |
| 17 | +def f_scale(D, X): |
| 18 | + scale = np.sqrt(0.5 * D + 0.3 * D * X[:, 1] + 2) |
| 19 | + return scale |
| 20 | + |
| 21 | + |
| 22 | +def dgp(n=200, p=5): |
| 23 | + X = np.random.uniform(-1, 1, size=[n, p]) |
| 24 | + D = ((X[:, 1] - X[:, 3] + 1.5 * (X[:, 0] > 0) + np.random.normal(size=n)) > 0) * 1.0 |
| 25 | + epsilon = np.random.normal(size=n) |
| 26 | + |
| 27 | + Y = f_loc(D, X) + f_scale(D, X) * epsilon |
| 28 | + return Y, X, D, epsilon |
| 29 | + |
| 30 | + |
| 31 | +class CVARCoverageSimulation(BaseSimulation): |
| 32 | + """Simulation class for coverage properties of DoubleMLCVAR for Conditional Value at Risk estimation.""" |
| 33 | + |
| 34 | + def __init__( |
| 35 | + self, |
| 36 | + config_file: str, |
| 37 | + suppress_warnings: bool = True, |
| 38 | + log_level: str = "INFO", |
| 39 | + log_file: Optional[str] = None, |
| 40 | + ): |
| 41 | + super().__init__( |
| 42 | + config_file=config_file, |
| 43 | + suppress_warnings=suppress_warnings, |
| 44 | + log_level=log_level, |
| 45 | + log_file=log_file, |
| 46 | + ) |
| 47 | + |
| 48 | + # Calculate oracle values |
| 49 | + self._calculate_oracle_values() |
| 50 | + |
| 51 | + def _process_config_parameters(self): |
| 52 | + """Process simulation-specific parameters from config""" |
| 53 | + # Process ML models in parameter grid |
| 54 | + assert "learners" in self.dml_parameters, "No learners specified in the config file" |
| 55 | + |
| 56 | + required_learners = ["ml_g", "ml_m"] |
| 57 | + for learner in self.dml_parameters["learners"]: |
| 58 | + for ml in required_learners: |
| 59 | + assert ml in learner, f"No {ml} specified in the config file" |
| 60 | + |
| 61 | + def _calculate_oracle_values(self): |
| 62 | + """Calculate oracle values for the simulation.""" |
| 63 | + self.logger.info("Calculating oracle values") |
| 64 | + |
| 65 | + # Parameters |
| 66 | + n_true = int(10e6) |
| 67 | + tau_vec = self.dml_parameters["tau_vec"][0] |
| 68 | + p = self.dgp_parameters["dim_x"][0] |
| 69 | + |
| 70 | + _, X_true, _, epsilon_true = dgp(n=n_true, p=p) |
| 71 | + D1 = np.ones(n_true) |
| 72 | + D0 = np.zeros(n_true) |
| 73 | + |
| 74 | + Y1 = f_loc(D1, X_true) + f_scale(D1, X_true) * epsilon_true |
| 75 | + Y0 = f_loc(D0, X_true) + f_scale(D0, X_true) * epsilon_true |
| 76 | + |
| 77 | + Y1_quant = np.quantile(Y1, q=tau_vec) |
| 78 | + Y0_quant = np.quantile(Y0, q=tau_vec) |
| 79 | + Y1_cvar = [Y1[Y1 >= quant].mean() for quant in Y1_quant] |
| 80 | + Y0_cvar = [Y0[Y0 >= quant].mean() for quant in Y0_quant] |
| 81 | + effect_cvar = np.array(Y1_cvar) - np.array(Y0_cvar) |
| 82 | + |
| 83 | + self.oracle_values = dict() |
| 84 | + self.oracle_values["effect_cvar"] = effect_cvar |
| 85 | + self.oracle_values["Y1_cvar"] = Y1_cvar |
| 86 | + self.oracle_values["Y0_cvar"] = Y0_cvar |
| 87 | + |
| 88 | + self.logger.info(f"Oracle values: {self.oracle_values}") |
| 89 | + |
| 90 | + def run_single_rep(self, dml_data: dml.DoubleMLData, dml_params: Dict[str, Any]) -> Dict[str, Any]: |
| 91 | + """Run a single repetition with the given parameters.""" |
| 92 | + # Extract parameters |
| 93 | + learner_config = dml_params["learners"] |
| 94 | + learner_g_name, ml_g = create_learner_from_config(learner_config["ml_g"]) |
| 95 | + learner_m_name, ml_m = create_learner_from_config(learner_config["ml_m"]) |
| 96 | + tau_vec = dml_params["tau_vec"] |
| 97 | + trimming_threshold = dml_params["trimming_threshold"] |
| 98 | + Y0_cvar = self.oracle_values["Y0_cvar"] |
| 99 | + Y1_cvar = self.oracle_values["Y1_cvar"] |
| 100 | + effect_cvar = self.oracle_values["effect_cvar"] |
| 101 | + |
| 102 | + # Model |
| 103 | + dml_model = dml.DoubleMLQTE( |
| 104 | + obj_dml_data=dml_data, |
| 105 | + ml_g=ml_g, |
| 106 | + ml_m=ml_m, |
| 107 | + score="CVaR", |
| 108 | + quantiles=tau_vec, |
| 109 | + trimming_threshold=trimming_threshold, |
| 110 | + ) |
| 111 | + dml_model.fit() |
| 112 | + dml_model.bootstrap(n_rep_boot=2000) |
| 113 | + |
| 114 | + result = { |
| 115 | + "Y0_coverage": [], |
| 116 | + "Y1_coverage": [], |
| 117 | + "effect_coverage": [], |
| 118 | + } |
| 119 | + for level in self.confidence_parameters["level"]: |
| 120 | + level_result = dict() |
| 121 | + level_result["effect_coverage"] = self._compute_coverage( |
| 122 | + thetas=dml_model.coef, |
| 123 | + oracle_thetas=effect_cvar, |
| 124 | + confint=dml_model.confint(level=level), |
| 125 | + joint_confint=dml_model.confint(level=level, joint=True), |
| 126 | + ) |
| 127 | + |
| 128 | + Y0_estimates = np.full(len(tau_vec), np.nan) |
| 129 | + Y1_estimates = np.full(len(tau_vec), np.nan) |
| 130 | + |
| 131 | + Y0_confint = np.full((len(tau_vec), 2), np.nan) |
| 132 | + Y1_confint = np.full((len(tau_vec), 2), np.nan) |
| 133 | + |
| 134 | + for tau_idx in range(len(tau_vec)): |
| 135 | + model_Y0 = dml_model.modellist_0[tau_idx] |
| 136 | + model_Y1 = dml_model.modellist_1[tau_idx] |
| 137 | + |
| 138 | + Y0_estimates[tau_idx] = model_Y0.coef |
| 139 | + Y1_estimates[tau_idx] = model_Y1.coef |
| 140 | + |
| 141 | + Y0_confint[tau_idx, :] = model_Y0.confint(level=level) |
| 142 | + Y1_confint[tau_idx, :] = model_Y1.confint(level=level) |
| 143 | + |
| 144 | + Y0_confint_df = pd.DataFrame(Y0_confint, columns=["lower", "upper"]) |
| 145 | + Y1_confint_df = pd.DataFrame(Y1_confint, columns=["lower", "upper"]) |
| 146 | + |
| 147 | + level_result["Y0_coverage"] = self._compute_coverage( |
| 148 | + thetas=Y0_estimates, |
| 149 | + oracle_thetas=Y0_cvar, |
| 150 | + confint=Y0_confint_df, |
| 151 | + joint_confint=None, |
| 152 | + ) |
| 153 | + |
| 154 | + level_result["Y1_coverage"] = self._compute_coverage( |
| 155 | + thetas=Y1_estimates, |
| 156 | + oracle_thetas=Y1_cvar, |
| 157 | + confint=Y1_confint_df, |
| 158 | + joint_confint=None, |
| 159 | + ) |
| 160 | + |
| 161 | + # add parameters to the result |
| 162 | + for res_metric in level_result.values(): |
| 163 | + res_metric.update( |
| 164 | + { |
| 165 | + "Learner g": learner_g_name, |
| 166 | + "Learner m": learner_m_name, |
| 167 | + "level": level, |
| 168 | + } |
| 169 | + ) |
| 170 | + for key, res in level_result.items(): |
| 171 | + result[key].append(res) |
| 172 | + |
| 173 | + return result |
| 174 | + |
| 175 | + def summarize_results(self): |
| 176 | + """Summarize the simulation results.""" |
| 177 | + self.logger.info("Summarizing simulation results") |
| 178 | + |
| 179 | + # Group by parameter combinations |
| 180 | + groupby_cols = ["Learner g", "Learner m", "level"] |
| 181 | + aggregation_dict = { |
| 182 | + "Coverage": "mean", |
| 183 | + "CI Length": "mean", |
| 184 | + "Bias": "mean", |
| 185 | + "repetition": "count", |
| 186 | + } |
| 187 | + |
| 188 | + result_summary = dict() |
| 189 | + # Aggregate results for Y0 and Y1 |
| 190 | + for result_name in ["Y0_coverage", "Y1_coverage"]: |
| 191 | + df = self.results[result_name] |
| 192 | + result_summary[result_name] = df.groupby(groupby_cols).agg(aggregation_dict).reset_index() |
| 193 | + self.logger.debug(f"Summarized {result_name} results") |
| 194 | + |
| 195 | + uniform_aggregation_dict = { |
| 196 | + "Coverage": "mean", |
| 197 | + "CI Length": "mean", |
| 198 | + "Bias": "mean", |
| 199 | + "Uniform Coverage": "mean", |
| 200 | + "Uniform CI Length": "mean", |
| 201 | + "repetition": "count", |
| 202 | + } |
| 203 | + result_summary["effect_coverage"] = ( |
| 204 | + self.results["effect_coverage"].groupby(groupby_cols).agg(uniform_aggregation_dict).reset_index() |
| 205 | + ) |
| 206 | + self.logger.debug("Summarized effect_coverage results") |
| 207 | + |
| 208 | + return result_summary |
| 209 | + |
| 210 | + def _generate_dml_data(self, dgp_params: Dict[str, Any]) -> dml.DoubleMLData: |
| 211 | + """Generate data for the simulation.""" |
| 212 | + Y, X, D, _ = dgp(n=dgp_params["n_obs"], p=dgp_params["dim_x"]) |
| 213 | + dml_data = dml.DoubleMLData.from_arrays(X, Y, D) |
| 214 | + return dml_data |
0 commit comments