diff --git a/docs/benchmark_visualizations/All_Benchmarks_Comparison.png b/docs/benchmark_visualizations/All_Benchmarks_Comparison.png new file mode 100644 index 0000000..eab9495 Binary files /dev/null and b/docs/benchmark_visualizations/All_Benchmarks_Comparison.png differ diff --git a/docs/benchmark_visualizations/ETT1_performance.png b/docs/benchmark_visualizations/ETT1_performance.png new file mode 100644 index 0000000..1e58c69 Binary files /dev/null and b/docs/benchmark_visualizations/ETT1_performance.png differ diff --git a/docs/benchmark_visualizations/ETT2_performance.png b/docs/benchmark_visualizations/ETT2_performance.png new file mode 100644 index 0000000..ca9f30d Binary files /dev/null and b/docs/benchmark_visualizations/ETT2_performance.png differ diff --git a/docs/benchmark_visualizations/Flu-Japan_performance.png b/docs/benchmark_visualizations/Flu-Japan_performance.png new file mode 100644 index 0000000..0379964 Binary files /dev/null and b/docs/benchmark_visualizations/Flu-Japan_performance.png differ diff --git a/docs/benchmark_visualizations/Flu-US_performance.png b/docs/benchmark_visualizations/Flu-US_performance.png new file mode 100644 index 0000000..6b3bd3e Binary files /dev/null and b/docs/benchmark_visualizations/Flu-US_performance.png differ diff --git a/docs/benchmark_visualizations/M4_performance.png b/docs/benchmark_visualizations/M4_performance.png new file mode 100644 index 0000000..92828a6 Binary files /dev/null and b/docs/benchmark_visualizations/M4_performance.png differ diff --git a/docs/benchmark_visualizations/NY-Bike Demand_performance.png b/docs/benchmark_visualizations/NY-Bike Demand_performance.png new file mode 100644 index 0000000..06e07d7 Binary files /dev/null and b/docs/benchmark_visualizations/NY-Bike Demand_performance.png differ diff --git a/docs/benchmark_visualizations/NY-Taxi Demand_performance.png b/docs/benchmark_visualizations/NY-Taxi Demand_performance.png new file mode 100644 index 0000000..cc47d29 Binary files /dev/null and b/docs/benchmark_visualizations/NY-Taxi Demand_performance.png differ diff --git a/docs/benchmark_visualizations/Nasdaq_performance.png b/docs/benchmark_visualizations/Nasdaq_performance.png new file mode 100644 index 0000000..956d883 Binary files /dev/null and b/docs/benchmark_visualizations/Nasdaq_performance.png differ diff --git a/docs/benchmark_visualizations/PEM-Bays_performance.png b/docs/benchmark_visualizations/PEM-Bays_performance.png new file mode 100644 index 0000000..197b7ad Binary files /dev/null and b/docs/benchmark_visualizations/PEM-Bays_performance.png differ diff --git a/docs/index.html b/docs/index.html index ca993c3..fe8e428 100644 --- a/docs/index.html +++ b/docs/index.html @@ -5,11 +5,71 @@
Time-series analysis is a statistical technique used to analyze data points collected or recorded at specific time intervals. Unlike traditional data analysis, time-series methods focus on capturing temporal patterns, trends, seasonality, and cyclic behaviors in data. These insights help predict future values, enabling informed decision-making. Time-series analysis is widely employed in numerous industries due to its ability to leverage historical data for forecasting and strategic planning. Time-series analysis is widely used across industries for its predictive power. In finance, it supports stock price prediction and risk management. Retailers and e-commerce platforms leverage it for demand forecasting and inventory optimization, while healthcare uses it for monitoring patient trends and predicting outbreaks. Additionally, energy providers rely on it for consumption forecasting, and logistics companies use it to optimize routes and delivery schedules.
-LPTM is also much smaller at around 150 million parameters compared to other solutions that range from 500 million to 2 billion parameters. This allows LPTM to deployed at a wider range of low resource computing platforms and can be deployed at a in settings with requirements of lowers latency and high throughput applications such as finance and sales forecasting.
@@ -141,5 +211,55 @@